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Simple Summary: This study evaluates the performance degradation of machine learning models
for segmenting gliomas in brain magnetic resonance images caused by domain shift and proposed
possible solutions. Although machine learning models exhibit significant potential for clinical
applications, performance degradation in different cohorts is a problem that must be solved. In this
study, we identify the impact of the performance degradation of machine learning models to be
significant enough to render clinical applications difficult. This demonstrates that it can be improved
by fine-tuning methods with a small number of cases from each facility, although the data obtained
appeared to be biased. Our method creates a facility-specific machine learning model from a small
real-world dataset and public dataset; therefore, our fine-tuning method could be a practical solution
in situations where only a small dataset is available.

Abstract: Machine learning models for automated magnetic resonance image segmentation may be
useful in aiding glioma detection. However, the image differences among facilities cause performance
degradation and impede detection. This study proposes a method to solve this issue. We used the
data from the Multimodal Brain Tumor Image Segmentation Benchmark (BraTS) and the Japanese
cohort (JC) datasets. Three models for tumor segmentation are developed. In our methodology, the
BraTS and JC models are trained on the BraTS and JC datasets, respectively, whereas the fine-tuning
models are developed from the BraTS model and fine-tuned using the JC dataset. Our results show
that the Dice coefficient score of the JC model for the test portion of the JC dataset was 0.779 ± 0.137,
whereas that of the BraTS model was lower (0.717 ± 0.207). The mean Dice coefficient score of the
fine-tuning model was 0.769 ± 0.138. There was a significant difference between the BraTS and
JC models (p < 0.0001) and the BraTS and fine-tuning models (p = 0.002); however, no significant
difference between the JC and fine-tuning models (p = 0.673). As our fine-tuning method requires
fewer than 20 cases, this method is useful even in a facility where the number of glioma cases is small.

Keywords: glioma; machine learning; MR images; fine-tuning; deep learning

1. Introduction

Glioma is the most frequent primary intracerebral tumor in adults. The prognosis
for most glioma patients is fatal, and the disease has a significant impact on the physical,
psychological, and social status of the patients and their families [1]. The World Health
Organization (WHO) grade of glioma represents its biological behavior and correlates with
the number of accumulated gene mutations [2,3]. Although the treatment strategy differs
with the type of glioma and WHO grade, a combination of surgical resection, radiotherapy,
and chemotherapy is generally applied [4–7]. Because of the invasive nature of gliomas, it is
difficult to remove all tumor cells within an adequate safety margin; however, the prognosis
of patients with glioma improves as the extent of resection increases [8]. Therefore, it is
valuable to identify tumor boundaries before surgery.

Magnetic resonance (MR) imaging is routinely used to diagnose and determine treat-
ment strategies for gliomas. Compared with computed tomography, MR imaging has the
advantage of providing more detailed information regarding tumors and surrounding
tissues. Therefore, MR imaging is preferably used to (1) determine the extent of a tumor
by neuroradiologists, (2) monitor the boundary of lesions when neurosurgeons perform
glioma resection with a navigation system, and (3) evaluate the effect of treatment by
neurooncologists. However, manual segmentation of brain tumors from numerous MR
images generated in clinical routine is a time-consuming and challenging task. Hence,
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there is a need for a technology that allows automated brain tumor segmentation. It is an
urgent mission to build a machine learning model for the segmentation of brain tumors.

The most notable network architecture in machine learning for segmenting tumors
is U-Net [9], and several improved models have already been developed [10–15]. For
example, Myronenko won the first prize in the Brain Tumor Segmentation Competition
(BraTs) in 2018, with a very high Dice coefficient score (≥ 0.90) [16,17].

Despite the current rapid progress in using machine learning and deep learning
technologies in the medical field [18–26], the clinical application of machine learning
models for tumor segmentation still requires a significant amount of progress. One reason
for the delay in its clinical application appears to be the performance degradation caused
by domain shift [27]. Most machine learning models for the segmentation of MR images in
recent years use deep learning techniques. The aforementioned U-Net is also an example of
deep learning architecture. When training these architectures, one often assumes that the
training data and test data are sampled from the same distribution [28]. In medical imaging,
images obtained from one facility (one imaging device and one image protocol) can be
assumed as a part of one domain. Therefore, when a deep learning model is created from
data acquired from facility A (domain A), the model can display high prediction accuracy
for newly acquired data from domain A. However, suppose the model is applied to data
from another facility, B (domain B). In that case, the performance may drop significantly
if the data distributions of domains A and B are different (this is called ‘domain shift’).
Thus, the clinical application of deep learning models for segmenting MR images has
not been established. The performance degradation, due to the domain shift, is a critical
issue that must be handled in a real clinical setting because the impact and frequency of
the performance degradation caused by domain shift are unpredictable. To understand
the mechanisms involved in performance degradation, due to the domain shift, we must
carefully analyze data from multiple facilities and multiple domains.

In this study, we aimed (1) to clarify the detailed mechanisms of performance degra-
dation caused by a domain shift by collecting images from 10 different facilities in Japan,
and (2) to develop a method to solve this issue.

2. Materials and Methods
2.1. Ethics

This study was approved by the Ethics Committees of all the facilities that provided
the images (IRB number: 2013-042) the Ethics Committee of the National Cancer Center,
Tokyo, Japan (approval ID: 2016-496). All methods were performed in accordance with the
Ethical Guidelines for Medical and Health Research Involving Human Subjects.

2.2. JC Dataset

Preoperative (before surgical resection or biopsy) MR images were tried to be collected
from 951 adult diffuse glioma patients from 10 facilities in Japan between November 1991
and October 2015; the patients had participated in our previous study [29] in which we
demonstrated that the combination of IDH mutation status, TERT promoter mutation status,
and MGMT (O-6-methylguanine-DNA methyltransferase) methylation status refined the
classification of WHO grade II-IV gliomas. Of the 951 cases, 673 cases had preoperative
digital MR images in at least one sequence, and 544 cases met our criteria described below.
Clinical information was collected in detail, and sequencing analysis was performed on
the tumor specimens collected from these patients. We named these images the Japanese
cohort (JC) dataset. The images satisfying the following three categories were selected:

1. All four types of images, T1-weighted images (T1), T2-weighted images (T2), fluid-
attenuated inversion recovery (FLAIR), and T1-weighted images with gadolinium
enhancement (GdT1), were eligible.

2. Surgical removal or biopsy was performed.
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3. Diagnostic tests, including genetic analysis of key biomarkers (IDH mutation and
1p19q), were performed following the WHO 2007 or 2016 classifications of Central
Nerves System tumors.

We further divided 544 subjects into three categories, as described above. The number
of patients included in the JC dataset was 1.6-times larger than that in the Multimodal
Brain Tumor Image Segmentation Benchmark (BraTS) dataset. To the best of our knowl-
edge, this is the largest glioma image dataset in which genetic/epigenetic profiles and
clinical information are accessible. Table 1 presents detailed information on the clinical
characteristics of the JC dataset.

Table 1. Clinical characteristics of the cases in this study.

Parameter All
Dataset

Facility
A

Facility
B

Facility
C

Facility
D

Facility
E

Facility
F

Facility
G

Facility
H

Facility
I

Facility
J

Median age
(range)

60
(86–
17)

54
(81–
28)

64.5
(84–
26)

64.5
(85–
25)

66
(85–
51)

59
(80–
25)

57
(86–
17)

60
(79–
22)

55.5
(80–
21)

54
(76–
28)

61
(81–
19)

Sex
Male 293 92 20 50 8 32 17 21 23 16 23

Female 251 65 20 44 5 27 14 21 21 13 12

LrGG or GBM
LrGG 218 71 18 0 0 31 18 25 23 18 14
GBM 326 86 22 94 13 28 13 17 21 11 21

WHO grade
II 91 34 12 0 0 7 5 10 10 7 6
III 127 37 6 0 0 24 13 15 13 11 8
IV 326 86 22 94 13 28 13 17 21 11 21

Pathological diagnosis
Diffuse astrocytoma 66 27 9 0 0 4 3 9 7 4 3

Anaplastic astrocytoma 88 25 3 0 0 16 6 14 10 7 7
Oligodendroglioma 25 7 3 0 0 3 2 1 3 3 3

Anaplastic oligodendroglioma 39 12 3 0 0 8 7 1 3 4 1
Glioblastoma 326 86 22 94 13 28 13 17 21 11 21

LrGG = lower grade glioma, GBM = glioblastoma.

2.3. BraTS Dataset

We also used the BraTS 2019 dataset as the BraTS dataset, including T1, T2, FLAIR,
and GdT1 images of 259 high-grade glioma cases and 76 low-grade glioma cases with
tumor volume of interest (VOI) information [16,30,31]. Further details regarding the BraTS
dataset can be found elsewhere [16,30].

2.4. Creating VOI

All VOIs in our JC dataset were manually created by skilled neuroradiologists using
in-house tools. As shown in Supplementary Figure S1, the VOIs were created based on
the information regarding four sequences. The VOI was defined as an area that may have
a tumor, including edema. We included the T2 hyper lesions in the VOI because they
may contain non-enhancing tumor lesions. We think that the advantages of including
non-enhancing tumor outweigh the disadvantages of including ‘pure edema’ that may
make noise. The created VOI included parts referred to as ‘necrotic tumor core’.

In contrast, the VOI in the BraTS datasets was classified into three parts that included
‘edema’, ‘tumor core’, and ‘necrotic tumor core’. Edema, tumor core, and necrotic tumor
core were merged to transfer the information and optimize the VOI of the JC dataset, and
was, therefore, redefined as the new VOI of the BraTS dataset.

2.5. Image Preparation

The images from the BraTS dataset were cropped and resized to 176 × 192 × 160, using
a script written in Python 3.7.7 (https://www.python.org, accessed on 14 October 2020).

https://www.python.org
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The images from the JC dataset were skull stripped by BET [32]. Then, the skull stripped
images were cropped and resized to 176 × 192 × 160 using our Python script.

2.6. Machine Learning Model

First, the JC dataset was randomly divided into two halves; one was used for training
and fine-tuning (‘JC dataset pre-training’; Figure 1), while the other was an independent
test dataset. To optimize the distribution of the cases, we ensured that both training and test
datasets have approximately the same number of images from each facility. Second, three
types of machine learning models were created for segmentation. Finally, the performances
of these models on the independent test dataset were evaluated using the Dice coefficient
score. Figure 1 shows the overall flow.
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Figure 1. The overall flow of this research. Three types of machine learning models were built for segmentation: The
Multimodal Brain Tumor Image Segmentation Benchmark (BraTS) model, the Japanese cohort (JC) model, and the fine-
tuning model. (1) The BraTS model was trained in the training part of the BraTS dataset. (2) The BraTS model was evaluated
by the Dice coefficient scores of the BraTS data set and the test portion of the JC data set. (3) The JC model was trained on
the training portion of the JC data set. (4) The JC model was evaluated by the Dice coefficient score of the test portion of the
JC data set. (5) The BraTS model was fine-tuned for optimal analysis at each facility. (6) The BraTS model fine-tuned by
the aforementioned method, was named the fine-tuning model. (7) The fine-tuning model was evaluated with the Dice
coefficient score of the test portion of the JC data set.

1. BraTS model: The BraTS dataset was split into training, validation, and test sets
(60% training, 20% validation, and 20% test), and the model was trained for tumor
segmentation on the test set.

2. JC model: The pre-training part of the JC dataset was further split into training and
validation sets (75% training and 25% validation), and the model was trained on the
training portion of the JC dataset.

3. Fine-tuning model: The BraTS model was fine-tuned to perform an optimized analysis
in each facility. A maximum of 20 cases (randomly selected) from the pre-training
portion of the JC dataset were used for fine-tuning. Here, if a facility had fewer than
20 training cases, all the training portions in the JC dataset from the facility were used
for fine-tuning.
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The architecture of our machine learning model (Supplementary Figure S2 and Table
S1) is based on the method described elsewhere [9,33,34]. As shown in Supplementary
Figure S2, we grouped all layers between two element-wise sums or merged operation
layers into one block for further technical convenience. Most blocks contain three 3D
convolution layers and one dropout layer. The concept of each group corresponds to
the blue shaded areas in Supplementary Figure S2. Each block was named in order
from the shallowest to the deepest block as ‘1st down’, ’2nd down’, . . . ‘5th down’ and
then from the deepest to the shallowest block as ’1st up’, ’2nd up’, . . . ’5th up’. The
optimizer was set to AdaGrad, and the learning rate was set to 0.005. The deep learning
models were developed using the Keras package in Python (https://keras.io, accessed on
14 October 2020). The network architectures for all three models were identical. RMSprop
was used as the optimizer, and the learning rate was set to 0.0005. All the images were
cropped and input to the model for segmentation as a 4ch (T1, T2, FLAIR, GdT1) 3D
volume of 4 × 176 × 192 × 160.

2.7. Finding the Best Fine-Tuning Method

The fine-tuning model is specialized for each facility; therefore, the number of the fine-
tuning model is the same as that of the facilities. To determine the most appropriate fine-
tuning method, we decided to use the training data of the JC dataset from facility A because
facility A had a relatively large dataset (157 cases). Twenty cases were randomly selected
from the training data. The remaining training data were used for performance evaluation.

Initially, we examined three different methods: (1) The first method was to train a
model in which all layers were layers with learnable parameters (learnable layers; ’fine_all’
model); (2) the second method was to train a model in which only the down path was a
learnable layer (’down model’; in other words, a model in which the up path was frozen);
and (3) the third method was to train a model in which only the up path was capable of
learning (‘up model’; Supplementary Figure S3).

Next, we investigated the effect of horizontal connection instead of the vertical con-
nections of 3D U-Net on fine-tuning (Supplementary Figure S4). In this experiment, we
re-examined three different methods: (1) The first method was to train a model in which all
layers were learnable layers as mentioned above (‘fine_all’ model), (2) the second method
was to train a model in which learnable layers were those in the 1st down and 1st up blocks
(‘down1_up1 model’), and (3) the third method was to train a model in which learnable lay-
ers were those in the 1st down, 2nd down, 1st up, and 2nd up blocks (‘down2_up2 model’).
The fine-tuning method, referred to as ‘down2_up2 method’, was set as follows: (1) The
optimizer was set to AdaGrad, and the learning rate was set to 0.005; (2) the learnable
layers were those in 1st down, 2nd down, 1st up, and 2nd up blocks (down2_up2 model);
and (3) the number of epochs was 20.

2.8. Overall Workflow

Figure 1 shows the overall workflow. First, we randomly divided the JC dataset into
two halves; one was used for training and fine-tuning (JC pre-training dataset), whereas the
other was used as an independent test dataset (JC independent test dataset). We balanced
both training and test datasets according to the number of images obtained from each
facility to optimize data distribution. Next, we created three types of machine learning
models for segmentation. We created the BraTS model by training the algorithm using the
BraTS dataset and the JC model using the JC pre-training dataset. We further established
several fine-tuning models by fine-tuning the BraTS model using fewer than 20 cases
from each facility among the JC pre-training dataset (Supplementary Figures S2–S4). The
fine-tuning models were the BraTS models adjusted explicitly for each facility using only
a limited amount of additional data. The number of the fine-tuning models was equal
to the number of facilities. Finally, we evaluated each model’s performance using the
Dice coefficient score (see Materials and Methods Section 2.9) against our JC independent
test dataset.

https://keras.io
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2.9. Performance Evaluation of Segmentation Models

The performance of the segmentation models was evaluated by Dice coefficient scores.
The Dice coefficient is a score that indicates the similarity between two samples. In the case
of two images, the Dice coefficient score was calculated by dividing the number of pixels in
the overlapping area times two by the number of pixels in both images. Therefore, the Dice
coefficient score ranges from zero to one, and is one of the two images are an exact match.

2.10. Statistical Analysis

To randomly split the dataset, we used a random function from NumPy library
(https://docs.scipy.org/doc/numpy-1.14.0/reference/routines.random.html, accessed on
14 October 2019). To get robust results, we selected Welch’s ANOVA to analyze variance and
Games-Howell Post-Hoc Test as a post-hoc test. Welch’s ANOVA and Games-Howell Post-
Hoc Test do not assume equal variance and sample size [35,36]. We used oneway.test func-
tion from R core package (https://www.rdocumentation.org/packages/stats/versions/3.
6.2/topics/oneway.test, accessed on 21 January 2020) and one-way function with Games-
Howell option from R userfriendlyscience package (https://www.rdocumentation.org/
packages/userfriendlyscience/versions/0.7.2/topics/oneway, accessed on 21 January
2020). With regard to the correlation analysis, we used the corrcoef function NumPy
library for Python to compute the Pearson’s correlation coefficient (https://numpy.org/
doc/stable/reference/generated/numpy.corrcoef.html, accessed on 14 October 2019).

3. Results
3.1. Performance of Individual Models
3.1.1. BraTS Model

The Dice coefficient score of the BraTS model on the BraTS testing dataset was
0.873 ± 0.098 (Supplementary Figure S5); however, the score significantly decreased to
0.717 ± 0.207 when the BraTS model was applied to the JC independent test dataset. The
results are shown in detail in Supplementary Figure S6. We observed the highest Dice
coefficient score in the dataset from facility J (0.817 ± 0.065) and the lowest Dice coefficient
score in the dataset from facility G (0.480 ± 0.286).

3.1.2. JC Model

Next, we built and trained a JC model. The JC model’s Dice coefficient score for the
testing data of the JC dataset was 0.779 ± 0.137. As shown in Supplementary Figure S7, we
observed the highest Dice coefficient score in facility H (0.836 ± 0.051) and the lowest Dice
coefficient score in facility D (0.673 ± 0.273). The fluctuation in the Dice coefficient scores
among the JC model facilities was observed to be smaller than that in the BraTS model
(Supplementary Table S2).

3.1.3. Fine-Tuning Models

In fine-tuning models, the BraTS models were fine-tuned using a small set of data
from the JC pre-training dataset. First, we searched for the best fine-tuning method using
the JC pre-training dataset from facility A. Initially, we examined three different methods
(Supplementary Figures S2–S4). As shown in Supplementary Figure S3, the ‘fine all’ model
demonstrated the best performance, leading to the conclusion that both up path training
and down path training were necessary to achieve optimal performance for fine-tuning.

Next, we investigated the effect of horizontal connection instead of the vertical con-
nections of 3D U-Net on fine-tuning (Supplementary Figure S4). In this experiment, we
re-examined three different methods (see method). As shown in Supplementary Figure S4,
‘down2_up2 model’ and ‘fine_all model’ showed comparable performances. In general,
the fewer the parameters to be tuned, the lower the computational cost and the lesser the
overfitting for the target domains with small data [37]; hence, ‘down2_up2 model’ was
considered to be the most efficient fine-tuning model.

https://docs.scipy.org/doc/numpy-1.14.0/reference/routines.random.html
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/oneway.test
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/oneway.test
https://www.rdocumentation.org/packages/userfriendlyscience/versions/0.7.2/topics/oneway
https://www.rdocumentation.org/packages/userfriendlyscience/versions/0.7.2/topics/oneway
https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html
https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html
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3.1.4. The Result of Fine-Tuning Models

Using the down2_up2 method, we fine-tuned 10 BraTS models on the JC pre-training
dataset from each facility. The mean Dice coefficient score of the fine-tuning models against
each facility’s JC pre-training dataset was 0.769 ± 0.138 (Supplementary Table S2).

3.2. Comparison of the Three Models

As shown in Figure 2, the Dice coefficient score of the fine-tuning model improved
significantly compared with that of the BraTS model, and it was comparable to that of the
JC model. In facilities B and J, the fine-tuning model’s Dice coefficient score was higher
than that of the JC model (Supplementary Table S2). Welch’s ANOVA showed significant
differences among the three groups (p = 0.0002). The Games-Howell Post-Hoc Test showed
that there was a significant difference between the BraTS and JC models (p < 0.0001) and
between the BraTS and fine-tuning models (p = 0.002) in terms of the Dice coefficient score.
In contrast, there was no significant difference between the JC and fine-tuning models
(p = 0.673).
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Figure 2. The results of three types of machine learning models for segmentation. A bar graph shows the Dice coefficient
score for each facility. The horizontal axis is the facility, the vertical axis is the Dice coefficient score, and the colors indicate
the types of machine learning models for segmentation. The Dice coefficient score of the fine-tuning model was significantly
improved compared to that of the BraTS model and was comparable to that of the JC model.

Then, we focused on pathological diagnosis and comparison of three models. We
show the results in Figure 3 and Supplementary Table S3. The Dice coefficient scores of
the JC model and fine-tuning models tended to be better than those of the BraTS model,
especially for oligodendroglioma and glioblastoma.

3.3. Comparison of the VOI Obtained with the Three Models

Figure 4 presents the segmentation results in representative cases from the testing
data of the JC dataset. The VOI predicted by the BraTS model shows a larger area that
includes normal brain tissue, not only the brain tumor. However, the fine-tuning model
specific to the facility in Case 3 only shows the area that appears to be the tumor.

Here, we present three cases with the ground truth and predicted VOI. The three cases
are cases from both datasets whose segmentation task seemed to be either very easy or
difficult for the BraTS model. The first case, Case 1, is BraTS19_TCIA08_242_1 from testing
data of the BraTS dataset (Supplementary Figure S8). Case 2 is from the testing data of the
JC dataset (Supplementary Figure S9). The segmentation of these two cases seemed to be
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an easy task for machine learning models; the Dice coefficient score in the BraTS model was
high (0.969 and 0.926). The final case is Case 3 from the testing data of the JC dataset, which
is presented in Figure 4. The BraTS model could not predict the VOI accurately; the Dice
coefficient score was low (0.330). Six histograms are presented to inspect the difference
between the difficult and easy segmentations.
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Figure 4. Segmentation results on Case 3. The left column is ground truth (made by a skilled radiologist), the middle is
predicted by the BraTS model, and the right is predicted by fine-tuning model specialized for the facility has Case 3. The
volume of interest (VOI) predicted by the BraTS model had an area that didn’t seem to be a brain tumor. However, that by
fine-tuning model specialized for the facility has Case 3 only have an area that seemed to be a tumor.
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In Figure 5A, we present the relationship between the four images. The GdT1 parts of
the histograms of Case 1 and Case 2 have one peak around 1.8; however, Case 3 has no peak.
Figure 5B shows the relationship between the T2 image and true VOI as a histogram. The
VOI part of the histograms of Case 1 and Case 2 is located at the right edge (around 3) and
occupies a relatively large portion. However, that of Case 3 is located centrally (around 2.5)
and covers a small portion.
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The tumor volume of Case 3 was small (12.9 mL). Then, further analysis was per-
formed to study the correlation between the Dice coefficient and tumor volume. Sup-
plementary Figure S10 is a scatter plot of the Dice coefficient score and tumor volume.
When the correlation coefficient was calculated using Pearson product-moment correlation
coefficient, there was no correlation between the Dice coefficient and tumor volume for all
three model types. However, the correlation coefficient of the BraTS model was slightly
higher than that of the JC model and the fine-tuning model (0.246 [BraTS model], 0.152 [JC
model], and 0.156 [fine-tuning model]). In addition, when we focused on the cases with the
Dice coefficient lower than 0.6, 60% (33/55) of the cases had a tumor volume of less than
50 mL. Judging from this fact, the trend that when the tumor volume is small (less than
50 mL), the Dice coefficient is also low (less than 0.6) was observed in all three model types.

4. Discussion

In the present study, we demonstrated that the significant performance degradation
of a machine learning model for glioma segmentation was caused by the domain shift
(Supplementary Figures S5 and S6). Furthermore, we observed significant variation in
the performance degradation among facilities. We believe that the fine-tuning method
developed in this study would be a useful way to solve this issue (Figures 2 and 4, and
Supplementary Figure S11).

Because of glioma’s invasive nature, it is difficult to determine the precise boundary
between tumors and normal brain tissues in MR images. However, determining the precise
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boundary is considerably important for both high- and low-grade gliomas before the
surgery because more extensive resection of the tumor is associated with better outcomes [8].
To prevent postoperative neurological dysfunction, preoperative recognition of neural
anatomy and clear tumor boundary is needed.

In addition, it is also important to determine the boundary of gliomas accurately when
evaluating the effect of the treatment in clinical trials based on response assessment criteria
in neuro-oncology. Various clinical trials for gliomas are ongoing, and therapeutic effects are
largely assessed by the radiological response of MR images. In multi-institutional clinical
trials, the boundary must be created based on the same criteria, but it can differ among
clinicians who evaluate it. Overall, the situation that we need to determine the precise
boundary between a tumor and normal brain tissues in MR images has frequently occurred
in clinical settings. Therefore, robust machine learning models for tumor segmentation
are required.

The determination of the boundary between a tumor and normal brain tissues in
gliomas relies on the abilities of skilled radiologists. For this reason, it is conceivable
that a machine learning model for glioma segmentation is particularly useful for facilities
where there are no skilled radiologists. The number of glioma cases in facilities where no
skilled neuroradiologists are working is generally low. Given that numerous MR images
are required to build a machine learning model for glioma segmentation, it would be
unrealistic if a model has to be built from the beginning in each facility. Our fine-tuning
method can offer the solution because it requires fewer than 20 glioma cases.

Although many researchers recognize that domain shifts reduce the performance of
machine learning models, this problem has been poorly investigated [38–40]. One of the
main reasons for poor investigation is the requirement of datasets from multiple facilities.
In this regard, Pooch et al. recently reported that poor performance of models, due to the
domain shift, was observed even in chest radiographs, which have less information and
diversity among facilities than 3D brain volumes [41]. AlBadawy et al. also reported the
poor performance of models caused by the domain shift in MR images of gliomas from two
different facilities in The Cancer Imaging Archive (TCIA) public dataset [42]. This result is
noteworthy because MR images of gliomas in the TCIA seem to be more homogeneous
than those in the JC dataset. Homogeneity is an advantage when analyzing within the
same dataset, but a disadvantage when extrapolating to other datasets.

Our JC dataset was collected from 10 facilities during an extremely long period of
time from 1991 to 2015. We visualized the diversity of image resolutions of the JC dataset
using the size of voxels (Supplementary Figure S12 and Table S4). For example, the voxel
size in the z-axis, which corresponds to the slice thickness, varied widely from 3.3 to 9 mm.
MR scanners and image settings also varied. This fact indicates that the JC dataset is
heterogeneous and likely represents real-world data.

We used the JC dataset and found highly frequent and severe performance degra-
dation of a machine learning model caused by the domain shift. It should be noted that
the severity of performance degradation varied substantially among domains (Figure 2
and Supplementary Figure S6). This result implies that it is difficult to guarantee the
performance of a machine learning model, which is trained only on a public dataset, such
as the BraTS dataset.

Although the network architecture of U-Net is frequently used when building machine
learning models for segmentation, it has rarely been investigated for fine-tuning. Amiri
et al. recently assessed the effects of fine-tuning different layers of the U-Net model that
was trained on 1000 segmented natural images for segmentation of breast ultrasound
images [39], and concluded that setting the shallow layer as a learnable layer was more
effective than setting the deep layer. They also mentioned that concordant results were not
observed in the segmentation of radiographs.

In this study, we demonstrated that the most effective fine-tuning model is the
down2_up2 model (learnable layers were those in 1st down, 2nd down, 1st_up, and
2nd_down blocks, Supplementary Figures S2 and S4). The architecture of U-Net is divided
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into two phases; the first phase performs a convolution to obtain a latent representation,
and the other phase reconstructs an image from the latent representation. The phase of
obtaining a latent representation of U-Net is almost the same as that of a classic convolu-
tional neural network (CNN). The CNN representations of shallow layers are lower-level
features (e.g., lines, edges, and blobs), and the CNN representations of deep layers are
more semantic and higher-level features. In our experience, the image differences among
facilities seem to be caused by the diversity of instruments and methods in each facility. We
assume that the image differences among facilities could be processed by low-level features,
corresponding to shallow layers in CNN. Hence, it is reasonable to make layer groups that
consist of a shallow layer block and a deep layer block, which is directly connected to the
shallow layer. Our results are compatible with the results obtained by Amiri et al. [39].

As shown in Figure 5A, the shapes of the histograms of Case 1 and Case 2 are similar;
however, that of Case 3 is slightly different. The differences in image quality cannot be
normalized even after the Z-score conversion might have caused this histogram difference.
Therefore, in Case 1 and Case 2, the VOIs account for a large percentage of the histogram
and are located at the right tail. In other words, the tumors of Case 1 and Case 2 are
large, and there are a few voxels having a higher voxel value than that of the part of the
tumor. Segmentation of such cases is considered to be an easy task for the machine learning
model. In Case 3, the region occupied by the VOI is small, and the VOI exists close to the
center of the histogram. Segmentation of such cases appears to be difficult for the machine
learning model. As shown in Figure 4, our fine-tuning method seems to work in Case 3
and could make the VOI close to the ground truth. Because a relatively small number of
cases (fewer than 20 cases) are sufficient to show good performance, our method is useful
when creating a machine learning model in a facility where there are a small number of
glioma cases. Since we believe that all patients with gliomas should ideally be treated at a
complex oncological facility, we hope that our machine learning method will help local
hospitals, where such patients may visit for the first time, to appropriately direct patients
to referral facilities.

As shown in Table 1, the data obtained from a single facility are always biased. To
deploy a high-performance machine learning model, it is ideal to obtain unbiased data,
such as the data from one large domain; however, this is rarely realized. Therefore, there
may be two things that are required for building an accurate machine learning model in a
clinical setting. First, it is important to collect as many images as possible from multiple
facilities for building a model. Second, we must optimize the model corresponding to the
‘data bias’ of the facility. In our view, turning the two steps into a cycle can gradually create
a ‘truly useful’ machine learning model in clinical sites.

Our study has some limitations. Firstly, our fine-tuning method works for our 3D
U-Net model, but may not always work for other improved U-Net models. Furthermore,
our fine-tuning method is likely to be useful in glioma segmentation; however, it is unclear
whether it will work for other types of brain tumors, including brain metastases or primary
central nervous system lymphoma. Further verification may clarify this point. The JC
dataset is very large and heterogeneous as a glioma dataset; nonetheless, verification with
another large dataset is needed in the future.

5. Conclusions

Our study explored the performance degradation of the machine learning model for
glioma segmentation caused by the domain shift; the fine-tuning method developed in this
study can be a useful way to solve this issue. Because our fine-tuning method only requires
fewer than 20 cases, this method is useful when building a machine learning model for
segmentation in a facility where the number of glioma cases is small.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/6/1415/s1, Figure S1: Segmentation results on Case 2 from the testing data of the JC dataset.
The left column is ground truth (made by a skilled radiologist), right is predicted by the BraTS model,
Figure S2: The architecture of machine learning model for segmentation, Figure S3: The performances
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of “fine_all” model, “up” model, and “down” model, Figure S4: The performances of “fine_all”
model, “down1_up1” model, and “down2_up2” model, Figure S5: The Dice coefficient scores of
the BraTS models for the testing data of the BraTS dataset, Figure S6: The Dice coefficient scores
of the BraTS model for the testing data of the JC dataset, Figure S7: The Dice coefficient scores of
the JC model for the testing data of the JC dataset, Figure S8: Segmentation results on Case 1 from
testing data of BraTS dataset. The left column is ground truth, right is predicted by the BraTS model,
Figure S9: Segmentation results on Case 2 from testing data of the JC dataset. The left column is
ground truth, right is predicted by the BraTS model, Figure S10: A scatter plots about Dice coefficient
score and tumor volumes, Figure S11: The Dice coefficient scores of the fine-tuning models for the
testing data of the JC dataset, Figure S12: Summary of voxel sizes of images of the JC dataset, Table
S1: Summary of our 3D U-Net architecture, Table S2: Comparison of the Dice coefficient score for
the testing data of the JC dataset, Table S3: Comparison of the Dice coefficient score for the testing
data of the JC dataset focus on pathological diagnosis, Table S4: Summary of voxel sizes of the JC
dataset. Each column represents the type of image sequences and axis. For example, ‘FLAIR_x’
column summarizes x axis voxel size of FLAIR (fluid-attenuated inversion recovery).
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