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Simple Summary: Medical control strategies for infectious diseases remain enormously important.
One germ that can cause gastrointestinal infections is Yersinia enterocolitica. This study investigates
and analyzes a computational model to identify the occurrence of disease-free and co-infection
states. Thereby, the reproduction numberR0 informs us about the germ’s ability to spread disease.
Suppose this fundamental quantity takes a value between zero and one. In that case, every infectious
strain will cause less than one secondary infection, so the strain will disappear. In contrast, if R0

exceeds one, every infectious strain causes more than one secondary infection, and Yersinia infection
strains will persist. A disease-free state occurs when the commensal bacteria’s growth rate exceeds
the maximum immune action and the rate at which the intestines release the bacteria. With a large
enough commensal bacteria growth rate, this state can be stable. Co-infection occurs when the
maximum growth rates of the wild-type and mutant strains become unequal. Studying the immune
system’s behavior can result in an infection’s disappearance from hosts with a healthy microbiota
immune system. In this case, Yersinia strains do not spread in the lumen when the commensal
bacteria’s growth rate exceeds the growth rate of wild-type and mutant Yersinia.

Abstract: The complex interplay between pathogens, host factors, and the integrity and composition of
the endogenous microbiome determine the course and outcome of gastrointestinal infections. The model
organism Yersinia entercolitica (Ye) is one of the five top frequent causes of bacterial gastroenteritis based
on the Epidemiological Bulletin of the Robert Koch Institute (RKI), 10 September 2020. A fundamental
challenge in predicting the course of an infection is to understand whether co-infection with two Yersinia
strains, differing only in their capacity to resist killing by the host immune system, may decrease the
overall virulence by competitive exclusion or increase it by acting cooperatively. Herein, we study
the primary interactions among Ye, the host immune system and the microbiota, and their influence
on Yersinia population dynamics. The employed model considers commensal bacterial in two host
compartments (the intestinal mucosa the and lumen), the co-existence of wt and mut Yersinia strains,
and the host immune responses. We determine four possible equilibria: disease-free, wt-free, mut-free,
and co-existence of wt and mut in equilibrium. We also calculate the reproduction number for each
strain as a threshold parameter to determine if the population may be eradicated or persist within the
host. We conclude that the infection should disappear if the reproduction numbers for each strain fall
below one, and the commensal bacteria growth rate exceeds the pathogen’s growth rate. These findings
will help inform medical control strategies. The supplement includes the MATLAB source script,
Maple workbook, and figures.
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1. Introduction

Forecasting the evolution of infectious diseases is the primary motivation behind the use of
mathematical models in biology. Determining those threshold values that predict whether the disease
will spread within the host or can be contained is crucial to inform medical control strategies.

Yersinia entercolitica (Ye) is a Gram-negative enteropathogen causing foodborne gastrointestinal
infections. Within the small intestine (SI), Ye can adhere to and invade the intestinal epithelial lining
mainly via the adhesins Yersinia adhesin A (YadA) [1] and Invasin [2–4]. YadA is among the essential
virulence factors as a YadA-deficient strain is impaired 97 colonizations, and systemic spread in a
mouse model of infection has been shown Upon attachment, Ye can engage its Type III secretion
system (T3SS) to inject effector proteins, the Yersinia outer proteins (Yops), into host cells, thus evading
the host immune response and establishing a productive infection [5–7]. Indeed, the first line of host
defense against invading Ye is a massive infiltration of phagocytotic cells. However, Ye can counteract
phagocytic killing via its T3SS [6,7]. Together, both the T3SS and YadA contribute to the efficient
colonization of the intestinal tract, where Ye induces an inflammatory response that likely accounts
for a reduction in density and complexity of the commensal microbiome [8,9]. Several Ye serotypes
have been isolated from animal reservoirs and the human gastrointestinal tract, but only a few of them
cause disease in humans. Although causing severe distress, gastrointestinal infections are generally
self-contained. Typically, healthy persons will only receive symptomatic treatment aimed at avoiding
dehydration. However, in individuals with underlying disease, elderly persons, or newborn children,
gastrointestinal infections can cause high morbidity and even fatal outcomes. Especially in such patients,
identifying those at high risk of developing fatal diseases could help tailor personalized therapeutic
interventions to improve the outcome of infection. To this aim, we recently developed a computational
model that can calculate Ye population dynamics during gastrointestinal infection and predict pathogen
expansion, gut colonization, and infection course [10].

Previously published models have focused on the virulence evolution during co-infection and
superinfection by more than one pathogen [11–17]. Furthermore, Nurtay et al. [18] investigated
theoretical conditions in co-existence strains in their research focused on viral populations of wt and
mut [18]. Herein, we apply our computational model to predict the behavior of Ye population dynamics
during the co-infection of mice by different Ye mutant (mut) strains, lacking distinct virulence factors,
and a Ye wt strain in bacterial gastroenteritis. We perform a bifurcation analysis to show how the
dynamics of the system change as multiple parameters are varied [19,20].

The existence of a backward bifurcation, i.e., the co-existence of stable disease-free equilibrium with
one or more stable endemic equilibria, has significant consequences on the process of producing medical
policies aimed at eradicating or controlling an infectious disease within the host [21]. A fundamental
parameter in models displaying a backward bifurcation is the primary reproduction number R0.
R0 represents the expected number of new infections caused within the host or between hosts when a
pathogen enters into the host. IfR0 > 1, after an initial introduction, the infection spreads within the
host/or between hosts, thus creating an infectious disease. IfR0 < 1, small initial introductions are not
sufficiently transmissible to spread the infection within the host (or between hosts), and the cells get
infected within a host. This is called an endemic disease that will fade out. Thus, many control policies
like medication/vaccination have focused on reaching coverage levels sufficient to reduceR0 below
1 [15,16,22,23]. Therefore, in this analysis, we compute the system’s equilibrium points, study their
stability and the center manifold, and investigate how the different points would affect the infection
rate, virulence, and mutation rate. Next, we calculate the primary reproductive number for scenarios
in which multiple strains are introduced, and an R0 number is calculated for each strain. Finally,
we discuss the biological implications of our results.
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2. Materials and Methods

2.1. Model Description

Our model for Ye, as described in Geißert et al. [10], considers three different sites with their
individual population dynamics. Figure 1 depicts an overview of the model in the form of a Systems
Biology Graphical Notation (SBGN) [24] Process Description (PD) diagram [25] based on an illustration
by Geißert et al. [10]. The lumen and the mucosal site of the small intestine are illustrated as two
separate compartments by abbreviated notations L and M in Table 1. The mucosa and lumen sites
include three different population dynamics: commensal bacteria, wt Yersinia, and mut Yersinia.

Mucosa compartment 
containing Ye

Immune System

I

Y (wt)
M Y (mut)

M BM

Y (wt)
L Y (mut)

L BL

Mucosa

Lumen

Figure 1. An overview of the Yersinia enterocolitica population dynamics model. Filled circles represent
the entity pool nodes for the populations of Ye in their respective compartments as well as the
strength of the immune reaction I. Table 1 explains the notations used in the model and this figure.
The black arrows represent processes with an impact on the population dynamics of the entity pools.
Arrows pointing from empty set symbols to pool nodes denote an increase in the population size or a
decrease if the process arcs point from entity pools to empty sets. Migration across compartments of
the respective populations appears as vertical process arcs. Some of these processes receive stimulating
effects from the immune reaction or from the size of the Ye populations within the mucosa, as colored
arcs indicate. Reference [10] provides a more detailed description of the model’s structure.

Table 1. The variable symbols and their meaning. The lumen is abbreviated with L, the mucosa as M.
We also indicate each variable with mut or wt to denote to which population they refer. An upper-case
I refers to the immune system. SBML [26,27] defines the units item and dimensionless to indicate that a
quantity occurs in a piece number or that its unit originates from the cancellation of other units.

Variable Symbol Meaning Units

BM Commensal bacteria in the mucosa item
Y(wt)

M wt Yersinia in the mucosa item
Y(mut)

M mut Yersinia in the mucosa item
BL Commensal bacteria in the lumen item
Y(wt)

L wt Yersinia in the lumen item
Y(mut)

L mut Yersinia in the lumen item
I Strength of immune reaction dimensionless

Besides the bacterial populations, we have the strength of the host immune response. For the
sake of clarity, the complex immune cell population dynamics, which is made up of innate and
adaptive immunity, are implemented in our model as a single abstract immune response in Table 1.
An advantage of this rather abstract immune response is that it is easily adjustable. Only the Ye
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populations in the mucosa activate the immune response, whereas tolerance to commensal bacteria
exists. However, this immune response affects all bacterial populations at the mucosal site. Upon oral
co-infection, a Ye population enters the small intestinal lumen. Due to their particular virulence traits,
some Ye cells are also able to enter the mucosal site.

As shown in Models (1)–(7), the population dynamics of bacterial species consist of both growth,
i.e., an increase in populations due to a distinct growth rate α, and a reduction through peristalsis,
which moves the bacterial populations towards the colon where they finally end up in feces. Peristalsis
will only influence the populations in the lumen. Furthermore, bacterial populations in the mucosa
can additionally be reduced through killing by the host immune attack.

Both compartments (the lumen and the mucosal) are colonized by commensal bacterial species
but to different extents. The colonization capacity of the lumen considerably exceeds that of the
mucosal site. This is due to the host’s natural mechanisms to limit bacterial contact to the epithelium
through physical barriers, such as the adherent mucus layer, and a high concentration of anti-microbial
peptides (AMPs). Hence, we assume a much lower carrying capacity of the mucosal site compared
to the luminal compartment. Another assumption is that as soon as bacterial numbers exceed the
mucosa’s carrying capacity, they spill-over to the luminal site, feeding the luminal populations [10].

The model’s immune system represented by I (see Table 1) is activated as soon as at least one
Ye cell enters the small intestinal mucosal compartment. This immune activation increases with the
number of Ye cells in the mucosa. By triggering the killing of all bacterial cells at the mucosal site,
this leads to a reduction in bacterial populations spilling over to the lumen [10].

In contrast to commensal bacteria, Ye exhibits a number of virulence traits to evade the host
immune response. This is implemented in our model by different immunity adjustment factors for
either the wt strain or the different mut strains. Consequently, the number of commensal species is
more affected by the host immune attack than the number of Ye mut strains, which are, of course,
more affected than the wt strain. Our model’s final output is the number of bacteria, or colony-forming
units (CFUs), finally ending up in feces. These population dynamics are represented as the following
system of differential equations [10]:

d
dt

BM =
(

α(B) − σ
(B)
M−→L − γ · I

)
· BM (1)

d
dt

Y(wt)
M =

(
α(wt) − σ

(wt)
M−→L − γ · f (wt)

I · I
)
·Y(wt)

M (2)

d
dt

Y(mut)
M =

(
α(mut) − σ

(mut)
M−→L − γ · f (mut)

I · I
)
·Y(mut)

M (3)

d
dt

BL =
(

α
(B)
L − β

)
· BL + σ

(B)
M−→L · BM (4)

d
dt

Y(wt)
L =

(
α
(wt)
L − β

)
·Y(wt)

L + σ
(wt)
M−→L ·Y

(wt)
M (5)

d
dt

Y(mut)
L =

(
α
(mut)
L − β

)
·Y(mut)

L + σ
(mut)
M−→L ·Y

(mut)
M (6)

d
dt

I =
(

Y(wt)
M + Y(mut)

M

)
· κ · CI − I

CI
. (7)

For a detailed description of the parameters, see Table 2. Besides the seven differential equations
describing the population dynamics of the Ye strains, the commensal bacteria and the immune system
at the mucosal site, and all three populations (commensal bacteria, wt Yersinia, and mut Yersinia) at the
luminal site, the model consists of different mass-action terms describing the spill-over rates from the
mucosa into the lumen and describes the growth rates of the bacterial populations, which are limited
through a given capacity “C” and are defined as follows:

σ
(B)
M−→L = α(B) BM + Y(wt)

M + Y(mut)
M

CM
Spill-over rate commensal (8)
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σ
(wt)
M−→L = α(wt) BM + Y(wt)

M + Y(mut)
M

CM
Spill-over rate wt (9)

σ
(mut)
M−→L = α(mut) BM + Y(wt)

M + Y(mut)
M

CM
Spill-over rate mut (10)

α
(B)
L = α(B)

CL −
(

BL + Y(wt)
L + Y(mut)

L

)
CL

Bacteria growth rate in the lumen (11)

α
(wt)
L = α(wt)

CL −
(

BL + Y(wt)
L + Y(mut)

L

)
CL

wt growth rate in the lumen (12)

α
(mut)
L = α(mut)

CL −
(

BL + Y(wt)
L + Y(mut)

L

)
CL

mut growth rate in the lumen (13)

Model parameters are shown in Table 2. Since the system models the Yersinia population in the
mucosa and lumen, we assume that all state variables and parameters of the model are non-negative
∀t ≥ 0.

Table 2. Definition of the parameters.

Parameter Definition Unit

α(B) Maximal growth rate of intestinal bacteria 1/h
α(wt) Maximal growth rate of wt Yersinia 1/h
α(mut) Maximal growth rate of mut Yersinia 1/h
f (wt)
I Immunity adjustment factor for wt Yersinia dimensionless

f (mut)
I Immunity adjustment factor for mut Yersinia dimensionless
CM Carrying capacity of the mucosa item
CL Carrying capacity of the lumen item
CI Carrying capacity of the immune system item
γ Maximal immunity action 1/h
κ Maximal rate of immune growth 1/h
β Rate at which intestines are discharged 1/h

2.2. The Basic Reproduction NumberR0

The basic reproduction ratio R0 is calculated by the fraction of the transmission rate for each
strain (spill-over) and the average infectious period for each strain in compartments, as defined by
Diekmann et al. [28].

In addition, van den Driessche and Watmough [29,30] defined R0 as a general compartmental
disease transmission model suited to heterogeneous populations that can be modeled by a system
of ordinary differential equations. Suppose there are n disease compartments and m non-disease
compartments, and let x ∈ Rn and y ∈ Rm be the subpopulations in each of these compartments.
In this splitting, the authors thus represented the diseased compartment with Fi(x) as the rate of
the appearance of new infections in compartment i, and Vi as the rate disease progression, death,
and recovery reduced in compartment i, which can be written as ẋi = fi(x) = Fi(x)−Vi, i = 1, . . . , n.

To understand compartment Vi better, this can be written as Vi = V−i + V−i , where V+i is defined
as the rate of transfer of individuals into compartment i by all other means, and V−i is the rate of
transfer of individuals out of the compartment i. Therefore, the disease transmission model consisting
of non-negative initial conditions will be as follows:

d
dt

xi = Fi(x, y)− Vi(x, y) ∀i ∈ {1, . . . , n} (14)

d
dt

yj = Gj(x, y) ∀j ∈ {1, . . . , m}. (15)

It is assumed that functions Fi(x) and Vi = V−i + V−i are continuously differentiable at least
twice in each variable, and they satisfy the assumptions A(1)–A(5) described below [29,31]:
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A(1) Fi(0, y) = 0, Vi(0, y) = 0 : ∀y > 0 and i = 1, . . . , n (no immigration of individuals into the
disease compartments)

A(2) Fi(x, y) ≥ 0 : ∀xi ≥ 0∧ yi ≥ 0 and i = 1, . . . , n (the new infections will be represented by F ,
so it cannot be negative)

A(3) Vi(x, y) ≤ 0 : whenever xi = 0, i = 1, . . . , n (if the compartment is empty, it can only have
inflow, and the net outflow from the compartment must be negative)

A(4) ∑i Vi(x, y) ≥ 0 : ∀xi ≥ 0∧ yi ≥ 0 (sum is net outflow)
A(5) The system ẏ = G(0, y) has a unique asymptotically stable equilibrium, y∗ (all solutions

with initial conditions of the form (0, y) approach a point (0, y∗) as t→ ∞)

Theorem 1. Consider the disease transmission model given by Ẋ = f (X) with f (X) satisfying conditions
A(1)–A(5). If X0 is a disease-free equilibrium (DFE) of the model, then X0 is locally asymptotically stable
ifR0 < 1, but unstable ifR0 > 1, whereR0 acts as a threshold parameter.

Proof. See [29].

By defining F = ∂Fi
∂xj

(0, y∗) and V = ∂Vi
∂xj

(0, y∗) as n× n matrices, the basic reproduction number

R0 is computed byR0 = ρ
(

FV−1), where ρ(A) denotes the spectral radius of a matrix A.
Several models found in the literature have been used to show that whenR0 crosses the threshold,

R0 = 1, it can act as a bifurcation parameter and transcritical bifurcation takes place. That is,
local asymptotical stability is transferred from the disease-free state to the new (positive) equilibria.
In ordinary differential equations, we will encounter bifurcations of equilibrium and periodic orbits,
which are typical in the sense that they occur when a small smooth change is made to the threshold
parameter values (the bifurcation parameters µ) of a system. It causes a sudden qualitative or
topological change in the behavior of the system. Consider the continuous dynamical system described
by the Ordinary Differential Equation (ODE)

Ẋ = f (X, µ) with f : Rn ×R→ Rn. (16)

A local bifurcation occurs at (X0, µ0) if an eigenvalue with zero real part is included in the Jacobian
matrix of the system. If the eigenvalue is equal to zero, the bifurcation is a steady-state bifurcation.
Therefore, we now recall the analysis of the center manifold near the critical (X = X0,R0 = 1),
which allows clarifying the direction of the bifurcation near the bifurcation point using the Center
Manifold Theorem 2. This theory describes the local stability at the non-hyperbolic equilibrium
(linearization matrix has at least one eigenvalue with zero real parts) and the existence of another
equilibrium (bifurcated from the non-hyperbolic equilibrium).

2.3. Center Manifold

The center manifold theorem provides a means for systematically reducing the dimensions of
the state spaces, which need to be considered when analyzing bifurcations of a given type.

Theorem 2 (Center Manifold Theorem for Flows). Let f be a Cr vector field on Rn vanishing at the origin
f (0) = 0, and let A = D f (0). Divide the spectrum of A into three parts, σs, σc, andσu, with

Reλ


< 0 if λ ∈ σs

= 0 if λ ∈ σc

> 0 if λ ∈ σu

. (17)

Let the (generalized) eigenspaces of σs, σc, and σu be Es, Ec, and Eu, respectively. Then, there exists Cr

stable and unstable invariant manifolds Wu and Ws tangent to Eu and Es at 0 and a Cr−1 center manifold
Wc tangent to Ec at 0. The manifolds Wu, Ws, and Wc are all invariant for the flow of f . Stable and unstable
manifolds are unique, but Wc need not be.
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Proof. See [32,33].

To achieve this, consider the general system

ẋ = Jx + F(x), x ∈ Rn (18)

where Jx is the linear part of the system. We must first find the differential equations on its center
manifold and then reduce the system to its normal form. Without loss of generality, we assume that
x = 0 is the fixed point of interest for the system.

Suppose J has nc eigenvalues with zero real-parts and ns eigenvalues with negative and positive
real parts, and n = nc + ns. Using the eigenvectors of J to form a transformation matrix, the system
can be rewritten in block matrix form as{

ẋc = Axc + f (xc, xs)

ẋs = Bxs + g(xc, xs)
(19)

where (xc, xs) ∈ Rnc × Rns , A ∈ Rnc × Rnc , and B ∈ Rns × Rns . With the eigenvalues of zero
real parts, the Center Manifold Theorem 2 guarantees that there exists a smooth manifold Wc =

{(xc, xs) | xs = q(xc)}, the equilibrium point such that the local behavior in the center direction of
the system is qualitatively the same as that on the manifold. By differentiating xs = q(xc), we get
ẋs = Dq(xc)ẋc. Substituting (19) into the previous identity and rearranging the equation, we get

Dq(xc) [Axc + f (xc, q(xc))]− Bq(xc)− g (xc, q(xc)) = 0. (20)

By solving for q(xc), we get a function describing the center manifold. In general, q(xc) cannot be
solved explicitly. Instead, substituting a Taylor expansion q(xc) = ax2

c +O
(

x3
c
)

into (20), we can find
the coefficients for the expansion by balancing the lower-order terms. Based on q(xc), we now have a
system in the reduced form:

ẋc = Axc + f (xc, q(xc)) . (21)

The following proposition helps us understand if the type of transcritical bifurcation is forward
or backward.

Proposition 1. Assume that conditions A(1)–A(5) are satisfied. Furthermore, assume that the following
hypotheses are satisfied by the system in (14) and (15):

H(1) In the balance equations for the infected compartments, nonlinear terms are present only in the rate of the
appearance of new infections;

H(2) Nonlinear terms are bilinear;
H(3) There is no linear transfer from infected to uninfected compartments.

Then, the transcritical bifurcation of the system in (14) and (15) atR0 = 1 is forward, and if at least one of
these features is not present in the model structure, then a backward bifurcation may occur [31].

3. Results

We used the model in (1)–(7) to understand how the dynamics change following variations of
different parameters. We calculated the equilibria of (1)–(7), conducted a linear stability analysis,
and identified the analytical conditions that lead to a transcritical bifurcation.

3.1. Existence of Equilibria

For mathematical convenience, we divide the model in (1)–(7) such that the first four equations
correspond to infected individuals. The distinction between infected and uninfected populations
must be determined from the model’s epidemiological interpretation and cannot be deduced from the
structure of the equations alone. Thus, we have
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d
dt

Y(wt)
M =

(
α(wt) − σ

(wt)
M−→L − γ · f (wt)

I · I
)
·Y(wt)

M (22)

d
dt

Y(mut)
M =

(
α(mut) − σ

(mut)
M−→L − γ · f (mut)

I · I
)
·Y(mut)

M (23)

d
dt

Y(wt)
L =

(
α
(wt)
L − β

)
·Y(wt)

L + σ
(wt)
M−→L ·Y

(wt)
M (24)

d
dt

Y(mut)
L =

(
α
(mut)
L − β

)
·Y(mut)

L + σ
(mut)
M−→L ·Y

(mut)
M (25)

d
dt

BM =
(

α(B) − σ
(B)
M−→L − γ · I

)
· BM (26)

d
dt

BL =
(

α
(B)
L − β

)
· BL + σ

(B)
M−→L · BM (27)

d
dt

I =
(

Y(wt)
M + Y(mut)

M

)
· κ · CI − I

CI
, (28)

while we assume that the growth rate α(B) of the endogenous commensal bacteria is higher than the
Ye growth rates α(wt) and α(mut), respectively.

On the other side, the Yersinia model has three compartments (mucosa, lumen, immune system),
which are analyzed separately. The model system is analyzed in a suitable, feasible region. All forward
solutions of the system are feasible ∀t ≥ 0 if they enter the invariant region Ω = ΩL ×ΩM ×ΩI where

ΩL =
(

BL, Y(wt)
L , Y(mut)

L

)
∈ R3

+ : BL + Y(wt)
L + Y(mut)

L ≤ CL (29)

ΩM =
(

BM, Y(wt)
M , Y(mut)

M

)
∈ R3

+ : BM + Y(wt)
M + Y(mut)

M ≤ CM (30)

ΩI = (I) ∈ R1
+ : I ≤ CI . (31)

The existence of equilibrium points for system (1)–(7) would be as follows:

• The trivial equilibrium point is as an origin equilibrium (0, 0, 0, 0, 0, 0, 0). This solution appears
when all populations are extinct. For all parameters, this point never becomes stable due to the
positivity of eigenvalues in (A2).

• The first equilibrium point appears in the absence of Yersinia Y(wt)
M = Y(mut)

M = Y(wt)
L = Y(mut)

L = 0.
System (1)–(7) has a disease-free equilibrium, which is given by

P0 =
(

B0
M, Y0(wt)

M , Y0(mut)
M , B0

L, Y0(wt)
L , Y0(mut)

L , I0
)
=
(

B0
M, 0, 0, B0

L, 0, 0, I0
)

(32)

and

B0
M = CM

(
1− γ

α(B)

)
(33)

B0
L = CL

(
1− β

α(B)

)
(34)

I0 = 1. (35)

It describes a disease-free state whereby only the commensal bacteria persist. In order for the
disease-free state P0 to be biologically meaningful, the conditions γ < α(B) and β < α(B) must
hold. These conditions correspond to the maximal growth rate of intestinal bacteria exceeding the
rate at which intestines are charged and the maximal immunity action, which is not that strong in
the absence of Yersinia strains. However, the population of the immune system is at its maximum
carrying capacity (in health, not in fighting with any infection).

• A second equilibrium corresponds to the commensal bacteria’s persistence and the Yersinia mut
strain in the absence of the wt strain. Without loss of generality, the commensal bacteria are supposed
to be zero because they are not infective. This point is obtained by setting Y(wt)

M = Y(wt)
L = 0:
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P(mut) = P1 =
(

B1
M, Y1(wt)

M , Y1(mut)
M , B1

L, Y1(wt)
L , Y1(mut)

L , I1
)
=
(

0, 0, Y1(mut)
M , 0, 0, Y1(mut)

L , CI

)
(36)

with

Y1(mut)
M = CM

(
1−

CIγ f (mut)
I

α(mut)

)
(37)

Y1(mut)
L =

1
2

CL

(
1− β

α(mut)

)
+

√√√√4CMCL

(
CIγ f (mut)

I
α(mut)

− 1

)2

+ C2
L

(
1− β

α(mut)

)2
 . (38)

• The other equilibrium corresponds to the persistence of commensal bacteria and the Yersinia wt
strain in the absence of the mut strain. Without loss of generality, the commensal bacteria are
supposed to be zero because they are not infective. This point is obtained by setting Y(mut)

M =

Y(mut)
L = 0:

P(wt) = P2 =
(

B2
M, Y2(wt)

M , Y2(mut)
M , B2

L, Y2(wt)
L , Y2(mut)

L , I2
)
=
(

0, Y2(wt)
M , 0, 0, Y2(wt)

L , 0, CI

)
(39)

with

Y2(wt)
M = CM

(
1−

CIγ f (wt)
I

α(wt)

)
(40)

Y2(wt)
L =

1
2

CL

(
1− β

α(wt)

)
+

√√√√4CMCL

(
CIγ f (wt)

I
α(wt)

− 1

)2

+ C2
L

(
1− β

α(wt)

)2
 . (41)

• Finally, the last equilibrium point corresponds to a state of the co-existence of wt and mut Yersinia
strains. This point is achieved by supposing BM = BL = 0:

P(wt)(mut) = P3 =
(

B3
M, Y3(wt)

M , Y3(mut)
M , B3

L, Y3(wt)
L , Y3(mut)

L , I3
)

=
(

0, Y3(wt)
M , Z, 0, Y3(wt)

L , Y3(mut)
L , CI

) (42)

with

Y3(wt)
M = CM

(
1−

CIγ f (wt)
I

α(wt)

)
− Z (43)

Y3(wt)
L =

α(mut)
(

Z
(

1− CI γ f (wt)
I

α(wt)

)
− γ f (wt)

I

(
1− CI

α(wt)

)2
)

β
(

1− α(mut)

α(wt)

) (44)

Y3(mut)
L =

α(mut)
(

1− CI γ f (wt)
I

α(wt)

)(
Z−

(
1− CI γ f (wt)

I
α(wt)

))
β
(

1− α(mut)

α(wt)

) (45)

where Z is defined as
(

1− α(B) f (wt)
I

α(wt)
α(B) f (mut)

I
α(mut)

)
to make the equilibrium point biologically meaningful.
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3.2. Analysis of the Disease-Free Equilibrium Point

The system’s behavior close to the equilibrium points was determined through linear stability
analysis and bifurcations. It was carried out by calculating the Jacobian matrix of the model in
equilibrium points. The Jacobian matrix for (1)–(7) is given by Equation (A1) in the Appendix A.

The disease-free equilibrium of the model is the steady-state solution of the model in the absence
of the disease. The eigenvalues of the Jacobian matrix (A1) at this point were calculated as follows:

λ1 = 0 (46)

λ2 = −
(

α(B) − γ
)

(47)

λ3 = −
(

α(B) − β
)

(48)

λ4 = −γ

(
f I
(wt) − α(wt)

α(B)

)
(49)

λ5 = −γ

(
f I
(mut) − α(mut)

α(B)

)
(50)

λ6 = −β

(
1− α(wt)

α(B)

)
(51)

λ7 = −β

(
1− α(mut)

α(B)

)
(52)

in which it is assumed that α(wt) < α(B) and α(mut) < α(B). Based on the general compartmental
model describing an infectious disease transmission within a heterogeneous population, the host
population is grouped into two general classes: the infected and uninfected compartments. Therefore,
the system (1)–(7) is divided into two infected and uninfected compartments.

In classical epidemic models, it is common to observe that a disease-free equilibrium loses its
stability forR0 = 1, and a transcritical bifurcation occurs. A transcritical bifurcation is when a fixed
point exists for all parameter values and is never destroyed. However, as the parameter values vary,
this fixed point transitions from a stability region to an instability region. Biologically speaking,
asR0 < 1, the disease-free equilibrium would stay stable. Thus, only the commensal bacteria persist,
and wt and mut Yersinia strains cannot pass the invasion boundary. Therefore, asR0 increases, wt and
mut Yersinia strains, fed by commensal bacteria, can appear. We mathematically analyze this aspect
within the structure of the model to assess which parts of the structure might be responsible for the
occurrence of the transcritical bifurcation.

Let us consider system (1)–(7) with the above-calculated eigenvalues. Using the eigenvectors (A9)
shown in the Appendix A as a basis for a new coordinate system, we set the transformation matrix
whose columns are the eigenvectors; T = [v1, v2, v3, v4, v5, v6, v7]

t. We thus have



BM

Y(wt)
M

Y(mut)
M
BL

Y(wt)
L

Y(mut)
L


=
(

T
)


u1

u2

u3

u4

u5

u6

u7


and



u1

u2

u3

u4

u5

u6

u7


=
(

T−1
)


BM

Y(wt)
M

Y(mut)
M
BL

Y(wt)
L

Y(mut)
L


.
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Under this transformation, the system (1)–(7) changes to

u̇1

u̇2

u̇3

u̇4

u̇5

u̇6

u̇7


= (A)



u1

u2

u3

u4

u5

u6

u7


+



f1(u1, . . . , u7)

f2(u1, . . . , u7)

f3(u1, . . . , u7)

f4(u1, . . . , u7)

f5(u1, . . . , u7)

f6(u1, . . . , u7)

f7(u1, . . . , u7)


(53)

where

A =



0 0 0 0 0 0 0

0 −
γ
(

α(B) f I
(wt)−α(wt)

)
α(B) 0 0 0 0 0

0 0 −
γ
(

α(B) f I
(mut)−α(mut)

)
α(B) 0 0 0 0

0 0 0 − β(α(B)−α(wt))
α(B) 0 0 0

0 0 0 0 − β(α(B)−α(mut))
α(B) 0 0

0 0 0 0 0 −α(B) + β 0

0 0 0 0 0 0 −α(B) + γ


so that the linear part is now in a standard (diagonal) form. In the (u1, u2, u3, u4, u5, u6, u7) coordinates,
the center manifold is a curve tangent to the u1 − axis. The projection of the system onto the u1 − axis
is obtained by setting u2 = u3 = u4 = u5 = u6 = u7 = 0 in the equation for u̇1. It yields u̇1 = 0.
Since Ec is one dimension, we can approximate hi(u1) by Taylor expansion such that ui = hi(u1),
i ∈ {2, . . . , 7}, satisfying the following equations:

u̇2 = Dh2(u1)u̇1,
u̇3 = Dh3(u1)u̇1,
u̇4 = Dh4(u1)u̇1,
u̇5 = Dh5(u1)u̇1,
u̇6 = Dh6(u1)u̇1,
u̇7 = Dh7(u1)u̇1,

hi(0) = Dhi(0) = 0

(54)

Thus, the reduced system is

u̇1 = −α(B)

CM
u2

1 +O
(

u3
1

)
. (55)

The advantages of a center manifold are clear from this calculation. We may study a one-dimensional
system instead of a seven-dimensional system. That is, the method of center manifolds enables one to
reduce the dimensions of the system by studying the flow restricted to the center manifold, in which
the transients associated with the nonzero eigenvalues have decayed. As long as α(wt) < α(B) and
α(mut) < α(B), the disease-free equilibrium point will persist. When the infection rate of wt and mut strains
increases, the system becomes unstable at the disease-free equilibrium point, and the trajectory of the
system approaches asymptotically to the bacterial population of wt or mut and, finally, to the co-existence
of the strains.

3.3. Computing and Analysis of the System through the Basic Reproduction Number

For scenarios where multiple strains (subtypes) of an infectious disease exist, an R0 number
is calculated for each strain. Hence, in our model, we must define two different R0, one for the wt
and the other for the mut strain, rather than anR0 for the whole model. This is a significantly more
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difficult task. Herein, we introduce the following variations to the basic reproduction number, which
are calculated by the average number of secondary infections:

1. Rwt
0 : the basic reproductive numbers for wt strain =

α(wt)

α(B) f (wt)
I

2. Rmut
0 : the basic reproductive numbers for mut strain =

α(mut)

α(B) f (mut)
I

.

To understand the role of the basic reproduction number, we also define a single reproduction
number for commensal bacteria Rcom

0 , computed as an expected number of secondary cases of
commensal bacteria produced by a single commensal bacteria:

Rcom
0 = max

{
α(B)

β
,

α(B)

γ

}
. (56)

Due to biologically meaningful disease-free state P0 and holding the conditions β < α(B) and
γ < α(B), the disease-free state would be meaningful ifRcom

0 > 1. Therefore, the commensal bacteria
appear,Rcom

0 slightly reaches above one, and a stable disease-free state happens. Due to the presence of
commensal bacteria and instability of the trivial solution, the solution corresponds to the extinction of
all populations that never appear because ifRcom

0 < 1, all components of the disease-free equilibrium
will lie out of the biologically meaningful region.

ForRwt
0 < 1 andRmut

0 < 1, thus, λ1 = 0 is a simple zero eigenvalue, and the other eigenvalues
are real and negative. This implies that transcritical bifurcation occurs in the disease-free equilibrium
forRwt

0 < 1 andRmut
0 < 1, and the uninfected state is stable (not asymptotically stable) as none of the

strains persist. As soon as the two equilibria collide non-destructively, exchanging their stability and
resulting in the Jacobian matrix having a single eigenvalue that is equal to zero, then either the mut
strain or the wt appears and persists forRmut

0 orRwt
0 , respectively.

As shown in Figure 2, when the disease-free equilibrium loses its stability, different scenarios can
occur. Herein, we discuss the different cases.

(I) If Rwt
0 = 1 and Rmut

0 = 1, then α(wt) = α(B) f (wt)
I and α(mut) = α(B) f (mut)

I . Thus, the intersection
of the transcritical curves Rwt

0 and Rmut
0 results in a triple transcritical bifurcation. As shown

in (A9), the Jacobian has a triple zero eigenvalue at this point (λ2 = 0, λ3 = 0). Kuznetsov [34] has
proved that such a point would be an indicator of the onset of a non-degenerate or degenerate
Bogdanov–Takens bifurcation [34,35]. The disease-free equilibrium P0 loses its stability, and the
wt-free and mut-free include one simple zero eigenvalue (λ3 = 0), meaning that the dynamics of
the model change as the target parameter is within the threshold value.

(II) IfRwt
0 > 1, the wt strain equilibrium in region II will persist whenRmut

0 < 1. The wt strain will
spread and possibly persist within the host population. In general, for a strain to persist, its basic
reproduction number has to be strictly greater than one. Therefore, in this region, the disease-free,
mut strain, and co-existence state exchange stability: P0 becomes unstable, P2 becomes locally
asymptotically stable, and P1 and P3 remain unstable. This means that the immune system could
kill one of the strains more efficiently.

(III) IfRmut
0 > 1, the mut strain equilibrium in region III will persist whenRwt

0 < 1. The mut strain
will spread and possibly persist within the host population since its basic reproduction number
is greater than one. Therefore, in this region, the disease-free, wt strain, and co-existence state
exchange stability: P0 becomes unstable, P1 becomes locally asymptotically stable, and P2 and
P3 remain unstable. This means that the immune system could defeat the wt strains. However,
the risk of this situation to happen is low because the mut strains are influenced more efficiently
than wt strains by immune action.

(IV) IfRwt
0 > 1 andRmut

0 > 1, the co-existence population spreads, and both strains persist. The overall
R0 can be defined as Rc

0 = dRmut
0 + (1− d)Rwt

0 . A mut with d = 1 is thoroughly dominant,
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while one with d = 0 is completely recessive; scenarios of incomplete dominance (0 < d < 1),
under-dominance (d < 0), and over-dominance (d > 1) are possible as well. For instance, a mut
could achieve a higherR0 than the wt via a higher growth rate that increases transmission. In a
co-infection, the faster-growing mut strain would outcompete the wt and reach its maximum
capacity. This situation would change the co-infection to the conditions where a single infection
happens. Thus, the overall R0 of the co-infection would be similar to that of the mut by itself,
making the mut a dominant one. Furthermore, the effort for having a co-existence equilibrium
and analysis of the co-infection model will fail. By contrast, let us assume a mut strain achieves
a higherR0. Nevertheless, the virulence of the wt strain neutralizes the higherR0 value of the
mut. This would make the mut a recessive one. In summary, virtually any two-strain co-infection
model can be mapped to a set of values for d, allowing scenarios of particular interest to be
explored in a context broader than the one possible with typical models.

12 Reihaneh Mostolizadeh ET AL

mut
0 = 1

mut
0 = wt

0 = 1

wt
0 = 1

(I) (II)

(III)

(IV )

(IV )

0 0.5 1 1.5 2
0

0.5

1

1.5

2

wt
0

m
ut

0

Figure 2. The diagram displays three regions with different qualitative behaviors in terms of the basic
reproduction numbers. Region I: infection-free state; Region II: mut-free state; Region III: wt-free state;
Region IV: co-existence of all strains.

The mathematical model (1)–(7) calculates the number of pathogen-specific characteristics in
different layouts, e.g., when colonization resistance mediated by the endogenous microbiome is
lacking or when the immune response is partially impaired. In this paper, we use the experimental
data obtained in the lab upon infection of a host either lacking a microbiome (mimicking antibiotic
treatment of patients) or a fully functional immune system [10].

To challenge the numerical simulation with experimental data, we tested whether the numerical
simulation from the mathematical analysis could fit the experimental data.

Correspondingly, we simulated the process of Yersinia enterocolitica co-infection in
specific-pathogen-free (SPF) (i.e., wt), germ-free (GF), and MyD88-deficient (MyD88−/−) mut mice.
Using the model values in Table 3, which was estimated through experimental data [10], we first
examined the influence of the infection rates α(B), α(wt), and α(mut) on the dynamics beginning by
constructing one-dimensional bifurcation diagrams using α(B) as the bifurcation parameter and fixing
α(wt) and α(mut). The model values in Table 3 are the output of estimation parameters in Table 2
of the (1)–(7) by experimental data [10]. In theory, some parameter values were defined based on
the biological aspect, and the rest were estimated by the optimization problem with the maximum
likelihood estimation [10].

As shown in Figure 3, Rcom
0 should be larger than one to achieve the disease-free equilibrium.

As long asRwt
0 andRmut

0 are smaller than one, the disease-free equilibrium is stable.
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Table 3. Parameter values.

Parameter Values in Ye SPF
wt/A0

Values in Ye SPF
wt/T3S0

Values in Ye GF
wt/A0

Values in Ye
MyD88−/− wt/A0

α(B) 4.89× 10−1 2.00 1.99 5.40× 10−1

α(wt) 4.44× 10−1 1.86 1.60 5.78× 10−1

α(mut) 4.44× 10−1 1.86 1.60 5.78× 10−1

f (wt)
I 3.96× 10−1 9.48× 10−3 1.10× 10−1 6.23× 10−2

f (mut)
I 1.95× 10−1 3.73× 10−1 1.19× 10−1 1.28× 10−1

CM 1.76× 105 6.27× 103 1.3 × 106 1.28× 105

CL 2.14× 107 6.13× 106 4.99× 109 9.98× 109

CI 1.00 1.00 1.00 1.00
γ 1.00 1.00 9.97× 10−1 1.00× 10−1

κ 7.83× 10−1 4.28× 10−1 6.50× 10−1 4.37× 10−1

β 2.50× 10−1 2.50× 10−1 8.33× 10−2 1.82× 10−1

(a) Biologically meaningful region for commensal
bacteria in the mucosa

(b) Biologically meaningful region for commensal
bacteria in the lumen

Figure 3. The diagrams display the role ofRcom
0 in appearance/non-appearance of the trivial solution

and disease-free equilibrium. (a) By fixing the parameter values Table 3 in model (14), the commensal
bacteria in the mucosa appear whenRcom

0 > 1. Therefore, as long asRcom
0 < 1, only the trivial solution

for the model exists. Since the trivial solution is always unstable, the extinction of all populations is
never achieved. (b) By fixing the parameter values Table 3 in model (14), the commensal bacteria in the
lumen appear whenRcom

0 > 1. Therefore, as long asRcom
0 < 1, only the trivial solution for the model

exists. Since the trivial solution is always unstable, the extinction of all populations is never achieved.

Following the analysis of the model with respect to α(B), two cases are considered. The first
case is when α(wt) and α(mut) are equal. In this case, we do not have co-existence of wt and mut (the
denominators of Y3(wt)

L and Y3(mut)
L will be equal to zero). The second one is when α(wt) and α(mut)

have different values as the co-existence equilibrium is achieved and is biologically meaningful.
Thus, we start with values of the wt and mut-strain infections rate given by α(wt) = 4.44× 10−1

and α(wt) = 4.44× 10−1 in Table 3. Corresponding to those infections rates, the basic reproduction
numbersR0

(wt) andR0
(mut) in terms of α(B) are computed.

Through the definitions of Rcom
0 , Rwt

0 , and Rmut
0 , we display an x-scale as α(B) in Figure 4.

This shows the appearance of a different equilibrium of Model (14) in terms of the basic
reproduction numbers.

As shown in Figure 4, we expect no co-existence equilibrium when α(wt) = α(mut), and only
wt equilibrium exists (mut-free equilibrium) when 1.76 < α(B) < 11.20. However, the disease-free
equilibrium can happen when α(B) is large enough to surpass α(wt) and α(mut). These findings are
displayed in Figure 5.
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The appearance of a free-
disease equilibrium point≈ 11.21

≈ 1.76 (α(wt) ≠ α(mut))

= 1

ℛwt0 <1− − − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − − − − − − − − − − − −
ℛmut0 <1

ℛwt0 >1, ℛmut0 <1− − − − − − − − −

− − − −
ℛwt0 >1, ℛmut0 >1

ℛcom0 <1− − − −

α(B)

≈ 2.28 (α(wt) = α(mut))
In this case, the region behind the blue point is not biologically meaningful. We do not have 
an equilibrium point that corresponds to a state of co-existence of wild-type and mutant. 
The condition  is necessary for the existence of a co-existence equilibrium.(α(wt) ≠ α(mut))

The appearance of the equilibrium point corresponds to a 
state of co-existence of wild-type and mutant Yersinia strains.

This region is not biologically 
meaningful. The only equilibrium in 

this region is the trivial solution.

The appearance of equilibrium corresponds to the persistence 
of the Yersinia wild-type strain in the mutant strainsʼ absence.

Figure 4. The diagram displays α(B) regions with the appearance of a different equilibrium in terms of
the basic reproduction numbers. This display is plotted by fixing the parameter values from Table 3 in
Model (14).

(a) Commensals in the mucosa
concerning α(B)

(b) Wild-type Yersinia in the
mucosa concerning α(B)

(c) Mutant Yersinia in the mucosa
concerning α(B)

(d) Commensals in the lumen
concerning α(B)

(e) Wild-type Yersinia in the lumen
concerning α(B)

(f) Mutant Yersinia in the lumen
concerning α(B).

Figure 5. The sensitivity of parameter α(B) with respect to commensal bacteria, wild-type, and mutant
Yersinia in the mucosa and lumen for 336 h. 0 < α(B) < 1, no biologically meaningful region (out
of our interest). α(B) > 1, all populations appear. When 1 < α(B) < 2.28, the region is a region for
the appearance of the co-existence equilibrium, but the hypothesis of the co-existence equilibrium is
not satisfied. Therefore, wild-type strain does not grow, and the mutant strain is going down slowly.
When α(B) > 2.28, this is a region of the appearance of a wt equilibrium (Rwt

0 > 1). Thus, (a,e) are
increasing fast and stay at the maximum level as (a,d) are going back to zero. Additionally, (c,d) do not
grow anymore (Rmut

0 < 1).
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Secondly, to show the appearance of the co-existence, we consider the parameter values of in Ye
wt/T3S0 from Table 3 with the assumption of 1.86 = αwt 6= αmut = 1.83. Thus, we computeRwt

0 and
Rmut

0 with respect to parameter α(B). This results in the appearance co-existence when 1 < α(B) < 4.90
as Figure 6 shows.

(a) Co-existence of wt and mut Yersinia strains in
the mucosa

(b) Co-existence of wt and mut Yersinia strains in
the lumen

Figure 6. The diagram displays the appearance of the co-existence of wt and mut Yersinia strains as
α(B) is changing in a region whereRwt

0 > 1 andRmut
0 > 1. (a) An immune reaction influences the wt

and mut Yersinia strains in the mucosa. Additionally, another part is spilled over and moves to the
lumen compartment. Therefore, they simultaneously increase or decrease to reach their maximum
values. (b) The wt and mut Yersinia strains in the lumen simultaneously increase to reach the carrying
capacity of the lumen compartment. In both (a,b), when α(B) reaches 4.90, the co-existence of wt and
mut Yersinia strains disappears.

Furthermore, we analyze the immune system’s influence. In our model, at least one Ye within
the mucosal compartment activates the immune system. This activation increases proportionally to
the number of Ye. The immune system is assumed to influence the bacterial populations primarily at
the mucosal site compared to bacteria within the lumen. Herein, we simulate the process of Yersinia
enterocolitica with an immune response that was experienced in SPF, GF, and MyD88−/− mice. As the
responses of the immune system in these mice are different, we conclude different behaviors. Let us
denote the numerical simulation:

• The effect of the maximum rate of immune growth κ on wt Yersinia strain in the mucosa, Figure 7;
• The effect of the maximum rate of immune growth κ on mut Yersinia strain in the mucosa, Figure 8;
• The effect of the maximum rate of immune growth κ on wt Yersinia strain in the lumen, Figure 9;
• The effect of the maximum rate of immune growth κ on mut Yersinia strain in the lumen, Figure 10,

The experimental data obtained in the lab showed that the Ye mut strain was eliminated more
efficiently than Ye wt in the mucosal compartment. However, since GF mice lack a microbiome,
both the Ye wt and the mut strains can colonize the gastrointestinal tract (GIT) at high numbers.
In the SPF-colonized MyD88−/− mice, the immune response is weaker [10]. Therefore, as shown in
Figures 7–10, the following results conclude:

• Figures 7d and 8d show a slow reduction in the wt strain in comparison to mut strain as κ changes.
• Figures 7b, 8b, 9b and 10b in comparison with similar situations in SPF and MyD88−/− show

elimination of wt and mut strains is less efficient.
• Figures 7c, 8c, 9c and 10c show that wt and the mut strains increased faster. Besides, the influence

of κ on wt and the mut strains cannot project properly (Figures 9f and 10f) at the same speed of
producing strains.
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(a) Effect for SPF (b) Effect for GF (c) Effect for MyD88−/−

(d) Projection for SPF (e) Projection for GF (f) Projection for MyD88−/−

Figure 7. The sensitivity of parameter κ in the elimination of wt Yersinia strain in the mucosa. (a–c) The
effect of the parameter κ on the different types of mice. (d–f) The projection of κ for a different types
of mice.

(a) Effect for SPF (b) Effect for GF (c) Effect for MyD88−/−

(d) Projection for SPF (e) Projection for GF (f) Projection for MyD88−/−

Figure 8. The sensitivity of parameter κ in the elimination of mut Yersinia strain in the mucosa.
(a–c) The effect of the parameter κ on the different types of mice. (d–f) The projection of κ for different
types of mice.
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(a) Effect for SPF (b) Effect for GF (c) Effect for MyD88−/−

(d) Projection for SPF (e) Projection for GF (f) Projection for MyD88−/−

Figure 9. The sensitivity of parameter κ in the elimination of wt Yersinia strain in the lumen. (a–c) The
effect of the parameter κ on the different types of mice. (d–f) The projection of κ for different types
of mice.

(a) Effect for SPF (b) Effect for GF (c) Effect for MyD88−/−

(d) Projection for SPF (e) Projection for GF (f) Projection for MyD88−/−

Figure 10. The sensitivity of the parameter κ in the elimination of the mut Yersinia strain in the lumen.
(a–c) The effect of the parameter κ on the different types of mice. (d–f) The projection of κ for different
types of mice.
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Our results allow us to state that if mice possess a healthy microbiota and immune system,
as long as the growth rate of commensal bacteria is larger than the growth rate of wt and mut Yersinia,
then the infection will not spread, as Ye strains cannot enter the lumen compartment. Therefore,
the disease-free equilibrium, P0 exists and is stable whenRwt

0 andRmut
0 are less than one while α(B) is

large enough. To challenge this situation, we tested the data values Ye SPF wt/A0 from Table 3 with
the assumed boundary α(B) > 11.20 to face a disease-free state, Figure 4. Our computer simulations ran
for 366 h and are shown in Figure 11. As predicted for the disease-free state, the commensal fractions
BM and BL approached their carrying capacities CM and CL, respectively.

(a) Appearance of the disease-free state (b) Projection of the disease-free state

Figure 11. Diagram displaying the disease-free state by fixing the parameter values Ye SPF wt/A0
from Table 3 in Model (14). As long as α(B) is large enough, the disease-free state persists. However,
by reducing α(B), the basic reproduction numberRwt

0 reaches its threshold value (Rwt
0 = 1). This causes

changes in the dynamic behavior of the model (14), as shown in Figure 4.

Therefore, we note that the disease-free equilibrium always exists and is (asymptotically) stable
whenever the reproductive numbers for both strains of the disease are below unity. Simulations support
these findings. The two single-strain equilibria, where one strain persists while the other strain dies
out, are symmetrical and exist when at least one of the strains has a reproductive number above unity.
However, in our model, (14) with parameter values from Table 3, we could not observe a state that
corresponds to Ye mut strain equilibrium. As shown in Figure 4, there is no region whereRmut

0 > 1 and
Rwt

0 < 1. WheneverRmut
0 > 1,Rwt

0 is already above one; this facilitates the situation for a co-existence
equilibrium. This is where both strains persist, existing when both reproductive numbers are above a
certain threshold. However, we could not analytically solve the stability criteria for the equilibrium
due to complexity, but simulations show that these stability criteria exist.

4. Discussion and Conclusions

In this paper, we proved that our computational model of the Yersinia enterocolitica [10] population
in co-infections of mice with Ye wt and mut strains always showed stable results in terms of R0,
such that if we can keep or reduce R0s to less than one, then wt and mut strains cannot spread,
and the infection resolves. The medical control strategies for this infectious disease, like other infectious
diseases, are frequently predicted through the basic reproduction number. To know what the difference
is, we should be aware that the decomposition in dynamics and the designation of compartments as
infected or uninfected are unique, and the basic reproduction number is achieved in the same way
for all different compartmental models. This also raises the question of how the infection becomes
persistent or is resolved based on the calculation ofR0 as a significant measure in control policy.

The answer to this question depends on the magnitude of the basic reproductive number, R0,
since calculating the stability of an equilibrium is very complicated. Therefore, we computedR0 for our
computational model based on different strains. This resulted in threeR0s: oneRcom

0 ,Rwt
0 , andRmut

0 .
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As it is obvious in any compartmental model, the disease-free equilibrium is locally
(asymptotically) stable when 0 < R0 < 1 and unstable ifR0 > 1. In other words, when 0 < R0 < 1,
every infectious strain will cause less than one secondary infection; hence, the strain will eliminate.
When R0 > 1, every infectious strain will cause more than one secondary infection; hence,
Yersinia infection strains will persist. However, all public health control measures can usually be
based on methods that, if practical, would lowerR0 to below unity. On the other hand, the co-infection
equilibrium is locally stable whenR0 > 1 and unstable when 0 < R0 < 1.

This trivial result is essential, but we had to adjust our multi-strain model with different R0s.
To more smoothly analyze R0s, we looked for a common parameter in all R0s. This resulted in the
parameter α(B). We thus analyzed at which level of sensibility the system’s parameter α(B) changes the
model’s invasion behavior. This came to an end when a disease-free state occurs, when α(B) satisfies
the conditions β < α(B) and γ < α(B). In addition, if α(B) is large enough, then the disease-free state
can be stable, and the infection with other strains does not appear or spread. A mut strain equilibrium
does not occur for parameter values estimated through experimental data [10] since there is no region
with onlyRmut

0 > 1. Although there is a region with two threshold parameters in the model,Rwt
0 and

Rmut
0 stay above one for a co-infection setup. This region includes a small range for the parameter α(B).

In addition, it is important that the maximum growth rates associated with the wt and mut strains
should be unequal. Otherwise, the co-existence scenario cannot take place.

Furthermore, we looked for conditions in the immune system to see different scenarios of a
weaker and more robust immune system in fighting against infection. This resulted in the analysis of
systems with respect to parameter κ. We found that if mice possess a healthy microbiota and immune
system, as long as the growth rate of commensal bacteria is larger than the growth rate of wt and mut
Yersinia, then the infection will not spread, as Ye strains cannot enter the lumen compartment.

Our results indicate that the within-host dynamics of immunity can, in principle, have significant
consequences on population-level dynamics. However, immunity alone never creates a backward
bifurcation of the disease-free steady state under biologically realistic hypotheses, and this would
require some other complementary conditions.

Altogether, Yersinia is a great model system and can be used to predict the spread of infections for
more clinically relevant bugs, i.e., enteropathogenic or enterohemorrhagic Escherichia coli. To control
the spread of infection, efforts must be made to ensure that the co-infection equilibrium is unstable,
i.e., 0 < R0 < 1, and in our modelRwt

0 < 1 andRmut
0 < 1.

Furthermore, an additional factor to take into account is whether antibiotics are used from the
beginning of the infection, in which case the spread of Yersinia may or may not be extinguished. We also
believe that further research into the elaborate makeup of the strains and how the immune system
differentiates between strains could be incorporated to more accurately represent control policy.

Author Contributions: Conceptualization, R.M. and A.D.; methodology, R.M.; software, R.M.; validation,
R.M. and A.D.; formal analysis, R.M.; investigation, A.D.; resources, A.D.; data curation, R.M. and A.D.;
writing—original draft preparation, R.M.; writing—review and editing, A.D.; visualization, R.M.; supervision,
A.D.; project administration, A.D.; funding acquisition, R.M. and A.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the German Center for Infection Research (DZIF, doi:10.13039/100009139)
within the Deutsche Zentren der Gesundheitsforschung (BMBF-DZG, German Centers for Health Research of the
Federal Ministery of Education and Research), grant № 8020708703 and supported by infrastructural funding
from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Cluster of Excellence EXC 2124
Controlling Microbes to Fight Infections. Parts of this work were funded by the Federal Ministry of Education and
Research (BMBF, Germany) and the Baden-Württemberg Ministry of Science as part of the Excellence Strategy of
the German Federal and State Governments. The authors acknowledge support by the Open Access Publishing
Fund of the University of Tübingen (https://uni-tuebingen.de/de/58988).

Acknowledgments: The authors thank Libera Lo Presti for feedback on this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

https://doi.org/10.13039/100009139
https://uni-tuebingen.de/de/58988


Biology 2020, 9, 431 21 of 26

Abbreviations

AMP antimicrobial peptide
BMBF Federal Ministry of Education and Research
BMBF-DZG Deutsche Zentren der Gesundheitsforschung
CFU colony-forming unit
DFE disease-free equilibrium
DFG Deutsche Forschungsgemeinschaft
DZIF German Center for Infection Research
GF germ-free
GIT gastrointestinal tract
mut mutant
MyD88-/- MyD88-deficient mice
ODE Ordinary Differential Equation
PD Process Description
RKI Robert Koch Institute
SBGN Systems Biology Graphical Notation
SI small intestine
SPF specific-pathogen-free
T3SS Type III secretion system
wt wild-type
YadA Yersinia adhesin A
Ye Yersinia entercolitica
Yop Yersinia outer protein

Appendix A. Mathematical Calculation

Appendix A.1. Jacobian

The Jacobian of the system (1)–(7) is calculated as follows:

J =



α(B)
(

1− 2BM+Y(wt)
M +Y(mut)

M
CM

)
− γI − α(B)BM

CM

− α(wt)Y(wt)
M

CM
α(wt)

(
1− BM+2Y(wt)

M +Y(mut)
M

CM

)
− γI f (wt)

I

− α(mut)Y(mut)
M

CM
− α(mut)Y(mut)

M
CM

α(B) 2BM+Y(wt)
M +Y(mut)

M
CM

α(B)BM
CM

α(wt)Y(wt)
M

CM
α(wt) BM+2Y(wt)

M +Y(mut)
M

CM
α(mut)Y(mut)

M
CM

α(mut)Y(mut)
M

CM

0 κ(CI−I)
CI

− α(B)BM
CM

0

− α(wt)Y(wt)
M

CM
0

α(mut)
(

1− BM+2Y(wt)
M +Y(mut)

M
CM

)
− γI f (mut)

I 0

α(B)BM
CM

α(B)
(

1− 2BL+Y(wt)
L +Y(mut)

L
CL

)
− β

α(wt)Ywt
M

CM
− α(wt)Y(wt)

L
CL

α(mut) BM+Y(wt)
M +2Y(mut)

M
CM

− α(mut)Y(mut)
L

CL
κ(CI−I)

CI
0
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0 0 −γBM

0 0 −γ f (wt)
I Y(wt)

M

0 0 −γ f (mut)
I Y(mut)

M

− α(B)BL
CL

− α(B)BL
CL

0

α(wt)
(

1− BL+2Y(wt)
L +Y(mut)

L
CL

)
− β − α(wt)Ywt

L
CL

0

− α(mut)Y(mut)
L

CL
α(mut)

(
1− BL+Y(wt)

L +2Y(mut)
L

CL

)
− β 0

0 0 − κ(Y(wt)
M +Y(mut)

M )
CI


(A1)

Appendix A.2. The Eigenvalues of Trivial Equilibrium Point

The eigenvalues for trivial equilibrium points are as follows:

λ1 = 0 (A2)

λ2 = α(B) (A3)

λ3 = α(wt) (A4)

λ4 = α(mut) (A5)

λ5 = α(B) − β (A6)

λ6 = α(wt) − β (A7)

λ7 = α(mut) − β (A8)

Appendix A.3. The Eigenvalues and Eigenvectors of the Disease-Free Equilibrium point

The eigenvectors corresponding to the eigenvalues for disease-free equilibrium points are
as follows:

λ1 = 0, v1 =

[
−γCM

α(B)
, 0, 0, 0, 0, 0, 1

]
(A9)

λ2 = −
γ
(

f I
(wt)α(B) − α(wt)

)
α(B)

, v2 = [v21, v22, 0, 1, v25, 0, v27] (A10)

λ3 = −
γ
(

f I
(mut)α(B) − α(mut)

)
α(B)

, v3 = [v31, 0, v33, 1, 0, v36, v37] (A11)

λ4 = −
β
(

α(B) − α(wt)
)

α(B)
, v4 =

0, 0, 0, 1,−

(
α(B)

)2
− 2α(B)β + βα(wt)

α(B)
(
α(B) − β

) ,0, 0

 (A12)

λ5 = −
β
(

α(B) − α(mut)
)

α(B)
, v5 =

0, 0, 0, 1, 0,−

(
α(B)

)2
− 2α(B)β + βα(mut)

α(B)
(
α(B) − β

) , 0

 (A13)

λ6 = −α(B) + β, v6 = [0, 0, 0, 1, 0, 0, 0] (A14)

λ7 = −α(B) + γ, v7 = [1, 0, 0, 0, 0, 0, 0] (A15)

Appendix A.4. The Eigenvalues wt Strain Equilibrium

The eigenvalues of the equilibrium of wt strain are calculated as

λ1 = −CIγ

(
f I
(mut) − α(mut) f I

(wt)

α(wt)

)
(A16)
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λ2 = −α(wt)

(
1− CIγ f I

(wt)

α(wt)

)
(A17)

λ3 = −CIγ

(
1− α(B) f I

(wt)

α(wt)

)
(A18)

λ4 = −κ CM
CI

(
1− CIγ f I

(wt)

α(wt)

)
(A19)

λ5 = −α(wt)

√√√√4
CM
CL

(
1−

CIγ f (wt)
I

α(wt)

)2

+

(
1− β

α(wt)

)2
(A20)

λ6 = −1
2

2β− α(B)
(

1 +
β

α(wt)

)
+ α(B)

√√√√4
CM
CL

(
1−

CIγ f (wt)
I

α(wt)

)2

+

(
1− β

α(wt)

)2
 (A21)

λ7 = −1
2

2β− α(mut)
(

1 +
β

α(wt)

)
+ α(mut)

√√√√4
CM
CL

(
1−

CIγ f (wt)
I

α(wt)

)2

+

(
1− β

α(wt)

)2
 (A22)

Appendix A.5. The Eigenvalues mut Strain Equilibrium

The eigenvalues of equilibrium of mut strain are calculated as

λ1 = −CIγ

(
f I
(wt) − α(wt) f I

(mut)

α(mut)

)
(A23)

λ2 = −α(mut)

(
1− CIγ f I

(mut)

α(mut)

)
(A24)

λ3 = −CIγ

(
1− α(B) f I

(mut)

α(mut)

)
(A25)

λ4 = −κ CM
CI

(
1− CIγ f I

(mut)

α(mut)

)
(A26)

λ5 = −α(mut)

√√√√4
CM
CL

(
1−

CIγ f (mut)
I

α(mut)

)2

+

(
1− β

α(mut)

)2
(A27)

λ6 = −1
2

2β− α(B)
(

1 +
β

α(mut)

)
+ α(B)

√√√√4
CM
CL

(
1−

CIγ f (mut)
I

α(mut)

)2

+

(
1− β

α(mut)

)2
 (A28)

λ7 = −1
2

2β− α(wt)
(

1 +
β

α(mut)

)
+ α(wt)

√√√√4
CM
CL

(
1−

CIγ f (mut)
I

α(mut)

)2

+

(
1− β

α(mut)

)2
 (A29)

Appendix A.6. The Basic Reproduction Numbers

The basic reproduction number is calculated as follows:

1. Based on Equations (14) and (15), we split (22)–(28) into two compartments: one disease
compartment with populations

(
Y(wt)

M , Y(mut)
M , Y(wt)

L , Y(mut)
L

)
and one non-disease compartment

with populations (BM, BL, I).
2. We consider the first four Equations (22)–(28) correspond to the appearance of a new infection as

well as the rate of other transitions between other infected compartments.
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3. Fi(x) corresponds to the rate of the appearance of new infections, and Vi corresponds to the rate
of transfer assumed as

F1 =
(

α(wt) − σ
(wt)
M−→L

)
·Y(wt)

M (A30)

F2 =
(

α(mut) − σ
(mut)
M−→L

)
·Y(mut)

M (A31)

F3 =
(

α
(wt)
L

)
·Y(wt)

L (A32)

F4 =
(

α
(mut)
L

)
·Y(mut)

L (A33)

and

V1 =
(

γ · f (wt)
I · I

)
·Y(wt)

M (A34)

V2 =
(

γ · f (mut)
I · I

)
·Y(mut)

M (A35)

V3 = (β) ·Y(wt)
L − σ

(wt)
M−→L ·Y

(wt)
M (A36)

V4 = (β) ·Y(mut)
L − σ

(mut)
M−→L ·Y

(mut)
M (A37)

4. The basic reproduction number is achieved as the spectral radius of the matrix
(

FV−1);
asR = ρ

(
FV−1) where F = ∂Fi(P0)

∂xj
, V = ∂Vi(P0)

∂xj
, and xj are as follows:

xj =
(

Y(wt)
M , Y(mut)

M , Y(wt)
L , Y(mut)

L

)
(A38)

F =


α(wt)( γ

α(B))
0 0 0

0 α(mut)( γ

α(B))
0 0

0 0 α(wt)( β

α(B))
0

0 0 0 α(mut)( β

α(B))

 (A39)

and

V =


γ f I

(wt) 0 0 0
0 γ f I

(mut) 0 0

− α(wt)(−γ+α(B))
α(B) 0 β 0

0 − α(mut)(−γ+α(B))
α(B) 0 β

 . (A40)

Then

R = ρ
(

FV−1
)

(A41)

= max

{∣∣∣∣∣α(wt)

α(B)

∣∣∣∣∣ ,

∣∣∣∣∣α(mut)

α(B)

∣∣∣∣∣ ,

∣∣∣∣∣ α(wt)

α(B) f I
(wt)

∣∣∣∣∣ ,

∣∣∣∣∣ α(mut)

α(B) f I
(mut)

∣∣∣∣∣
}

(A42)

Appendix B. Data Availability

1. The Matlab script
2. The Maple workbook
3. The described model is available in SBML format [26] (Level 3 Version 2 [27]) from BioModels

database [36] under model identifier MODEL2002070001.

https://identifiers.org/biomodels.db/MODEL2002070001
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