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Metabolic pathway is an important type of biological pathways. It produces essential molecules and energies to maintain the life of
living organisms. Each metabolic pathway consists of a chain of chemical reactions, which always need enzymes to participate in.
Thus, chemicals and enzymes are two major components for each metabolic pathway. Although several metabolic pathways have
been uncovered, the metabolic pathway system is still far from complete. Some hidden chemicals or enzymes are not discovered in a
certain metabolic pathway. Besides the traditional experiments to detect hidden chemicals or enzymes, an alternative pipeline is to
design efficient computational methods. In this study, we proposed a powerful multilabel classifier, called iMPTCE-Hnetwork, to
uniformly assign chemicals and enzymes to metabolic pathway types reported in KEGG. Such classifier adopted the embedding
features derived from a heterogeneous network, which defined chemicals and enzymes as nodes and the interactions between
chemicals and enzymes as edges, through a powerful network embedding algorithm, Mashup. The popular RAndom k-labELsets
(RAKEL) algorithm was employed to construct the classifier, which incorporated the support vector machine (polynomial
kernel) as the basic classifier. The ten-fold cross-validation results indicated that such a classifier had good performance with
accuracy higher than 0.800 and exact match higher than 0.750. Several comparisons were done to indicate the superiority of the

iMPTCE-Hnetwork.

1. Introduction

Metabolic pathway is an essential type of biological pathways
in living organisms. It generates necessary molecules and
energies to maintain the life of the organisms [1]. In each
metabolic pathway, there are several continuous chemical
reactions, which change one molecule to another with the
help of some enzymes. Chemicals and enzymes are the two
major components in each metabolic pathway. Identification
of chemicals and enzymes in each pathway as full as possible
is helpful to understand its mechanism. To date, several
public databases, such as KEGG [2, 3], provide detailed
information of validated metabolic pathways. However, the

completeness of each metabolic pathway is still a problem.
There still exist undiscovered chemicals or enzymes for some
metabolic pathways. The traditional experiment is a solid
pipeline to determine novel chemicals or enzymes of meta-
bolic pathways. However, it is always time-consuming and
expensive. Thus, it is urgent to design novel approaches to
accelerate the detection procedures and decrease the costs.
With the development of computer science and tech-
nique, it becomes more and more popular to tackle different
biological and medical problems with advanced computa-
tional methods. Among them, the machine learning-based
method is always an important choice. For the problem
addressed in this study, several such methods have been
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proposed in the recent ten years. Most of them were designed
to assign chemicals to corresponding metabolic pathway
types. Cai et al. [4] first built a nearest neighbor algorithm-
(NNA-) based model to predict metabolic pathway type of
chemicals, where chemicals were represented by functional
group compositions. Later, Lu et al. [1] improved this model
by adopting a more powerful classification algorithm, Ada-
Boost. These two methods can only deal with chemicals par-
ticipating in only one metabolic pathway type. In fact, several
chemicals can belong to two or more pathway types, induc-
ing the limitation of the above methods. After that, investiga-
tors began to design models that can deal with chemicals in
multiple metabolic pathway types. Hu et al. [5] gave a com-
putational method with chemical-chemical interaction
(CCI) information, which can rank the candidate pathway
types for a given chemical. The chemical has the highest
probability to participate in the first pathway type, followed
by the second pathway type, and so on. Chen et al. [6]
adopted the same scheme to list the candidate pathway types.
Chemicals were encoded by their molecular fragment fea-
tures, and a support vector machine (SVM) [7] was adopted
to give a score to each pathway type. Although the above
methods can process chemicals with multiple pathway types,
they were not pure multilabel classifiers because they cannot
determine which pathway types are the predicted pathways.
Recently, Baranwal et al. [8] presented a powerful multilabel
classifier to assign chemicals to multiple pathways, which
adopted graph convolutional networks for obtaining the
molecular shape features of chemicals. Jia et al. [9] built a
multilabel web server, iMPT-FRAKEL, to predict metabolic
pathways of chemicals. This web server had wide applica-
tions because it only needed the SMILEs strings of chemicals
as the input. Besides, some other studies tackled the problem
in different ways. Fang and Chen [10] deemed the pairs of
chemicals and pathway types as samples. In this case, the mul-
tilabel classification problem was transformed into a binary
classification problem. Jia et al. [11] extended the above model
to an actual metabolic pathway rather than a pathway type.
The concept of “similarity” was adopted to extract essential
features for each pair of chemical and pathway. Guo et al.
[12] constructed a SVM-based model for each pathway type,
where chemicals were represented by embedding features
extracted from multiple chemical networks. From the above
descriptions, we can see that they only tackled one component,
chemicals, in metabolic pathways. As for the other compo-
nent, enzyme, only one study is involved to our knowledge.
Gao et al. [13] generalized Hu et al.’s method [5] by employing
chemical-protein interaction (CPI) and protein-protein inter-
action (PPI) information, thereby giving a pathway type rank
for a given chemical or enzyme. As mentioned above, such
method was not a pure multilabel classifier and it directly used
the linkage between chemicals and proteins but not deeply
mine the hidden information behind the linkage.

In this study, we adopted the metabolic pathway infor-
mation reported in KEGG, where chemicals and enzymes
are classified into 11 metabolic pathway types. A heteroge-
neous network was built to organize the chemicals, enzymes,
CCI, CPI, and PPI information, where chemicals and
enzymes defined nodes and three types of interaction infor-
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mation determined edges. To fully mine deep information
in the heterogeneous network, a powerful network embed-
ding algorithm, Mashup [14], was applied to such network.
Informative features were obtained for each chemical and
enzyme. These features and labels, representing metabolic
pathway types, were fed into the RAndom k-labELsets
(RAKEL) [15] algorithm to build the classifier, iMPTCE-
Hnetwork. SVM (polynomial kernel) [7] was adopted as
the basic classifier. The effects of heterogeneous networks
and the merits of combining the information of chemicals
and enzymes were elaborated. Furthermore, the comparisons
of other multilabel classifiers with Binary Relevance (BR)
[16], features derived from other network embedding algo-
rithms, or other basic classifiers were done to indicate the
superiority of the iMPTCE-Hnetwork.

2. Materials and Methods

2.1. Materials. The chemicals and enzymes (human) in
metabolic pathways were retrieved from the KEGG PATH-
WAY (https://www.genome.jp/kegg/pathway.html, accessed
in September 2019) [2, 3]. 5682 chemicals, encoded by KEGG
IDs, and 792 enzymes, represented by EC numbers, were
obtained. For the same representation of chemicals and
enzymes in the constructed network, KEGG IDs of chemicals
were map onto their PubChem IDs and specific human pro-
teins of obtained EC numbers were extracted, which were
further converted into Ensembl IDs. According to KEGG
PATHWAY, these chemicals and enzymes were classified
into 11 metabolic pathway types, which are listed in column
1 of Table 1. All above-obtained chemicals and enzymes were
used as nodes in the constructed heterogeneous network that
was described in “Heterogeneous Network Construction.”
However, some nodes were isolated in the network and were
discarded. As a result, we obtained 2329 chemicals (Pub-
Chem IDs) and 1124 human enzymes (Ensembl IDs). The
number of chemicals and enzymes in each metabolic path-
way type is listed in Table 1. Detailed chemicals and enzymes
in each metabolic pathway type are provided in Table SI.

It is easy to see from Table 1 (last two rows) that the total
number of chemicals/enzymes in eleven metabolic pathway
types was larger than the number of different chemicals/en-
zymes. Thus, the problem of assigning chemicals and
enzymes to metabolic pathway types was a multilabel classi-
fication problem. In this study, a uniform multilabel classifier
was built to correctly predict metabolic pathway types of che-
micals and enzymes.

2.2. Heterogeneous Network Construction. The chemicals and
enzymes are the major components in metabolic pathways.
The classic feature extraction methods always pick up essen-
tial features from the properties of themselves. With the
development of the network technique, it provides another
pipeline to access important features of chemicals and
enzymes. Here, we adopted a network scheme to organize
chemicals and enzymes.

To construct the network, we downloaded the informa-
tion of CClIs and CPIs from STITCH (http://stitch.embl.de/,
version 4.0) [17, 18]. Furthermore, the information of PPIs
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TaBLE 1: Number of chemicals and enzymes in each metabolic pathway type.

Metabolic pathway type

Number of chemicals Number of enzymes

Carbohydrate metabolism

Energy metabolism

Lipid metabolism

Nucleotide metabolism

Amino acid metabolism

Metabolism of other amino acids

Glycan biosynthesis and metabolism
Metabolism of cofactors and vitamins
Metabolism of terpenoids and polyketides
Biosynthesis of other secondary metabolites
Xenobiotics biodegradation and metabolism
Total numbers of chemicals/enzymes in all pathway types

Number of different chemicals/enzymes

399 274
153 102
405 337
135 113
427 215
132 106
22 156
303 175
195 46
326 54
422 141
2919 1719
2329 1124

was retrieved from STRING (https://string-db.org/, version
10.0) [19, 20]. For CClIs, the file “chemical_chemical.-
links.v4.0.tsv.gz” was downloaded, from which we extracted
the CCIs between 2329 chemicals. As a result, 82368 CClIs
were obtained. Each CCI contained two chemicals, repre-
sented by PubChem IDs, and one confidence score with a
range between 1 and 999. Such score integrated several types
of associations derived from different aspects of chemicals,
including structures, activities, reactions, and literature
occurrence. Thus, such score can widely measure the associ-
ations of chemicals. For formulation, let us denote this score
on the CCI between chemicals ¢; and ¢, as Scey(¢; ¢, ). For
CPIs, we downloaded the file, named “9606.protein_chemi-
callinks.v4.0.tsv.gz.” From this file, the CPIs between 2329
chemicals and 1124 enzymes were picked up, resulting in
41066 CPIs. Each CPI consists of one chemical and one pro-
tein, denoted by PubChem ID and Ensembl ID, respectively,
and one confidence score with a range between 1 and 999.
Such score is also obtained by evaluating several aspects of
chemicals and proteins. The score between chemical ¢ and
protein p was denoted by Scp(c,p). As for PPIs, the file
“9606.protein.links.v10.txt.gz” in STRING was downloaded.
We extracted PPIs between 1124 enzymes, obtaining 59868
PPIs. Two proteins, represented by Ensembl IDs, and one
confidence score comprised each PPI. Likewise, the score inte-
grated several types of associations of proteins and can widely
measure their linkage, and its range is also between 1 and 999.
For convenience, the score of proteins p; and p, was denoted
by Sppi(p;> ;). Because all the above confidence score is
between 1 and 999, we refined them by dividing it by 1000
so that the refined confidence score was between 0 and 1.
According to CCIs retrieved from STITCH, we con-
structed a chemical network. Such network defined 2329 che-
micals as nodes. Two nodes were adjacent if and only if their
corresponding chemicals can comprise a CCI with the
refined confidence score larger than zero. Moreover, the
refined confidence score was assigned to the corresponding
edge as its weight. For convenience, such network was
denoted by N. A bipartite network was built according to
CPIs retrieved from STITCH. Each edge connected a chemi-

cal node and an enzyme node if they can comprise a CPI with
the refined confidence score higher than zero. Likewise, the
refined confidence score was defined as the weight of the cor-
responding edge. This network was denoted as N_p. The
third protein network was constructed with the PPIs
obtained from STRING. Two nodes were connected by an
edge if and only if their corresponding proteins can comprise
a PPI with the refined confidence score higher than zero.
Also, the refined score was assigned to the edge as its weight.
Such network was denoted by N.

The above-constructed three networks were combined to
build a large heterogeneous network. For an easy description,
this network was denoted as N. The construction procedures
of N are illustrated in Figure 1.

2.3. Network Embedding Algorithm. A heterogeneous net-
work N was built in the above section. Informative relation-
ship between chemicals and enzymes was contained in such
network. In this study, a powerful network embedding algo-
rithm, Mashup [14], was employed to extract informative
features of chemicals and enzymes. This algorithm has been
adopted to deal with several biological and medical problems
[12, 21-27]. Its brief description was as follows.

The Mashup consists of two stages to extract embedding
features of nodes in a network, say N. In the first stage, each
node v; in N is picked up as the seed node of the random walk
with restart (RWR) algorithm [28, 29]. When the RWR algo-
rithm stops, probabilities assigned to all nodes are aligned
together to comprise a raw feature vector of v;, denoted as
V.. However, such vector has a high dimension. A dimen-
sionality reduction procedure is necessary, which is done in
the second stage. Let X; be the final feature vector of v; and
W; be the context feature vector of v; in N. The purpose of
the second stage is to determine the optimal components in
these two vectors. Thus, an optimization problem is set up
as follows:

S =
ml}%%%lze ;;DKL(ViHVi)’ (1)
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FIGURE 1: Procedures for constructing the heterogeneous network. From two public databases: STITCH and STRING, chemical-chemical,
chemical-protein, and protein-protein interactions are downloaded. They are used to construct three networks, which are combined

together to comprise the heterogeneous network.

where 7 stands for the number of nodes in network N, Dy (+)
denotes the function of KL-divergence (relative entropy), the
components in V; are defined as below

e e (07w
l D) €xXp ((Xi)TWk'>

The outcome X; was selected as the feature vector of v;,
which would be used to construct the classification model.

This study adopted the Mashup program retrieved from
http://cb.csail.mit.edu/cb/mashup/. For convenience, default
parameters were used.

2.4. Multilabel Classifier (iMPTCE-Hnetwork). Because some
chemicals/enzymes can belong to two or more metabolic
pathway types, the problem of assigning chemicals/enzymes
to metabolic pathway types is evidently a multilabel classifi-
cation problem. Generally, to deal with such problem, there
are two types of schemes. The first one is problem transfor-
mation, that is, the original multilabel classification problem
is transformed into several single-label classification prob-
lems. The second one is the algorithm adaption. This scheme
extends the existing one single-label classification algorithm
so that the new algorithm can process multilabel problems.
In this study, we adopted the first scheme to build the classi-
fication model.

RAndom k-labELsets (RAKEL) [15] is a classic method
to build multilabel classifiers, which can be deemed as the
generalization of the Label Powerset (LP) algorithm. To date,
this method has been applied to build several multilabel clas-
sifiers for tackling different biological and medical problems
[9, 21, 30-34]. For a multilabel problem involving m labels
(m=11 in this study), let L={1,,1,,---,],,} be its label set.
Select an integer k with 1 <k <m and construct all k-subsets
of L. For one randomly selected k-subset L, an LP classifier is
constructed. In detail, members in the power set of L, are

defined as the new labels. And each sample is assigned a
new label according to its original labels. For example, if a
sample has two labels, say /; and [,, a new label, representing
{l;,1,}, is assigned to this sample. After that, each sample has
only one new label, and a single-label classifier, called LP
classifier, can be built based on a single-label classification
algorithm. Clearly, multiple LP classifier with different k
-subsets should be constructed because one k-subset cannot
cover all labels. Thus, there are another parameters, M, of
RAKEL to determine the number of LP classifiers. The final
multilabel classifier integrates the above-constructed m LP
classifiers.

Given a query sample, each LP classifier gives its binary
decision on each label. The average of binary decisions on
each label is computed. If the average is larger than a prede-
fined threshold (generally, it is set to 0.5), the corresponding
label is assigned to the sample.

In this study, we adopted the tool “RAKEL” in Meka
(http://waikato.github.io/meka/) [35], which implements
the RAKEL described above. As mentioned above, k and M
are two major parameters of RAKEL. Several values were
set to them for building an optimal multilabel classifier. For
an easy description, the classifier constructed by RAKEL
was called the RAKEL classifier.

2.5. Classification Algorithm. The RAKEL was used to con-
struct a multi-label classifier. One basic single-label classifica-
tion algorithm was necessary to set up multiple LP classifiers.
Here, we selected one of the most classic classification algo-
rithms, SVM [7], which has wide applications in bioinfor-
matics [21, 30, 31, 36-40].

SVM is a statistical learning theory-based classification
algorithm. The key point is to find out an optimal hyper-
plane, which can separate samples into two classes with max-
imum margin. However, in most cases, samples in their
original space are not linearly separable, that is, such hyper-
plane cannot be found out. A kernel function is employed
to map samples into another space with higher dimensions,
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in which samples are linearly separable. After the optimal
hyperplane has been discovered, the class of a new sample
is determined according to the side of the hyperplane it
belongs to. The original SVM can only deal with binary prob-
lems. Some schemes (e.g., one-versus-others, one-versus-
one) can be adopted so that it can tackle problems with
multiple classes.

In this study, we selected the SVM whose training proce-
dures are optimized by the sequential minimal optimization
algorithm [41]. Such type of SVM is integrated in Meka.
The tool “RAKEL” can directly invoke it. Two kernel func-
tions (polynomial kernel, RBF kernel) were tried to select
the best one.

2.6. Performance Evaluation. All constructed multilabel clas-
sifiers were evaluated by ten-fold cross-validation [42]. In
such test, samples are divided into ten parts. Each part is sin-
gled out one by one as the test dataset, whereas the rest nine
parts are used to training the classifier. As a result, each sam-
ple is tested exactly once.

According to the results of ten-fold cross-validation,
some measurements can be computed. Here, we selected
three measurements: accuracy, exact match, and hamming
loss [9, 21, 30, 31]. Their definitions are as below

n /
Accuracy = %Z (HLJ]L,H) >

i1 |HLiULi,H
1 '
Exact match = ;ZV(L,-, L ) > 3)
i=1
_ 1 & ||lLaL||
Hammingloss = Z;T’

where # stands for the total number of samples, m represents
the number of labels, L, and L," denote the actual and pre-
dicted label set of the i-th sample, A indicates the symmetric
difference operation, and V is defined as follows:

) 1 if L;isidentifical to L,
Y (Li, L ) = : (4)
0 otherwise

Evidently, for accuracy and exact match, the higher they
are, the better performance the classifier has. On the
contrary, the lower the hamming loss is, the better the
performance is. Furthermore, to give a uniform evaluation,
we used the following equation to integrate the above three
measurements

Integrated score = Accurcay x Exact match x (1-Hammongloss).

()

The classifier with a high integrated score indicated its
high performance. We tried to construct a classifier with an
integrated score as high as possible.

3. Results and Discussion

In this study, we proposed a multilabel classifier, called the
iMPTCE-Hnetwork, to identify metabolic pathway types of
chemicals and enzymes. The entire procedures are illustrated
in Figure 2. This section gave evaluation results of such a clas-
sifier and elaborated its high utility.

3.1. Performance of the iMPTCE-Hnetwork. The constructed
classifier used the feature vectors by applying Mashup on a
heterogeneous network N. However, the dimension of the
vector was a problem. Here, we tried six dimensions varying
between 50 and 300 with an interval of 50. As for the main
parameters k and M in RAKEL, M was set to 5 and 10, k
was tried on each value between 2 and 11. Furthermore,
SVM was selected as the basic classification algorithm. The
kernel was set as the polynomial kernel, where the exponent
(E) was set to 1, 2, and 3. Three values, including 1, 2, and 3,
of regularization parameter C were tried. A lot of classifiers
with all possible settings were constructed, which were
further evaluated by ten-fold cross-validation.

The test results indicated that when k=11, M =5, C=2,
E =1, and dimension = 250, the iMPTCE-Hnetwork yielded
the highest integrated score, which was 0.591 (Table 2). The
accuracy, exact match, and hamming loss were 0.818, 0.754,
and 0.042 (Table 2), respectively. The accuracy was higher
than 0.800, and the exact match exceeded 0.750, suggesting
the good performance of the iMPTCE-Hnetwork.

Besides, to fully evaluate the performance of iMPTCE-
Hnetwork with ten-fold cross-validation, we further did the
ten-fold cross-validation 100 times. The obtained values of
accuracy, exact match, hamming loss, and integrated score
induced four violin plots, as shown in Figure 3. It can be
observed that accuracy varied between 0.805 and 0.825, the
exact match changed between 0.740 and 0.760, the hamming
loss was between 0.040 and 0.045, and the integrated score
varied between 0.570 and 0.600. These results implied that
the iMPTCE-Hnetwork was quite stable for different divi-
sions of samples.

3.2. Analysis of the Effects of Heterogeneous Network. The
proposed classifier, iIMPTCE-Hnetwork, adopted the chemi-
cal and enzyme features derived from the heterogeneous net-
work N. Clearly, the accuracy of N is an essential factor
which can influence the performance of the classifier. In this
section, an analysis would be given to indicate the impor-
tance of the heterogeneous network. Furthermore, we also
analyzed the contributions of chemical and protein networks
for building the classifier.

For the heterogeneous network N, a permutation was
done for nodes (representing enzymes) and nodes (denoting
chemicals), respectively. Obtained features (250-D) were fed
into the RAKEL to construct the classifier. The same param-
eter setting (k=11, M =5, C=2, E = 1) was used. Such a clas-
sifier was assessed by ten-fold cross-validation. To make the
results more reliable, the above procedures were done 100
times, resulting in 100 values of accuracy, exact match, ham-
ming loss, and integrated score. These values are shown in
Figure 4, in which the performance of iMPTCE-Hnetwork
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interaction information are obtained from STITCH and STRING to construct a heterogeneous network. The network embedding
algorithm, Mashup, is applied on the heterogeneous network to extract feature vectors of chemicals and enzymes. Labels and vectors are
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the multilabel classifier. The classifier is evaluated by ten-fold cross-validation.
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TaBLE 2: Performance of different multilabel classifiers based on features yielded by Mashup under ten-fold cross-validation.

Scheme Basic classification algorithm Accuracy Exact match Hamming loss Integrated score
Support vector machine (polynomial kernel) 0.818 0.754 0.042 0.591
RAKEL Support vector machine (RBF kernel) 0.757 0.670 0.055 0.479
Random forest 0.803 0.743 0.045 0.570
Support vector machine (polynomial kernel) 0.786 0.690 0.043 0.519
Binary relevance Support vector machine (RBF kernel) 0.598 0.533 0.058 0.300
Random forest 0.666 0.602 0.052 0.380

is also listed. It can be observed that the permutation made
the performance of the classifier very poor. Compared with
the performance of iMPTCE-Hnetwork, the accuracy, exact
match, and integrated score reduced about 0.667, 0.630,
and 0.570, respectively, whereas hamming loss increased
about 0.145. It is indicated that the accuracy of heteroge-
neous network N is very important to construct the efficient
classifier.

In addition, we also analyzed the importance of chemical
and protein networks for constructing the classifier. First, we
only permutated the protein (enzyme) nodes. Features (250-
D) yielded by Mashup were used to construct the RAKEL
classifier (k=11, M =5, C=2, E = 1), which was also evalu-
ated by ten-fold cross-validation. Such procedures were also
done 100 times. The average performance is shown in

Figure 4. Evidently, the classifier became worse. The accu-
racy, exact match, and integrated score declined about
0.230, 0.220, and 0.306, respectively, whereas hamming loss
increased about 0.056. Second, the above procedures were
done for chemical nodes. Results are illustrated in Figure 4.
Also, the performance of the classifier decreased. In detail,
accuracy, exact match, and integrated score were about
0.478, 0.448, and 0.497, respectively, lower than those of the
iMPTCE-Hnetwork, and the hamming loss was about 0.097
higher than that of the iMPTCE-Hnetwork. It can be
observed that when chemical nodes were permutated, the
performance of the classifier was much lower than that of
the classifier with enzyme permutation, suggesting that the
chemical network gave more contribution to build the
classifier.
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F1GURE 3: Violin plot to show the performance of the iMPTCE-Hnetwork under 100 ten-fold cross-validation. (a) Accuracy; (b) exact match;

(c) hamming loss; (d) integrated score.

3.3. The Superiority of Combining the Information of
Chemicals and Enzymes. As mentioned above, iMPTCE-
Hnetwork provided good performance for the identification
of metabolic pathway types of chemicals and enzymes. From
its construction procedures, we can see that the information
of chemicals and enzymes was poured into a uniform system,
that is, the information of chemicals can be used to predict
metabolic pathway types of enzymes and vice versa. This fact
may lead to the superiority of the classifier. Here, we gave
some analyses.

There were two essential stages that the information of
chemicals and enzymes was utilized with each other. The first
stage was the feature extraction. Because chemicals and
enzymes have several different points, an ordinary method
may only consider chemicals (enzymes) when extracting
chemical (enzyme) features and excluding the information of
enzymes (chemicals). In our classifier, chemicals and enzymes
were all deemed as nodes in the heterogeneous network N,
that is, they were combined together to extract features. The
second essential stage was the classification. In the iMPTCE-
Hnetwork, the enzyme features were used to predict the met-
abolic pathway types of chemicals and vice versa. Ordinary
methods may separate the classification procedures, i.e., the
prediction of metabolic pathway types of chemicals (enzymes)
only used the chemical (enzyme) features. Considering the
above two stages, we did the following two tests.

For the first test, we extracted chemical features from the
chemical network N and enzyme features from the protein
network Np with Mashup. In this case, the feature extrac-
tion procedures separated the information of chemicals
and enzymes. Because we did not know which dimension
was best, six dimensions from 50 to 300 with an interval
of 50 were obtained. With a given dimension, a multilabel
classifier was set up for chemicals and enzyme, respectively.
We used the same parameter setting of iMPTCE-Hnetwork.
Each classifier was evaluated by ten-fold cross-validation.
For each combination of dimensions of chemicals and
enzymes, we combined the cross-validation results to com-
pute four measurements mentioned in “Performance Evalu-
ation.” As a result, when the dimensions of chemicals and
enzymes were all 100, we obtained the highest integrated
score (0.120). The accuracy was 0.390, the exact match
was 0.352, and hamming loss was 0.130, which are shown
in Figure 5. It can be observed that such performance was
much lower than that of the iMPTCE-Hnetwork, implying
feature extraction with the combination of chemicals and
enzymes improved the quality of chemical and enzyme
features.

The second test was for the classification procedure. We
used the 250-D feature vectors of the iMPTCE-Hnetwork.
However, the classification procedures strictly separated che-
micals and enzymes. The predicted results of chemicals and
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FIGURE 4: Bar chart to illustrate the performance of the RAKEL classifiers with SVM as the basic classification algorithm under the
permutation of nodes in the heterogeneous network. “All” indicates that both chemical and protein nodes are permutated; “Enzyme only”
indicates that only protein nodes are permutated; “Chemical only” indicates that only chemical nodes are permutated; “No permutation”
indicates no permutation is done for chemical and protein nodes (i.e., the proposed classifier, IMPTCE-Hnetwork). (a) Accuracy; (b) exact
match; (c) hamming loss; (d) integrated score.
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FIGURE 5: Bar chart to illustrate the performance of classifiers using different combination stages of chemical and enzyme information. When
the combination of chemical and enzyme information is used in both feature extraction and classification procedures, the classifier provides

the best performance.

enzymes were combined to calculate four measurements. The
integrated score was 0.583, the accuracy was 0.814, the exact
match was 0.749, and the hamming loss was 0.043, as shown
in Figure 5. This performance was slightly lower than that of
the iMPTCE-Hnetwork, implying the classification procedure
by combining chemical and enzyme features can also improve
the performance of the classifier. However, its influence was
much smaller than that of the feature extraction.

With the above arguments, the combination of chemicals
and enzymes is an important aspect to cause the good perfor-
mance of our classifier.

3.4. Comparison of the RAKEL Classifiers with Different
Classification Algorithms. The classifier, IMPTCE-Hnetwork,
was built based on SVM (polynomial kernel). In fact, we also
tried SVM (RBF kernel) and random forest (RF) [43]. Like
SVM, RF is also a widely used and powerful classification
algorithm [8, 11, 22, 44-47]. For SVM (RBF kernel), the same
values of regularization parameter C were tried, and y was set
to 0.01, 0.02, and 0.03. As for RF, the main parameter, the
number of decision trees, was set to different values from
10 to 100 with an interval of 10. Same dimensions and
parameters of RAKEL (M and k), which were tried when
constructing iMPTCE-Hnetwork, were also used. Each clas-
sifier was also assessed by ten-fold cross-validation. The best
performance for SVM (RBF kernel) and RF is listed in
Table 2. Four measurements for SVM (RBF kernel) were
0.757, 0.670, 0.055, and 0.479, respectively, whereas they
were 0.803, 0.743, 0.045, and 0.570, respectively, when the
basic classifier was RF. Compared with the performance of
iMPTCE-Hnetwork, also listed in Table 2, their performance
was less or more lower. For the integrated score, they were
about 0.112 and 0.021 lower, respectively. The RAKEL classi-
fier with RF was slightly inferior to iMPTCE-Hnetwork, but
the performance of RAKEL classifier with SVM (RBF kernel)

was much lower than that of the iMPTCE-Hnetwork. It is
suggested that the selection of SVM (polynomial kernel) as
the basic classifier was a relatively proper choice.

3.5. Comparison of the BR Classifiers. The RAKEL algorithm
is an efficient scheme for tackling multilabel classification
problems. The Binary Relevance (BR) [16] method is another
widely used scheme. This scheme adopted the one-against-all
strategy to construct several binary classifiers for each label
and integrated them together. In fact, if the parameter k of
RAKEL is set to 1, RAKEL is the same as BR. Here, we com-
pared the classifiers based on BR with RAKEL classifiers. For
convenience, the classifier based on BR was called the BR
classifier. Three basic classifiers: SVM (polynomial kernel),
SVM (RBF kernel), and RF, were adopted to construct the
BR classifiers. All parameter settings mentioned above were
tried. Each BR classifier was evaluated by ten-fold cross-
validation. The best performance for each basic classifier is
listed in Table 2.

The BR classifier with SVM (polynomial kernel) yielded
the accuracy of 0.786, the exact match of 0.690, the hamming
loss of 0.043, and the integrated score of 0.519. When the
basic classifier was SVM (RBF kernel), the BR classifier pro-
vided the accuracy of 0.598, the exact match of 0.533, the
hamming loss of 0.058, and the integrated score of 0.300.
As for the RF, its BR classifier generated the accuracy of
0.666, the exact match of 0.602, the hamming loss of 0.052,
and the integrated score of 0.380. Each measurement was
lower than the corresponding one of the iMPTCE-Hnetwork,
suggesting that RAKEL was more efficient than BR for the
identification of the metabolic pathway types of chemicals
and enzymes. Furthermore, three basic classifiers gave the
same strength for building the BR classifiers as for building
the RAKEL classifiers, that is, the SVM (polynomial kernel)
was the best, followed by RF and SVM (RBF kernel).
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TaBLE 3: Performance of different multilabel classifiers based on features yielded by DeepWalk under ten-fold cross-validation.
Scheme Basic classification algorithm Accuracy Exact match Hamming loss Integrated score

Support vector machine (polynomial kernel) 0.333 0.290 0.145 0.083

RAKEL Support vector machine (RBF kernel) 0.342 0.304 0.140 0.089
Random forest 0.334 0.297 0.142 0.085

Support vector machine (polynomial kernel) 0.297 0.213 0.143 0.054

Binary relevance Support vector machine (RBF kernel) 0.059 0.057 0.118 0.003
Random forest 0.142 0.118 0.121 0.015

TaBLE 4: Performance of different multilabel classifiers based on features yielded by Node2vec under ten-fold cross-validation.

Scheme Basic classification algorithm Accuracy Exact match Hamming loss Integrated score
Support vector machine (polynomial kernel) 0.774 0.698 0.050 0.513
RAKEL Support vector machine (RBF kernel) 0.738 0.668 0.059 0.464
Random forest 0.762 0.695 0.054 0.501
Support vector machine (polynomial kernel) 0.734 0.631 0.049 0.440
Binary relevance Support vector machine (RBF kernel) 0.652 0.574 0.058 0.353
Random forest 0.639 0.581 0.058 0.350

3.6. Comparison of Classifiers with Other Embedding
Features. The iMPTCE-Hnetwork was constructed using
the chemical and enzyme features derived from the heteroge-
neous network by Mashup. To date, several network embed-
ding algorithms have been proposed and applied to deal with
some realistic problems. Here, we selected two of them to
make comparisons. They were DeepWalk [48] and Node2vec
[49]. These two algorithms adopted quite different schemes
to extract features for representing nodes. They always pro-
duce a lot of paths for each node. Each path is deemed as a
sentence, and nodes in the paths are termed as words. Then,
Word2vec [50] is applied to these sentences to extract fea-
tures. The main difference of these two algorithms is the
way to produce paths. Node2vec adopts a more advanced
scheme and thus is considered to be more powerful than
DeepWalk. We downloaded the DeepWalk program at
https://github.com/phanein/deepwalk, and the program of
Node2vec was retrieved from https://snap.stanford.edu/
node2vec/. They were all applied to the heterogeneous net-
work N with their default parameters. Likewise, the dimen-
sion was set to 50 to 300 with an interval of 50.

Features yielded by DeepWalk and Node2vec were fed
into RAKEL with different values of M and k and different
basic classifiers (SVM (polynomial kernel), SVM (RBF ker-
nel), and RF) to construct RAKEL classifiers. All classifiers
were evaluated by ten-fold cross-validation. For features
yielded by DeepWalk, the best performance of RAKEL classi-
fiers with one of the three basic classifiers is shown in Table 3.
It can be seen that these classifiers all gave a poor perfor-
mance. The accuracy was all lower than 0.350, the exact
match was lower than 0.310, the hamming loss was higher
than 0.140, and the integrated score was lower than 0.090.
Compared with the measurements of RAKEL classifiers
using features produced by Mashup (Table 2), they were
much lower. As for the features generated by Node2vec,
RAKEL classifiers gave better performance. Four measure-

ments are listed in Table 4. The accuracy was higher than
0.700, the exact match was higher than 0.650, the hamming
loss was lower than 0.060, and the integrated score was
higher than 0.460. However, they were still inferior to those
of the RAKEL classifiers using features produced by Mashup
(Table 2). It can be concluded that the features yielded by the
Mashup were more informative than those produced by
DeepWalk and Node2vec for the identification of metabolic
pathway types of chemicals and enzymes.

Besides, to fully elaborate the conclusion in the above
paragraph, we also used the features yielded by DeepWalk
and Node2vec to build BR classifiers. The ten-fold cross-
validation results are listed in Tables 3 and 4, respectively.
For BR classifiers using features yielded by DeepWalk, their
performance was still very poor. Given the same basic classi-
fier, such BR classifier was much inferior to that with features
yielded by Mashup. The BR classifier with features yielded by
Node2vec gave much better performance. When the basic
classifier was SVM (RBF kernel), the BR classifier was slightly
superior to the BR classifier using features yielded by
Mashup. However, the other two basic classifiers still
generated lower performance. In addition, the best BR classi-
fier using features yielded by Mashup was much better than
the best BR classifier using features yielded by Node2vec.
These results further confirmed that the features yielded by
the Mashup were more efficient, which was an important
reason why iMPTCE-Hnetwork can provide such high
performance.

4. Conclusions

This study proposed an efficient multilabel classifier for the
identification of metabolic pathway types of chemicals and
enzymes. We did several tests to elaborate its rationality,
including parameter settings, selection of basic classifiers,
scheme for tackling multilabel problems, and network
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embedding algorithms. The main merit of the proposed clas-
sifier is the integration of chemical and enzyme information.
Their information is utilized with each other in both feature
extraction and classification procedures. It is hopeful that this
classifier can be a useful tool for investigating the metabolic
pathway system.
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