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Abstract

Complex networks serve as generic models for many biological systems that have been shown to share a number of
common structural properties such as power-law degree distribution and small-worldness. Real-world networks are
composed of building blocks called motifs that are indeed specific subgraphs of (usually) small number of nodes. Network
motifs are important in the functionality of complex networks, and the role of some motifs such as feed-forward loop in
many biological networks has been heavily studied. On the other hand, many biological networks have shown some
degrees of robustness in terms of their efficiency and connectedness against failures in their components. In this paper we
investigated how random and systematic failures in the edges of biological networks influenced their motif structure. We
considered two biological networks, namely, protein structure network and human brain functional network. Furthermore,
we considered random failures as well as systematic failures based on different strategies for choosing candidate edges for
removal. Failure in the edges tipping to high degree nodes had the most destructive role in the motif structure of the
networks by decreasing their significance level, while removing edges that were connected to nodes with high values of
betweenness centrality had the least effect on the significance profiles. In some cases, the latter caused increase in the
significance levels of the motifs.
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Introduction

Many real-world complex systems can be described as networks.

Examples include the Internet, World Wide Web, the brain

functional/anatomical networks, genetic regulatory networks,

metabolism of biological species, ecological systems, and networks

of author collaborations [1,2,3]. Scholars have found that many

real-world networks from physics to biology, engineering and

sociology have some common structural properties such as power-

law degree distribution [4] and small-worldness [5]. Studying the

properties of such networks could shed light on understanding the

underlying phenomena or developing new insights into the system.

For example, studying biological networks helps us to better

understand the organization and evolution of their units [6].

Recent developments in computing facilities let researchers mine

the data of real-world networks to discover their topological

properties.

In its simplest form, a network consists of a set of discrete

elements called nodes (or vertices), and a set of connections linking

these elements called edges (or links). One of the tricky parts of

research in this field is to extract the graph of system under study

that is to identify the individual nodes and reconstruct the links

connecting them. As network structure is identified, its structural

and dynamical properties are investigated. Network motifs are

among such attributes that are usually tested for natural networks.

It has been shown that networks in various fields exhibit interesting

features in terms of repeated occurrences of certain subgraphs, i.e.

motifs [7,8]. Network motifs are patterns (particular subgraphs)

that statistically overrepresented or underrepresented within the

network. The significance of a particular subgraph in a network is

usually measured by comparing its occurrences in the original

network against some properly randomized networks. Network

motifs have been identified in networks from different branches of

science and are suggested to be the basic building blocks of most

complex networks [9]. Analysis of this over/under abundant

substructures can help us in determining different network

properties and functions such as its hierarchal structure. The

motif structure of a network might be important in determining its

dynamical properties. For example, the evolution of cooperativity

[10,11], has been linked to the motif structure in real networks

[12].

One of the important features of many engineering and

biological networks is robustness against component failure

[13,14]. Real-world networks may undergo random or systematic

failures and consequently lose some of their components, i.e. nodes

and/or edges. Therefore, it is essential to investigate the tolerance

of critical network properties to errors– failures of randomly

chosen nodes and/or edges of the networks and attacks–

systematic failures of components that play a critical role in the

network [15,16]. It has been shown that many biological networks

exhibit high degrees of robustness against random errors that

might happen in their structure [13,14,15,17,18]. In general, it has

been shown that scale-free networks, i.e. networks whose node-

degree distribution follows a power-law, are robust against errors,

but, at the same time, they are fragile in response to systematic

attacks [15,19,20,21]. Several measures have been proposed for
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measuring robustness of networks against attacks and errors. One

of the frequently used ones is the largest connected component

whose size scales linearly with the number of nodes in the network

[15,20,22]. Efficiency is another important measure that is studied

in the context of robustness of complex networks against attacks/

errors [19]. The errors/attacks influence the evolution of

dynamical processes happening on the networks. Network

cooperativity, for instance, has been shown to be extremely robust

against random failures, while it is fragile when nodes with

maximum degree are removed from the network [23].

In this paper we investigated the influence of link failures in the

profile of network motifs. We considered protein structure network

[8] and functional network of human brain extracted through

functional magnetic resonance imaging technique [24]. A number

of strategies for choosing candidates edge for removal were taken

into account that included random removal, removing edges based

on the degrees of the end nodes, based on the betweenness

centrality of the nodes, and based on the closeness centrality of the

nodes. We then compared the profile of the network motifs as a

function of the percentage of removed edges. Interestingly,

different failure strategies resulted in different pattern of changes

in the motif structure where the strategy based on the betweenness

centrality was the most different with the other three.

Materials and Methods

Motif Structure
Many real-world complex networks have been shown to be

composed of well-defined building blocks called motifs. Network

motifs are patterns of interconnection or subgraphs that occur in

natural networks much more frequent than those in randomized

networks [7,8]. They can be thought of as simple building blocks

of complex networks [8], which can provide valuable information

about structural design principles of networks. First discovered in

the gene regulation (transcription) network of the bacteria

Escherichia coli by Alon and his team [8,25], they have been found

in many networks ranging from biochemistry to neurobiology

networks, ecology, and engineering [9,26,27]. Study of network

motifs is therefore propitious for revealing the basic building blocks

of most complex networks.

Some studies have related the function of networks to the

structure of their motifs. Transcription networks are among those

heavily studied both theoretically and experimentally. For

example, negative-autoregulation which is one of the simplest

and most abundant motifs in Escherichia coli has been shown to be

response-acceleration and repair system [28]. Positive-autoregula-

tion motif is important in biomodal distribution of protein levels in

cell population [29]. Feed-forward loop that is commonly found in

many gene systems and organisms is important in speeding up the

response time of the target gene expression following stimulus

steps, pulse generation and cooperativity [30]. Dense Overlapping

Regulons that occur when several regulators combinatorially

control a set of genes with diverse regulatory combinations, has

also been shown to be important in the function of Escherichia coli

[31].

Although subgraphs of different sizes can be studied in natural

networks, among them, biological networks contain three and

four-node substructures far more often compared to randomized

networks with similar structural properties. Many beneficial

outcomes have been ensued from these observations. Often the

network motifs are detected by comparing the network against a

null hypothesis, that is, the number of appearance of a specific

subgraph is counted in the networks and is subsequently compared

with the number of appearances in properly randomized networks.

The randomized networks can be constructed in various ways.

However, they should at least share some common properties with

the original network. For example, the randomized networks

should have the same number of nodes and edges with the original

network. One possible method is to build the corresponding

Erdos-Renyi version for the networks [32]. A better way of

constructing the randomized networks is to preserve not only their

size and average degree but also their degree distribution or at

least degree sequence. This can be simply done by shuffling the

adjacency matrix [33]. Many of the motif detection strategies use

this algorithm for constructing the randomized version of the

original network under study. The motif detection algorithm can

be summarized as follows [7,8]:

1) Consider a specific subgraph i

2) Count the number of appearances of the subgraph i in the

network Ni

3) Generate sufficiently large number of randomized networks

with the same number of nodes and degree distribution as

the original network

4) Count the number of appearances of the subgraph i in each

of the randomized networks

5) Compute the average number of appearances of the

subgraph i in the randomized networks ,Nrandi. and its

standard deviation std(Nrandi)

6) Compute the significance of appearances of the subgraph i

as

Zi~
Ni{SNrandiT

std Nrandið Þ : ð1Þ

7) The networks motifs are subgraphs for which the probability

P of appearing in the randomized networks an equal or

greater number of times than in the original network is

lower than a cutoff value (e.g. P,0.01). Thus, higher

absolute values of Z-scores correspond to more significant

network motifs.

Note that the Z-score of a motif can be positive or negative;

positive when it is highly overrepresented in the original network

as compared to randomized ones and negative when it is highly

underrepresented.

It has also been proposed to normalize the Z-scores [7]. The Z-

score of an specific motif may depend on the network size and it

tends to be higher in larger networks [7]. Since complex networks

may vary widely in size, one can take an approach that enables to

compare different network’s local structure. To this end, the

normalized Z-scores can be calculated as

Zi~
ZiffiffiffiffiffiffiffiffiffiffiffiffiP
i

Z2
i

r : ð2Þ

The normalization emphasizes the relative significance of

subgraphs rather than the absolute significance, which is

important for comparison of subgraph of different sizes [7].

A motif of size k is called a k-motif. The runtime of counting

process grows very fast with k. This is one of the reasons why only

small k-motifs (usually three- or four-nodes) have been studied in

most of the works. Different tools have been developed for the

detection and analysis of network motifs such as Mfinder [34],
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MAVisto [35], and FANMOD [36]. In this work we used

Mfinder, which uses a semi-dynamic programming algorithm in

order to reduce the running time [34]. It also uses an efficient

sampling algorithm that significantly reduces the running time

compared to the cases where all edges are visited.

Two Biological Networks
Techniques from complex networks have been widely applied to

many biological systems (e.g. see reviews [6,13,37]). Recent

developments in designing efficient techniques in molecular

biology have led to extraordinary amount of data on key cellular

networks in a variety of simple organisms [8,38,39,40,41]. This

allowed scholars to study networks such as protein interaction,

transcriptional regulatory, and metabolic in different organisms.

Networks have also been widely studied in neurosciences

[42,43,44]. The brain networks can be studied on a micro-scale

containing a number of neurons with some excitatory/inhibitory

connections in-between [45,46,47]. However, this approach

cannot be used for studying the whole-brain connectivity network.

For such cases, one should use functional magnetic resonance

imaging, diffusion imaging, magnetocephalography, or electroen-

cephalography techniques to extract the large-scale functional/

anatomical brain connectivity networks [48,49,50,51].

In this work, we have considered two biological networks:

protein structure network [7], and human brain functional

network extracted through functional magnetic resonance imaging

[24]. Figure 1 shows their structure by representing the nodes and

edges connecting them. Their properties including, size, average

degree, standard deviation of the degrees, average path length and

clustering coefficient is represented in Table 1. We used Mfinder

to determine the significance of all three- and four-nodes

subgraphs of these networks. In order to obtain a high level of

accuracy, we set the parameters of random network generation

algorithm and counting motifs in the tool as follows [34]

N Number of random networks = 10000

N Uniqueness threshold is ignored

N No threshold on mfactor to use when counting motifs

N No threshold on Z-score to use when counting motifs

N Default values were considered for other parameters, including

switching method for generating random networks.

Table 2 summarizes the set of three- and four-node motifs

with their corresponding normalized and non-normalized Z-

scores in the networks. As we can see motif #7 — a four-node

motif with five edges — has the highest positive Z-score, and

thus, is the most significance motif structure in both of the

networks and can be considered as the dominant motif. On the

other hand, motif#1 has the highest negative Z-score in both of

the networks, and thus, is the most significant anti-motif in the

set of three- and four-node subgraphs. There is a significant

direct correlation between the Z-scores of the motifs in these

two networks (r = 0.9328, P,0.001; Pearson linear correlation

and r = 0.9286, P,0.0025; Spearman rank correlation). This

indicates the similarity of these two networks in the structure of

their building blocks, i.e. #2, #5, #7, and #8, have always

positive Z-score, i.e. they are significantly more abundant in

these networks as compared to random networks. As the

clustering coefficient of the real networks is relatively large (see

Table 1), it seems natural that the subgraphs that include a

triangle structure have a positive Z-score. In some sense, the Z-

score of motifs #5, #7 and #8 seems strongly dependent on the

Z-score of motif #2. The negative Z-score of motif #1 seems

also correlated to the positive Z-score of motif #2. Subgraph

#1 and #4 (motif #6 that has small Z-score and is not a

significant motif) has always negative Z-score meaning that they

are anti-motifs appearing much less in the original networks as

compared to random ones.

Random and Systematic Failures in the Edges
Random or systematic failures can occur in some of the

networks’ components, i.e. nodes and edges. For example in

protein-protein interaction network, while attacking nodes may

correspond to breakdown of polypeptides by appropriate enzymes,

attacking edges of the network can be interpreted as preventing

physical interaction between two polypeptides in order to prevent

carrying out their biological functions. In this work we considered

failures in the edges and investigated its influence on the profile of

the motif structure of the networks. Failures in the networks are of

two types, in general: random failures that are called errors or

systematic failures that are called attacks.

Let define some preliminary metrics of graph theory. Consider

an undirected and unweighted network with adjacency matrix

A = (aij), i, j = 1, …, N, where N is the size of the network. Let

denote the edges between the node i and the node j by eij. The

degree of the node i can be obtained as

ki~
XN

j~1

aij : ð3Þ

Edge betweenness centrality (load) is a centrality measure of an

edge in a graph, which counts the number of shortest paths passing

through the edge. The betweenness centrality Lij of the edge eij

between nodes i and j that is defined by [52]

Figure 1. Topology of sample biological networks. (a) Protein
structure network [7] and (b) human brain functional network extracted
through functional magnetic resonance imaging [24].
doi:10.1371/journal.pone.0020512.g001

Table 1. Characteristics of considered biological networks.

Network Type N ,k. std(k) P C

Protein structure 99 4.2828 0.4748 5.2607 0.3600

Functional human
brain

200 4.5400 0.5690 5.2200 0.2858

First columns: the name of the networks. Second to sixth columns: network size
(N), average node-degree (,k.), standard deviation of node-degree (std(k)),
average characteristic path length (P), and clustering coefficient (C).
doi:10.1371/journal.pone.0020512.t001
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Lij~
X
p=u

Cpu eij

� �
Cpu

, ð4Þ

where Cpu is the number of shortest paths from nodes p to u in the

graph and Cpu(eij) is the number of these shortest paths making use

of eij. The betweenness centrality of an edge is indeed the load of

shortest paths using that edge, i.e. the larger the betweenness

centrality of an edge is the more its significance in the formation of

the shortest paths in the network is.

In a topological space and complex network analysis, closeness

is a basic and important concept. In graph theory closeness is the

inverse of the sum of the shortest distances between each node in

the network. In other worlds, the closeness centrality Ci of node i is

defined as

Ci~
N{1

PN
j~1

d i, jð Þ
, ð5Þ

where d(i,j) is the length of the shortest path between the nodes i

and j. Indeed, the closeness centrality of node i is the inverse of the

average shortest path from i to other nodes in the network.

We considered different failure strategies in the networks. In

order to choose candidate edges for removal four strategies were

considered as follows:

1) Random failure: at each step, one edge was randomly

chosen and removed from the network.

2) Systematic failure based on the node degrees: at each step,

the quantity kikj was calculated for each edge eij, and then,

the edge with the maximum amount of kikj was removed

from the network. If some edges have the same value of kikj,

one of them was removed randomly.

3) Systematic failure based on the edge betweenness centrality:

at each step, the quantity Lij was calculated for each edge eij,

and then, the edge with the maximum amount of Lij was

removed from the network.

4) Systematic failure based on the node closeness centrality: at

each step, the quantity CiCj was calculated for each edge eij,

and then, the edge with the maximum amount of CiCj was

removed from the network.

Results and Discussion

We applied the failure strategies to the networks, i.e. protein

structure and human brain functional networks. Starting from the

original network and at each step, a candidate edge (based on a

failure strategy) was removed, and the Z-scores of all undirected

three-and four-nodes subgraphs were calculated for the resulting

network. Since in calculating the subgraph ratio profile described

by Eq. (2) all terms are affected by the removal, the effect of

removal on each subgraph is not clear. Therefore, we studied the

non-normalized Z-scores. After each removal, the profiles of

Table 2. Significance profiles of motifs in the networks.

Network Type Protein structure Functional Human brain

Motif
Number

Motif
Structure Motif frequencies

Non-normalized
Z-scores

normalized
Z-scores Motif frequencies

Non-normalized
Z-scores

normalized
Z-scores

#1 544 229.581 20.0060 1388 244.913 20.0034

#2 130 25.086 0.0051 187 38.600 0.0029

#3 294 220.086 20.0041 1008 233.844 20.0025

#4 1359 221.871 20.0044 4020 234.167 20.0026

#5 661 11.529 0.0023 1196 24.000 0.0018

#6 29 21.687 20.0003 88 6.351 0.0005

#7 150 37.333 0.0076 205 81.360 0.0061

#8 38 31.666 0.0064 19 17.272 0.0013

All possible three- and four-node motifs along with the corresponding frequency of occurrence, normalized and non-normalized Z-scores in the networks.
doi:10.1371/journal.pone.0020512.t002
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non-normalized Z-scores were calculated with respect to corre-

sponding randomized networks with the same degree distribution.

Then, the results were displayed as a function of the percentage of

removed edges. Because motifs correspond to particular functions,

the evolution of the frequencies of the motifs with the percentage

of removed edges is at least as important as their Z-score. The Z-

scores are indeed relativized to a random network, and thus, from

this metric it is not clear how the frequency of each subgraph

Figure 2. Z-score of motifs #1–#8 as a function of the percentage of removed edges for protein structure network. The blue, green,
red and cyan lines show the changes in the Z-score for random failure (failure strategy 1), systematic failure based on node degrees (failure strategy
2), systematic failure based on betweenness centralities (failure strategy 3), and systematic failure based on node closeness centralities (failure
strategy 4), respectively. The case with random failure is averaged over 10 realizations.
doi:10.1371/journal.pone.0020512.g002

Figure 3. Z-score of motifs #1–#8 as a function of the percentage of removed edges for human brain functional network. The blue,
green, red and cyan lines show the changes in the Z-score for random failure, systematic failure based on node degrees, systematic failure based on
betweenness centralities, and systematic failure based on node closeness centralities, respectively. The case with random failure is averaged over 10
realizations.
doi:10.1371/journal.pone.0020512.g003

Failure Tolerance of Motif Structure

PLoS ONE | www.plosone.org 5 May 2011 | Volume 6 | Issue 5 | e20512



changes. To understand better what happens with motifs

composition in the considered networks and their randomized

alternatives, we also plotted the motifs frequencies vs. the

percentage of removed edges.

Figures 2 and 3 show the profile of Z-scores of motifs of size

three and four in the networks. We removed edges based on

different strategies, i.e. random failure (failure strategy 1),

systematic failure based on node degrees (failure strategy 2),

Figure 4. Frequencies of motifs #1–#8 as a function of the percentage of removed edges for protein structure network. The blue,
green, red and cyan lines show the changes in the Z-score for random failure, systematic failure based on node degrees, systematic failure based on
betweenness centralities, and systematic failure based on node closeness centralities, respectively. The case with random failure is averaged over 10
realizations.
doi:10.1371/journal.pone.0020512.g004

Figure 5. Frequencies of motifs #1–#8 as a function of the percentage of removed edges for human brain functional network. The
blue, green, red and cyan lines show the changes in the Z-score for random failure, systematic failure based on node degrees, systematic failure based
on betweenness centralities, and systematic failure based on node closeness centralities, respectively. The case with random failure is averaged over
10 realizations.
doi:10.1371/journal.pone.0020512.g005
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systematic failure based on betweenness centralities (failure

strategy 3), and systematic failure based on node closeness

centralities (failure strategy 4). It can be seen that random failure

in the edges and systematic failures based on degree or closeness

centrality always weakened the significance of the subgraphs in the

resulting networks, i.e. the significance level of the Z-scores

decreased. However, the systematic failure based on the

betweenness centralities showed different effects. Removing edges

with the highest betweenness centrality resulted in networks with

increasing significance of some of their motifs, while the

significance of some other motifs decreased.

Interestingly, systematically removing those edges tipping to high

degree nodes had the most catastrophic influence in decreasing the

absolute value of the Z-scores, i.e. decreasing the significance level of

the network motifs and anti-motifs, in both networks. In other

words, the more the degree of the vertices at the ends of an edge is

the more critical that edge is for the motif structure. Network motifs

are important in its functionality. For example, the dynamical

property of many real-world networks are highly correlated with the

relative abundance of motifs in those networks [12,53,54]. In gene

regulatory networks, their motif structure is important in the

response time of the target gene expression following stimulus steps,

pulse generation and cooperativity [30]. Thus, the degree-based

attack on the edges might affect the networks’ functionality through

weakening the significance of their motifs. As a result, in order to

make the network motifs robust against such attacks, one should

protect the edges connecting the hub nodes in the network. On the

other hand, preventing the system from doing a well-specific

functionally might be desired in some applications. This can be

done by removing those edges connecting hub nodes in the network,

if such functionality is linked to the motif structure of the network.

Another interesting observation is that, in most cases, random

removal of the edges is not the weakest strategy in breaking the

significance of the motifs. In some cases, e.g. motif #4 in human

brain functional network, it is the most effective strategy in

reducing the significance of network motifs. Therefore, in real-

world biological networks, such as the two examples studied in this

work, errors, i.e. random failures, can be as effective as attacks, i.e.

systematic failures, in influencing the motif structure.

Among different strategies for systematic removal of the edges the

one based on the betweenness centrality has the least influence on

the Z-scores. The profiles of Z-scores are largely robust against

systematically removing the highly loaded edges. In some cases, e.g.

motif #1 and motif #2, removing such edges resulted in increasing

the significance level of the motif structure in the final networks.

This can be due to the fact that the edges with high betweenness

centrality are probably those connecting two parts of the network,

i.e. bridges or local bridges. Such links usually participate in few

graphlets of size three or four. Removing such edges may increase

the relative abundance of the graphlets in the resulting network as

compared to those in the randomized networks.

Figures 4 and 5 show the rate of decrease of the motifs’

frequencies in different failure strategies. The results revealed

that the removal strategy based on the betweenness centrality is

the most influential one in decreasing the number of the anti-

motifs, i.e. motif #1, motif #3 and motif #4. For subgraphs

with positive Z-scores, removing edges connected to high degree

nodes in the network had the most influence in decreasing the

motifs frequencies. Similar to the case of subgraph significance

profiles, random strategy is not the weakest strategy in reducing

the number of subgraphs in most cases. It is usually more

effective than systematic failures based on betweenness or

closeness centrality. Therefore, different failure strategies have

different influence on the frequency of occurrence and

significance profile of the network motifs in biological networks.

Our results showed that removing edges connected to high

degree nodes in the network has the most influence, in general,

in decreasing the relative appearance of three and four-node

subgraphs in the resulting networks as compared to random

networks. This strategy also plays an important role in

decreasing the motifs frequency. On the other hand, removing

the highly loaded edges has the least influence on the changes of

the motifs significance profiles.

In summary, we investigated the effect of random and

systematic failures on the profile of their three- and four-node

motifs. As network examples we considered protein structure

network and human brain functional network extracted through

functional magnetic resonance imaging. We considered four

strategies to choose edges for removal: random failure where the

edges are randomly removed, systematic failure in the edges

connected to high degree nodes, systematic failure in the edges

with high betweenness centrality, and systematic failure in the

edges connected to the nodes with high values of closeness

centrality. We showed that although biological networks have

been shown to be robust against random failures in terms of

network connectedness and efficiency, such failures can have

destructive effects on network motifs. Degree-based systematic

failure had the most destructive role in most cases, i.e. causing in

the largest decrease in the frequency of occurrence and absolute

value of the Z-scores. While, attacks in the highly loaded edges had

the least influence on the motif profile, and in some cases, such

attacks resulted in networks enhancing the significance of the motif

structures. Since motifs play important roles in the functionality of

real-world biological networks, these results are important in

studying error and attack tolerance of biological networks.
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