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ABSTRACT: We report a deep generative model for regression tasks in materials informatics.
The model is introduced as a component of a data imputer and predicts more than 20 diverse
experimental properties of organic molecules. The imputer is designed to predict material
properties by “imagining” the missing data in the database, enabling the use of incomplete material
data. Even removing 60% of the data does not diminish the prediction accuracy in a model task.
Moreover, the model excels at extrapolation prediction, where target values of the test data are out
of the range of the training data. Such an extrapolation has been regarded as an essential technique
for exploring novel materials but has hardly been studied to date due to its difficulty. We demonstrate that the prediction
performance can be improved by >30% by using the imputer compared with traditional linear regression and boosting models. The
benefit becomes especially pronounced with few records for an experimental property (<100 cases) when prediction would be
difficult by conventional methods. The presented approach can be used to more efficiently explore functional materials and break
through previous performance limits.

1. INTRODUCTION

The aim of materials informatics is to reveal the underlying
trends in materials science by using machine learning tools to
enable efficient exploration of functional materials, including
those for use in energy-related devices.1−5 Since the properties
of materials are uniquely determined by the states of their
constituent atoms, their observed structure−property relation-
ships can be mimicked by machine learning models (Figure
1).3−5 Their predictions are often more accurate than traditional
theory-based predictions and simulations, especially in the cases
of complex systems where the computational costs of the
traditional approaches increase exponentially.5−7

To describe the structures of materials, researchers typically
consider their characteristic representations, such as molecular
formulas and crystal structures.1,3 In particular, numeric array-
type expressions are frequently used in materials informatics
because of their high computational processability.1,3 Molecular
descriptors, fingerprints, and neural network outputs are
representative ideas for efficiently expressing the structural
information of organic molecules and could be alternatives to
molecular structures or their character strings (e.g., simplified
molecular input line entry system: SMILES).1,3,8−11 Machine
learning models can connect structural information and material
properties via statistical relationships (Figure 1).1 Diverse
features, including mechanical properties,12 permittivity,6

electric conductivity,5,7,13 thermal conductivity,14 and photo-
conversion efficiency,15 have been successfully predicted from
structural data with reasonable accuracy.
Although conventional machine learning models can predict

the properties of materials at higher levels of accuracy than
traditional approaches, the processable information has been
strictly limited. Usually, one model processes only a single
property of a limited number of material species,1 whereas
humans can judge material characteristics not only from the
specific species but also from various material data and general
knowledge of science.5 The lack of such prior knowledge often
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Figure 1. Scheme for processing material data. The material
information is observable as a chemical formula, experimental
properties, and various other characteristics. The conventional machine
learningmodels typically treat the relationship between only two factors
(e.g., fingerprint and experimental property). On the other hand,
humans and generative models can integrate and imagine versatile
information and consider various underlying relationships.

Articlehttp://pubs.acs.org/journal/acsodf

© 2021 The Authors. Published by
American Chemical Society

14566
https://doi.org/10.1021/acsomega.1c01716

ACS Omega 2021, 6, 14566−14574

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kan+Hatakeyama-Sato"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kenichi+Oyaizu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.1c01716&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01716?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01716?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01716?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01716?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01716?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/6/22?ref=pdf
https://pubs.acs.org/toc/acsodf/6/22?ref=pdf
https://pubs.acs.org/toc/acsodf/6/22?ref=pdf
https://pubs.acs.org/toc/acsodf/6/22?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01716?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01716?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01716?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01716?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.1c01716?rel=cite-as&ref=PDF&jav=VoR
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


becomes problematic for prediction models, especially when
using small material databases, leading to inferior prediction
accuracy. More flexible and humanlike data processing
algorithms are needed to allow the models to acquire a broad
knowledge of materials and achieve more reliable predictions.5

Several approaches have been proposed to improve prediction
accuracy.1,5,10,11 Transfer learning has become a powerful deep
learning technique: here, a neural network is pretrained with a
large database, and the model is reused with a smaller target
database.10,16,17 Increased prediction accuracy has been
reported in the fields of image processing,17 text processing,16

and even materials science.7,10,18,19 On the other hand, the
amount of accessible material data (e.g., 101−104 cases for one
experimental database)3,5 might, in general, be too small to be
considered as big data for deep learning. In contrast, over 107

records are used in typical transfer learning tasks.16,17 More
efficient approaches are needed to realize robust predictions
with smaller databases.
Here, we propose generative models11,20−23 for effectively

processing broad material data. The models learn the
distribution of inputted data, not a specific relationship between
an explanatory variable x and target y.20 The introduction of the
“imagined” databases made by generative models was found to
be a key to predicting various material properties from small
experimental material databases, even for databases missing
many records. Compared with standard models, generative
models led to improved regression accuracy in both
interpolation and extrapolation tasks (i.e., for predicted y
targets, respectively, within and outside of the range of the
training dataset). Except for linear regression (including the
Gaussian process with linear kernel) and theory-based modeling
(e.g., scaling laws and group contribution methods),24,25 no
practical method has been developed to carry out such
extrapolations in materials informatics,1 and hence, a promising
alternative is proposed in this study. The present results are
expected to open a new path for more efficiently exploring new
materials that can overcome the performance limits of previous
materials.

2. RESULTS AND DISCUSSION

2.1. Descriptor Selection. The objective of this study was
to introduce a generative model to predict diverse material
properties from structural information. Since the model can, in
principle, process any numeric information, the ultimate goal
was to be able to input any related numeric information on
materials (Figure 1). On the other hand, due to the benefit of
using a smaller input for practical calculations, we screened
various descriptors to express material structures as the first step.
For organic molecules, widely used numeric inputs are
fingerprints,8 molecular descriptors,1 output of neural networks
(neural descriptors),5,9,11 and simulated structure-related
properties (e.g., energy levels of orbitals).15,26 Since these
algorithms were designed and developed independently, there
seems to be no guidelines for descriptor selection.
Descriptors were screened using a model database of organic

compounds. The database contained about 160 types of small
liquid-type compounds consisting of H, C, N, O, S, P, and
halogen atoms (Figure S1, see the Supporting Information for
details). Their primary physical properties (boiling point,
melting point, density, and viscosity) were recorded as
experimental information. Each property was predicted from
numeric structural information calculated using various
algorithms: two- or three-dimensional geometric molecular
descriptors (Desc 2D or 3D),27 fingerprints (FPs), descriptors
considering empirical data (HSPiP),28 neural descriptors, and
single-molecule properties calculated by a semiempirical
molecular orbital method (PM7, Figure S2, see the Supporting
Information for details). For neural descriptors, we pretrained
neural networks to predict four parameters from molecular
structures expressed as graph structures (i.e., transfer learning,
Figure S3). All variables were scaled to a range of 0 to 1 for
normalization.
After randomly splitting the database into the training (80%)

and test (20%) datasets, an extreme gradient boosting (XGB)29

regressor was trained to predict each target property from the
generated descriptors (Figure S4). XGB is considered one of the

Figure 2. Prediction results of the boiling point using various descriptors. XGB regressor was used for prediction. (a)MAE for the test datasets. Melting
point, density, and viscosity were included in xwith blue bars, whereas only the descriptors were used with the orange bars. Results for the 5-hold cross-
validation are shown. Error bars indicate standard errors. (b) Distribution of absolute Pearson correlation coefficients between the explanatory
variables and boiling point. Exp, bp, and mpmean experimental properties, boiling point, and melting point. We note that data leakages occurred when
predicting bp from neural (bp). Detailed explanations are shown in the Supporting Information.
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most promising algorithms for adequately treating nonlinear
interactions, even with small databases.29 As the control to using
only the descriptors, the other three experimental properties
were added as explanatory variables (e.g., prediction of the
boiling point from the molecular descriptors’ melting point,
density, and viscosity).
Mean absolute errors (MAEs) of the actual and predicted

values for the test dataset are summarized in Figure 2a and
Figure S5. For the boiling point, the HSPiP descriptor offered
the best prediction performance (MAE of around 0.005). The
value was even comparable to the result of a traditional group
contribution method, whose model was trained from a number
of experimental chemical data (Joback and Reid method, MAE
of 0.063 for melting temperature prediction, Figure S5e).30

Neural descriptors pretrained for the boiling point were also
useful for predicting the parameter. We anticipated that the
neural descriptor made for the melting point would also be
beneficial for predicting the boiling point because the two
parameters correlate strongly. However, the loss did not
improve significantly compared with the viscosity descriptors.
The results indicate that transfer learning in materials science is
not always promising, certainly because of the wide variety of
predictable parameters and small experimental databases
available for pretraining. In contrast, the prediction accuracy
improved when the experimental parameters were included in x,
where models can consider the relationships between properties
more directly (Figure 2a, blue bars).

When the target parameter was changed from the boiling
point, the useful descriptors for the prediction changed
dramatically (Figure S5). In other words, no all-purpose
descriptors were found even for this simple task. One universal
trend we detected was that the inclusion of experimental
parameters in x reduced (or at least did not affect) the prediction
errors, indicating that the experimental properties are highly
useful descriptors.
To reveal the most influential factors in the prediction

accuracy, we calculated the absolute Pearson correlation
coefficients between the target values and descriptors (Figure
2b and Figure S6). The obtained box plots indicate that better
prediction performance was more easily obtained with the
descriptors providing the higher coefficients against y (e.g., some
coefficients for HSPiP exceeded 0.6 and were higher than those
provided by any of the other descriptors). For a more precise
comparison, regressions were repeated using five explanatory
parameters randomly selected from all of the descriptors
(Figures S7 and S8). There was an apparent relationship
between the averages of the five coefficients and the MAE. This
result meant that the predictions were mostly influenced by the
linearity between x and y and not by more complicated trends
such as nonlinear interactions. The same results were observed
even in the extrapolation tasks, where the records of the top 20%
of y values were used as test datasets (Figure S8; a linear model
was used for the reason discussed in the next section). For
instance, no MAE below 0.01 was indicated unless the average

Figure 3. Concept of imputation. (a) Worm-eaten images and incomplete material data can be repaired using imputers. (b) Imputation process. The
imputer does not distinguish missing values in x and target value y.
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coefficient exceeded about 0.2 during the boiling point
prediction (Figure S8a). In summary, we found that the
availability of explanatory variables that correlated strongly (i.e.,
linearity) with y was essential for the machine learning,
especially with small databases, and that the availability of
experimentally derived properties of materials was useful for
satisfying such requirements.
2.2. Introduction of a Generative Model for Regres-

sion. Although experimental properties can be beneficial
explanatory variables, the cost of measuring them is typically
much higher than the costs of standard molecular descriptors
and simulations.1,7 For this reason, experimental databases tend
to have many missing values.5 However, regular machine
learning models cannot treat them appropriately.29,31

Generative models are attracting attention because of their
robustness against missing data.32,33 For instance, they can
repair worm-eaten images of handwritten numbers (Figure
3a).32,33 Even if a generative model is trained with only worm-
eaten images, the model can estimate (“imagine”) the original
images by considering the relationships among the observed
variables, as humans do.32,33 We anticipated that the same
approach could also be used with materials, that is, to estimate
unobserved (missing) parameters from observed material
descriptors and properties (Figure 1 and Figure 3a).
Regression by generative models was carried out by so-called

imputation processes (Figure 3b).32,33 First, all missing data,
including target variable y, were replaced with constant values
(e.g., zeros). Second, a generative model fML was trained with
the records to mimic the data distribution (zold). Then, the
initially missing parameters were replaced with the new
predicted value znew = fML(zold). The learning and replacement
were repeated so that the predicted z reached convergence. After
imputation, a complete database was constructed with the most
feasible (or imagined) values predicted by the generative model.
This process would be more humanlike than conventional
regressions because well-experienced researchers often predict
the properties of materials from incomplete material data by
“imagining” missing information based on their experiences.5

By using the database described in the previous section,
regression models were constructed to predict the four
parameters from the structural information. Here, two-dimen-
sional geometric molecular descriptors (Desc 2D) were selected
as x. We deleted 0, 30, or 60% of the explanatory variables
randomly to introduce missing values. Then, the database was
split into the training and test datasets in order: the records with
the top 20% of target values were used for the test, and the rest
were used for the training (i.e., for the extrapolation task).
A recently reported framework of a flow-based model21 called

Monte Carlo flow (MCFlow)33 was introduced as the imputer.
The framework has achieved state-of-the-art performance for a
series of imputation tasks, including image restoration.33 The
adequate randomness and reversible mapping functions in the
framework played essential roles in the prediction.33 Compared
with other representative deep generative models, including
autoencoders and the generative adversarial network (GAN),
this framework achieved more accurate imputation with smaller
databases.32,33

For missing ratios (i.e., proportions of the data missing) of up
to at least 0.6, theMAE of the predicted boiling point for the test
dataset was almost constant (less than 0.2, Figure 4). In contrast,
XGB, which can process missing values directly,29 yielded a
much largerMAE of about 0.3 when 60% of the explanatory data
were deleted. We note that the y predicted by XGBwas always in

the range of the training dataset, meaning that the predictor was
useless for the extrapolation task. Most decision-tree-type
regressors, including random forest and other boosting
models,31 could not be used for the extrapolation tasks because
of their unique classification-based algorithms (and showed
results similar to those obtained when using XGB, data not
shown).29

Instead of XGB, a simple linear regression model was
examined for extrapolation. After replacing missing data with
mean values, regression models were made using the Huber
loss,31,34 which is robust to outliers (Figures S9 and S10). We
note that similar results were obtained with other linear models,
including Lasso. Here, MAEs of the predicted values were found
to range from around 0.20 to 0.25, better than the results when
using XGB but worse than the results when using MCFlow. To
our knowledge, linear regression and related algorithms have
been the only practical approach for extrapolation tasks in
materials science.1,10,35 However, the deep-flow-based model
has now become a promising alternative, one also excelling at
solving the missing data issue.
The prediction process in MCFlow was analyzed by

visualizing the internal variables in the model (Figure S11).
The generative model first used the mapping function fmap to
convert the original input data z to a same-dimensional vector
zmap (Figure S11a). For regularization, the internal variables are
supposed to provide a multivariate normal distribution in flow-
based models.21,33 Then, a multilayer perceptron was used to
convert zmap to zm̂ap for the largest possible density estimation.
Then, the inverse function fmap

−1 was used to reconstruct z.
(Note that fmap is designed to be invertible in flow-based
models.) Interestingly, the internal variables tended to correlate
with y more strongly after the conversion (Figure S11c,d). This
capability of extracting the underlying linearity between the
explanatory variables and the target value was considered a key
to achieving successful extrapolation.
As a control for MCFlow, we also examined various

imputation algorithms for regression. Other representative
generative models were examined, namely, GAN,32 an
autoencoder (AE),20 and a variational autoencoder (VAE)7,11

(Figure S9e). The prediction using GAN did not vary with
changing x, meaning that the training was unsuccessful; the deep
learning model typically requires over 104 cases of training
data,32 whereas only about 150 cases were given in this task.

Figure 4. Boiling point prediction byMCFlow and XGB regressors. (a)
Experimental and predicted values. 0, 30, or 60% of the explanatory
variables were filled as missing values randomly. (b) MAE for the test
datasets with various regression conditions. Mean values after different
5-times data preparation and regression are shown. Error bars indicate
standard errors. Selected results for an extrapolating task are shown in
this figure. Full results are shown in Figures S9 and S10.
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Regular autoencoders (AE and VAE) displayed moderate
prediction accuracy for the training dataset but were unable to
make predictions in the extrapolation regions of the test dataset.
The significant difference between the flow-based models and
the autoencoders is related to whether or not the mapping
function fmap is invertible.21,33 During machine learning, the
invertibility (i.e., regularization) should have positively worked
to extract the linearity, but the regular autoencoders suffered
from overfitting to the training data in the interpolation region.
More detailed processes for successful extrapolation prediction
will be studied in future research.
Regular regression models such as XGB can also be used as

components in imputers. Imputation was done by preparing
individual regression models for each zi and repeating the
regression (Figure 3). MissForest, a random forest imputation
framework, provides good prediction performance even with
small databases.36 The framework could also be considered a
derivative of generative models because they can estimate the
distribution of z from inputted data. Here, XGB and Huber
regressors were selected as predictor components. When the
missing data of the explanatory variables were filled in, the MAE
of the predicted y was generally improved compared with the
normal approach of substituting mean values for missing data
(Figure 4b; Figures S9 and S10).
Imputers provided improved performance even for the other

prediction tasks. Smaller MAEs were obtained with the imputers
than when using the regular Huber regression with the other
target values (e.g., MAEs of 0.23 and 0.34 when using,
respectively, MCFlow and Huber for melting point prediction
with 60% data loss, Figures S9 and S10). In the cases of the
inverse-type extrapolation tasks (i.e., using the testing data with
the lowest 20% targeting parameters), the Huber imputer
offered the best, and MCFlow gave the worse performances
compared to standard Huber regression. The different data
distribution compared to the top 20% cases should have caused
the change of the accuracy trends, which should be studied in
detail in future research. In the cases of the interpolation tasks,
the best results were obtained when XGB imputers were used
(Figures S9 and S10) owing to the accurate prediction by XGB
in the interpolation region. We believe that optimal tuning of
MCFlow (e.g., changing hyperparameters and network
structures) and revealing more detailed prediction processes
would improve its prediction accuracy to be as high as XGB
because MCFlow exhibited excellent data imputation perform-
ances with images.33

In summary, for the generative model used for regression, we
introduced the imputers to predict material properties directly.
The advantage of “imagining” missing data by using generative
models was essential for improving the regression performance
for the material data.
2.3. PredictingMultiple Properties from an Integrated

Material Database. To demonstrate the practical benefit of
generative models, we used various experimental databases to
predict multiple properties of materials. In previous work, we
collected and integrated various experimental material databases
of structure−property relationships of organic molecules and
polymers.5 An updated database was made in this study,
covering about 12,000 compounds and over 25 types of
experimental properties, such as glass transition temperature,
heat capacity, vapor pressure, and viscosity (Figure S1b). Since
the original data sources focused on different material
properties, the integrated database included a substantial
amount of missing data (Figure 5a). However, we have already

shown that even incomplete databases of material properties can
be useful after appropriate imputation.

Regression tasks were repeated to predict each property from
the 2D molecular descriptors and the rest of the material
properties (Figure 5b and Figure S12). Here, the top 20% of
target variables and a randomly selected 20% of the records were
used as test datasets to evaluate both extrapolation and
interpolation prediction performance. In a typical result,
viscosity was predicted using about 100 available records
(Figure 5b). MCFlow achieved a higher prediction accuracy
than Huber in the extrapolation region (MAEs of about 0.2 and
0.3, respectively, corresponding to >30% improvement),
whereas similar results were obtained in the interpolation region.
Since the database consisted of various types of compounds,

including liquids, solids, and polymers, the model sometimes
predicted (imagined) nonsense parameters of materials, such as
the viscosity of solids and glass transition temperature of liquids.
We note that the predictions are almost useless for users, but
conveniently filling the missing values with the imagined ones
was necessary for the imputation process.
Regarding other practical criteria for the extrapolation

prediction, we assessed recall and precision, which are often
used for classification tasks.31 Recall (resp., precision) was
defined as the percentage of successfully predicted cases in the
extrapolation region of the experimental (resp., predicted)
values (Figure 5b). In exploration of novel materials, a higher
recall means that novel candidates can be detected with a greater
accuracy, and a higher precision is needed to avoid improperly
detecting candidates whose actual y exists within the range of
training values. MCFlow provided a recall of 19% and precision
of 75% for density prediction, whereas Huber gave both

Figure 5. Prediction results for an integrated database. (a) Scheme to
fill missing values in the integrated database. (b) Viscosity prediction by
MCFlow and Huber regressors. Orange and blue plots represent the
train and test datasets. (c), (d) Recall and precision to extract the
extrapolating regionmaterials. Full results are shown in Figures S13 and
S14. XGB was not examined because of the poor extrapolation ability
(see Figure 4).
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precision and recall of zero: in other words, the generative model
achieved successful extrapolation that could not be done by a
conventional approach. We note that realizing both 100% recall
and precision is not feasible because no one can perfectly judge
whether a new material exceeds the performance limitations of
conventional species. Considering the difficulty of the task, the
recall of 19% by MCFlow should be considered sufficient as a
first step.
The use of imputers improved prediction accuracy even with

other target parameters (Figure 5c,d; Figures S13 and S14). As a
general trend, MCFlow exhibited a higher recall than Huber for
properties with fewer than 100 records (>20% recall byMCFlow
in most cases, Figure 5c). Apart from MCFlow, the Huber
imputer also increased the recall and precision with few records,
indicating that “imagining” the missing data was essential for the
prediction (Figure 5c,d). The prediction performance of
MCFlow and Huber was similar when the number of available
records was greater than 100, the reason being that sufficient
information was given for the predictors (Figure S14). Since
experimental databases are often small due to the high cost of
collecting data, the newly introduced approach to integrate
databases and impute missing data helps researchers explore
materials more efficiently. For a higher prediction accuracy,
more parametric approaches, such as assuming specific data
distribution of parameters, introducing restrictions based on
physical laws, and applying transfer learning,16,17 would be
needed, depending on the target systems.
2.4. Comparison with Conventional Prediction Mod-

els in Materials Informatics. Finally, we compared our new
approach to others used in materials informatics (Figure 6). The

lack of sufficient data for materials is a critical obstacle to
realizing effective predictions of their properties and thus
requires appropriate machine learning strategies. One promising
approach involves a simplification, specifically the use of linear
regressions and sparse modeling to robustly treat statistical
relationships among materials,1,35 which was also demonstrated
by Huber regression in this study. However, not every
phenomenon can be explained based on simply an assumption
of linearity because material properties appear to result from
highly complex molecular interactions.7 More complex models
are needed to compensate for the limitations of the linearity-
based approach.
Deep learning that includes a generative model as in this study

is the opposite idea of sparse modeling. Few- or even zero-shot
learning has been achieved by transfer learning of big data.16,17

Still, transfer learning may not be effective in all cases in
materials science because of the lack of data records, as discussed
in previous sections. Since a general-purpose transfer learnable

material database is not available, researchers must carefully
select a proper pretraining database from a massive number of
candidates.7,10,19 In essence, this problem becomes the difficult
task of hyperparameter selection from an extensive search
optimization space.
As a more general approach, the use of more universal graph

databases has also been proposed.5,37,38 We have demonstrated
that diverse material data can be described in universal-format
graphs and processed using a single model.5 The trained model
can implicitly recognize the hidden relationships among the
structural and property data from different databases. If a
sufficiently large amount of data and a powerful learning
framework are given, the trained model would be able to
respond to any material-related questions accurately.5 However,
the actual lack of such resources still limits the potential of the
approach. Furthermore, the black-box prediction prevents
researchers from understanding the trends of the structure−
property relationships.5

The generative model proposed here takes advantage of both
transfer learning and graph models. Here, the structure−
property relationship can be processed explicitly as “imagined
databases.” For accurate prediction with small databases,
directly considering property−property relationships from the
imagined databases was favored over indirectly correlating them
by transfer learning or a graph model (e.g., simple linear
relationships were essential for regression, Figure 2). Fur-
thermore, the flow-based generative model showed the promise
of extrapolation predictions, whereas most studies and
algorithms of materials informatics have focused on only
interpolation tasks.14

In summary, we introduced generative models for performing
regression tasks in materials informatics. The models could
impute and predict diverse information about materials.
Prediction accuracy was improved by “imagining” the missing
values of the data, which is believed to be a process similar to the
one in humans. The approach was beneficial for the
extrapolation prediction tasks even with small databases because
the models could extract rather implicit relationships among the
inputted parameters (e.g., predict melting temperature from
structural information, also considering the trend that higher
boiling temperature compounds would exhibit a higher melting
point). This approach gave a better prediction performance than
that observed for traditional linear regression with some tasks
(e.g., >30% improvement of prediction loss), whereas linear
approaches have been only one practical strategy for
extrapolation. Extrapolation is critical to find new candidates
that break through the performance limits of known materials.
The presented approach is expected to open a path to make
explicit connections to the knowledge of diverse materials,
which is necessary to develop understandable machine learning
tools and to realize more general prediction models for materials
science.

3. COMPUTATIONAL METHODS
3.1. Data and Software Availability. Chemical databases

and programs used in this study are available as open access via
GitHub (https://github.com/KanHatakeyama/gen_model).
Some records in the integrated material database had been
removed from the published version because of the copyright
issue. The original database can be available from the
corresponding author upon reasonable request.

3.2. Computer. A desktop computer (Intel Core i9-9900K
CPU @ 3.60 GHz, 32 GB memory, GeForce RTX2080

Figure 6. Comparison of generative models with other approaches for
material property prediction tasks.
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graphical processing unit) was used for data processing and
machine learning.
3.3. Database Preparation. Program codes were made

with Python unless noted otherwise. A small compound
database was constructed based on our previous paper, which
integrated open material data from the public literature.5 The
database contains experimental physical properties (boiling
temperature, melting temperature, density, and viscosity) of
about 160 small chemicals consisting of H, C, N, O, S, P, and
halogen atoms. Chemical structures were recorded using a
simplified molecular input line entry system. An integrated
database was prepared similarly. Properties with over 40 records
were used for machine learning. Further information is
described in the database file. A summary of the databases is
shown in Figure S1. Chemical structures of repeating units were
considered as molecular structures for polymers. Visit Github
(https://github.com/KanHatakeyama/gen_model) for de-
tailed information of the databases (e.g., original data sources
and units for each parameter).
3.4. Data Processing. Before machine learning, all numeric

variables were normalized to the range of [0,1] by Min-Max
scalers. For regression, a series of molecular descriptors were
calculated as x (Figure S2). The relevant program codes are
available at the repository.
3.4.1. FP(Avalon). 512-Dimensional fingerprint is calculated

by an Avalon algorithm using an open-source python package of
RDKit (version 2018.09.1, https://www.rdkit.org/).
3.4.2. Desc(2D). Basic 200-dimensional continuous molec-

ular descriptors are implemented in a “Descriptors.descList”
class of RDKit. The descriptors did not consider three-
dimensional molecular structures.
3.4.3. Desc(3D). 629-Dimensional continuous molecular

descriptors are implemented in “CalcAUTOCORR3D”, “Calc-
MORSE,” “CalcRDF,” and “CalcWHIM” classes of RDKit. The
descriptors were calculated according to the three-dimensional
structures of the molecules.
3.4.4. HSPiP. 56-Dimensional continuous molecular descrip-

tors are calculated by a Hansen Solubility Parameters in Practice
package (HSPiP version 5.3.05, https://www.hansen-solubility.
com/HSPiP/).
3.4.5. PM7. 13-Types of molecular properties (energy levels,

dipole moments, heat formation, and magnetic moment) are
calculated by a semiempirical calculation using the PM7
Hamiltonian.
3.4.6. Neural. 32-Dimensional continuous numeric arrays are

calculated by graph neural networks, which were trained to
predict boiling temperature, melting temperature, density, or
viscosity of all compounds recorded in the small database
(Figure S3). Properties were predicted from chemical structures
represented by graphs. We note that data leakages occurred
when predicting a target value from the same-type neural
descriptors during themain regression tasks (e.g., predict boiling
temperature from Neural(bp) in Figure S5), which somewhat
unfairly improved the prediction performances compared to the
other descriptors. In practical cases, pretraining must be done
only with train datasets, whereas this study only focused on the
effect of transfer learning of different target variables.
3.5. RegressionModels. Following regression models were

employed to predict the properties of molecules. The relevant
program codes are available at the repository.
3.5.1. XGB. Open Python library of XGB (version 0.90,

https://xgboost.readthedocs.io/) was used. Regressions were

conducted with default hyperparameters. Missing values were
used as they were.

3.5.2. Huber. AHuber regression class in scikit-learn (version
0.23.2, https://scikit-learn.org/) was used. Regressions were
conducted with default hyperparameters. Before machine
learning, missing values were filled with mean values for each xi.

3.5.3. Imputer-Huber/-XGB. A modified module of Mis-
sForest36 was prepared. Instead of using RandomForest, Huber
or XGB regressors were used as prediction models. Each column
was imputed in parallel to reduce calculation time, while the
previous one calculated columns in sequence. The replacements
were repeated 3 to 10 times. Before replacing 10 times, the
iteration would stop if the difference between the newly imputed
data matrix and the previous one increased.36 To minimize the
effect of data leaking, imputation processes were freshly repeated
using the whole training dataset plus one each record of the
testing dataset (see source codes for details).

3.5.4. Imputer-MCFlow. A previously reported MCFlow
program33 was modified so that it could be used as an imputer
class facility. The core algorithms were unchanged. The data
replacements (and parameter resetting of learning models) were
conducted at every learning epoch that is a power of 2 (e.g., 2, 4,
8, ... epochs).33 The iteration stopped at the 128th cycle, which
was enough criterion to practically reach the convergence for the
introduced datasets. To avoid leaking, imputation of the testing
data was done using a model trained only with the training
dataset.

3.5.5. Other Imputers. As a generative adversarial network-
based imputer, a reported framework of generative adversarial
imputation nets32 was employed. AE and VAE were constructed
by connecting an input layer, a 10-dimensional hidden layer, and
an output layer.

3.6. Regression Task 1: Comparison of Descriptors
(Figure S5). The four types of experimental molecular
properties (boiling temperature, melting temperature, density,
and viscosity) recorded in the small compound database were
predicted from different descriptors shown in Figure S2. The
XGB regressor was used for prediction. The database was split
into the train (80%) and test (20%) datasets randomly. Only the
train dataset was used to train the model. The rest of the three
molecular properties were also included in the explanatory
variables for comparison (Figure S5, blue bars). 5-Hold cross-
validation was conducted to analyze the statistical trends. We
used MAE between the predicted and exact values to evaluate
the prediction performance.

3.7. Regression Task 2: Random Selection of
Descriptors (Figure S8). Similar to task 1, experimental
molecular properties were predicted from descriptors. In this
case, only five parameters were selected from all descriptors and
used as explanatory variables (Figure S7). The XGB regressor
was used for prediction, and MAE for a test dataset was
evaluated. The random parameter selection and prediction
processes were repeatedmany times. To analyze the relationship
between the “quality” of the explanatory parameters and the
prediction performance, a new parameter was defined: the
average value of the absolute correlation coefficients between
the target value (y) and the explanatory variable (xi).

3.8. Regression Task 3: Prediction with Missing Values
(Figure S9). The four physical properties were predicted from
Desc(2D) descriptors. Desc(2D) was selected because of its low
calculation cost and promising results (e.g., Figure 4). For the
interpolation task, the small compound database was split into
the train (80%) and test (20%) datasets randomly. In contrast,
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records with the top 20% target values were used as a test and the
rest as a train for the extrapolation tasks. 0, 30, or 60% of the
explanatory variables were replaced with missing values (n/a)
randomly. The data split and prediction processes were repeated
5 times. XGB and Huber repressors were used as predictors for
interpolation and extrapolation tasks, respectively.
3.9. Regression Task 4: Prediction with the Integrated

Database (Figure S12). The properties of molecules recorded
in the integrated database were predicted from “Desc(2D)”
descriptors because of their low calculation cost and promising
results (e.g., Figure 4). Experimental properties except for the
target value were also included in x. The missing experimental
values were treated according to the procedures described in the
regression models section. For interpolation tasks, the database
was split into the train (80%) and test (20%) datasets randomly.
For extrapolation tasks, records with the top 20% values were
extracted as the test. Furthermore, 20% of the data were selected
randomly in the interpolation region. Thus, the overall train and
test ratio was 60/40. The data splitting and regressions were
repeated 5 times. Properties containing over 1000 records were
not predicted by Imputer-Huber because of the high calculation
cost (e.g., the calculation will take more than 100 h with 10,000
records, whereas MCFlow took less than 1 h).

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.1c01716.

Explanation of introduced databases (Figures S1 and S2);
schemes of machine learning (Figures S3, S4, and S7);
and prediction results (Figures S5, S6, and S8−S14)
(PDF)

■ AUTHOR INFORMATION

Corresponding Authors
Kan Hatakeyama-Sato − Department of Applied Chemistry,
Waseda University, Tokyo 169-8555, Japan; orcid.org/
0000-0003-1959-5430; Email: satokan@toki.waseda.jp

Kenichi Oyaizu − Department of Applied Chemistry, Waseda
University, Tokyo 169-8555, Japan; orcid.org/0000-
0002-8425-1063; Email: oyaizu@waseda.jp

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.1c01716

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was partially supported by Grants-in-Aid for Scientific
Research (Nos. 17H03072, 18K19120, 18H05515, 20H05298,
21H02017, and 19K15638) from MEXT, Japan. The work was
also partially supported by the Research Institute for Science and
Engineering inWaseda University, and a research grant from the
Center for Data Science in Waseda University, and Information
Services International-Dentsu, Ltd.

■ REFERENCES
(1) Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.;
Kim, C. Machine learning in materials informatics: recent applications
and prospects. npj Comput. Mater. 2017, 3, 54.

(2) Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse molecular design
using machine learning: Generative models for matter engineering.
Science 2018, 361, 360−365.
(3) de Pablo, J. J.; Jackson, N. E.; Webb, M. A.; Chen, L.-Q.; Moore, J.
E.; Morgan, D.; Jacobs, R.; Pollock, T.; Schlom, D. G.; Toberer, E. S.;
Analytis, J.; Dabo, I.; DeLongchamp, D.M.; Fiete, G. A.; Grason, G.M.;
Hautier, G.; Mo, Y.; Rajan, K.; Reed, E. J.; Rodriguez, E.; Stevanovic, V.;
Suntivich, J.; Thornton, K.; Zhao, J.-C. New frontiers for the materials
genome initiative. npj Comput. Mater. 2019, 5, 41.
(4) Noh, J.; Gu, G. H.; Kim, S.; Jung, Y. Machine-enabled inverse
design of inorganic solid materials: promises and challenges. Chem. Sci.
2020, 11, 4871−4881.
(5) Hatakeyama-Sato, K.; Oyaizu, K. Integrating multiple materials
science projects in a single neural network.Commun. Mater. 2020, 1, 49.
(6) Mannodi-Kanakkithodi, A.; Chandrasekaran, A.; Kim, C.; Huan,
T. D.; Pilania, G.; Botu, V.; Ramprasad, R. Scoping the polymer
genome: A roadmap for rational polymer dielectrics design and beyond.
Mater. Today 2018, 21, 785−796.
(7) Hatakeyama-Sato, K.; Tezuka, T.; Umeki, M.; Oyaizu, K. AI-
Assisted Exploration of Superionic Glass-Type Li(+) Conductors with
Aromatic Structures. J. Am. Chem. Soc. 2020, 142, 3301−3305.
(8) Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem.
Inf. Model. 2010, 50, 742−754.
(9) Zhou, J.; Cui, G.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.;
Sun, M. Graph Neural Networks: A Review of Methods and
Applications. AI Open 2020, 1, 57−81.
(10) Yamada, H.; Liu, C.; Wu, S.; Koyama, Y.; Ju, S.; Shiomi, J.;
Morikawa, J.; Yoshida, R. Predicting Materials Properties with Little
Data Using Shotgun Transfer Learning. ACS Cent. Sci. 2019, 5, 1717−
1730.
(11) Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-
Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-
Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A.
Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules. ACS Cent. Sci. 2018, 4, 268−276.
(12) Chen, C.-T.; Gu, G. X.Machine learning for composite materials.
MRS Commun. 2019, 9, 556−566.
(13) Matsubara, M.; Suzumura, A.; Ohba, N.; Asahi, R. Identifying
superionic conductors by materials informatics and high-throughput
synthesis. Commun. Mater. 2020, 1, 5.
(14) Wu, S.; Kondo, Y.; Kakimoto, M.-A.; Yang, B.; Yamada, H.;
Kuwajima, I.; Lambard, G.; Hongo, K.; Xu, Y.; Shiomi, J.; Schick, C.;
Morikawa, J.; Yoshida, R. Machine-learning-assisted discovery of
polymers with high thermal conductivity using a molecular design
algorithm. npj Comput. Mater. 2019, 5, 66.
(15) Nagasawa, S.; Al-Naamani, E.; Saeki, A. Computer-Aided
Screening of Conjugated Polymers for Organic Solar Cell:
Classification by Random Forest. J. Phys. Chem. Lett. 2018, 9, 2639−
2646.
(16) Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.;
Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.;
Ramesh, A.; Ziegler, D.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler,
E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish, S.;
Radford, A.; Sutskever, I.; Amodei, D. Language Models are Few-Shot
Learners. 2020 arXiv:2005.14165.
(17) Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.;Weissenborn, D.; Zhai,
X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.;
Uszkoreit, J.; Houlsby, N. An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale. 2020 arXiv:2010.11929.
(18) Hutchinson, M.; Antono, E.; Gibbons, B.; Paradiso, S.; Ling, J.;
Meredig, B. Overcoming data scarcity with transfer learning. 2017
arXiv:1711.05099.
(19) Lee, J.; Asahi, R. Transfer learning for materials informatics using
crystal graph convolutional neural network. Comput. Mater. Sci. 2021,
190, 110314.
(20) Kingma, D.; Rezende, D.; Mohamed, S.; Welling, M. Semi-
supervised Learning with Deep Generative Models. 2014
arXiv:1406.5298.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c01716
ACS Omega 2021, 6, 14566−14574

14573

https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c01716/suppl_file/ao1c01716_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01716?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c01716/suppl_file/ao1c01716_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kan+Hatakeyama-Sato"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-1959-5430
https://orcid.org/0000-0003-1959-5430
mailto:satokan@toki.waseda.jp
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kenichi+Oyaizu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8425-1063
https://orcid.org/0000-0002-8425-1063
mailto:oyaizu@waseda.jp
https://pubs.acs.org/doi/10.1021/acsomega.1c01716?ref=pdf
https://doi.org/10.1038/s41524-017-0056-5
https://doi.org/10.1038/s41524-017-0056-5
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1038/s41524-019-0173-4
https://doi.org/10.1038/s41524-019-0173-4
https://doi.org/10.1039/D0SC00594K
https://doi.org/10.1039/D0SC00594K
https://doi.org/10.1038/s43246-020-00052-8
https://doi.org/10.1038/s43246-020-00052-8
https://doi.org/10.1016/j.mattod.2017.11.021
https://doi.org/10.1016/j.mattod.2017.11.021
https://doi.org/10.1021/jacs.9b11442?ref=pdf
https://doi.org/10.1021/jacs.9b11442?ref=pdf
https://doi.org/10.1021/jacs.9b11442?ref=pdf
https://doi.org/10.1021/ci100050t?ref=pdf
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1021/acscentsci.9b00804?ref=pdf
https://doi.org/10.1021/acscentsci.9b00804?ref=pdf
https://doi.org/10.1021/acscentsci.7b00572?ref=pdf
https://doi.org/10.1021/acscentsci.7b00572?ref=pdf
https://doi.org/10.1557/mrc.2019.32
https://doi.org/10.1038/s43246-019-0004-7
https://doi.org/10.1038/s43246-019-0004-7
https://doi.org/10.1038/s43246-019-0004-7
https://doi.org/10.1038/s41524-019-0203-2
https://doi.org/10.1038/s41524-019-0203-2
https://doi.org/10.1038/s41524-019-0203-2
https://doi.org/10.1021/acs.jpclett.8b00635?ref=pdf
https://doi.org/10.1021/acs.jpclett.8b00635?ref=pdf
https://doi.org/10.1021/acs.jpclett.8b00635?ref=pdf
https://doi.org/10.1016/j.commatsci.2021.110314
https://doi.org/10.1016/j.commatsci.2021.110314
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c01716?rel=cite-as&ref=PDF&jav=VoR


(21) Ho, J.; Chen, X.; Srinivas, A.; Duan, Y.; Abbeel, P. Flow++:
Improving Flow-Based Generative Models with Variational Dequan-
tization and Architecture Design. 2019 arXiv:1902.00275.
(22) Boitreaud, J.; Mallet, V.; Oliver, C.; Waldispuhl, J. OptiMol:
Optimization of Binding Affinities in Chemical Space for Drug
Discovery. J. Chem. Inf. Model. 2020, 60, 5658−5666.
(23) Hong, S. H.; Ryu, S.; Lim, J.; Kim, W. Y. Molecular Generative
Model Based on an Adversarially Regularized Autoencoder. J. Chem. Inf.
Model. 2020, 60, 29−36.
(24) Stefanis, E.; Constantinou, L.; Panayiotou, C. A Group-
Contribution Method for Predicting Pure Component Properties of
Biochemical and Safety Interest. Ind. Eng. Chem. Res. 2004, 43, 6253−
6261.
(25) Ali, S. M. Scaling law of shear viscosity in atomic liquid and liquid
mixtures. J. Chem. Phys. 2006, 124, 144504.
(26) Jinich, A.; Sanchez-Lengeling, B.; Ren, H.; Harman, R.; Aspuru-
Guzik, A. A Mixed Quantum Chemistry/Machine Learning Approach
for the Fast and Accurate Prediction of Biochemical Redox Potentials
and Its Large-Scale Application to 315000 Redox Reactions. ACS Cent.
Sci. 2019, 5, 1199−1210.
(27) RDKit: Open-source cheminformatics; http://www.rdkit.org
(28) HSPip: Hansen Solubility Parameters in Practice; https://www.
hansen-solubility.com/HSPiP/
(29) Chen, T.; Guestrin, C., XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016; 785−794.
(30) Shi, C.; Borchardt, T. B. JRgui: A Python Program of Joback and
Reid Method. ACS Omega 2017, 2, 8682−8688.
(31) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion,
B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.;
Duchesnay, E. Scikit-learn: Machine Learning in Python. J. Mach.
Learn. Res. 2011, 12, 2825−2830.
(32) Yoon, J.; Jordon, J.; Schaar, M.; Xu, B.; Bernal, E. GAIN: Missing
Data Imputation using Generative Adversarial Nets. 2018
arXiv:1806.02920.
(33) Richardson, T.; Wu, W.; Lin, L.; Xu, B.; Bernal, E. MCFlow:
Monte Carlo Flow Models for Data Imputation. 2020
arXiv:2003.12628.
(34) Huber, P. J. Robust Estimation of a Location Parameter. Ann.
Math. Stat. 1964, 35, 73−101.
(35) Nakada, G.; Igarashi, Y.; Imai, H.; Oaki, Y. Materials-Informatics-
Assisted High-Yield Synthesis of 2D Nanomaterials through Exfolia-
tion. Adv. Theory Simul. 2019, 2, 1800180.
(36) Stekhoven, D. J.; Buhlmann, P. MissForest–non-parametric
missing value imputation for mixed-type data. Bioinformatics 2012, 28,
112−118.
(37) Mrdjenovich, D.; Horton, M. K.; Montoya, J. H.; Legaspi, C. M.;
Dwaraknath, S.; Tshitoyan, V.; Jain, A.; Persson, K. A. propnet: A
Knowledge Graph for Materials Science. Matter 2020, 2, 464−480.
(38) Schwaller, P.; Petraglia, R.; Zullo, V.; Nair, V. H.; Haeuselmann,
R. A.; Pisoni, R.; Bekas, C.; Iuliano, A.; Laino, T. Predicting
retrosynthetic pathways using transformer-based models and a hyper-
graph exploration strategy. Chem. Sci. 2020, 11, 3316−3325.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c01716
ACS Omega 2021, 6, 14566−14574

14574

https://doi.org/10.1021/acs.jcim.0c00833?ref=pdf
https://doi.org/10.1021/acs.jcim.0c00833?ref=pdf
https://doi.org/10.1021/acs.jcim.0c00833?ref=pdf
https://doi.org/10.1021/acs.jcim.9b00694?ref=pdf
https://doi.org/10.1021/acs.jcim.9b00694?ref=pdf
https://doi.org/10.1021/ie0497184?ref=pdf
https://doi.org/10.1021/ie0497184?ref=pdf
https://doi.org/10.1021/ie0497184?ref=pdf
https://doi.org/10.1063/1.2186322
https://doi.org/10.1063/1.2186322
https://doi.org/10.1021/acscentsci.9b00297?ref=pdf
https://doi.org/10.1021/acscentsci.9b00297?ref=pdf
https://doi.org/10.1021/acscentsci.9b00297?ref=pdf
http://www.rdkit.org
https://www.hansen-solubility.com/HSPiP/
https://www.hansen-solubility.com/HSPiP/
https://doi.org/10.1021/acsomega.7b01464?ref=pdf
https://doi.org/10.1021/acsomega.7b01464?ref=pdf
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1002/adts.201800180
https://doi.org/10.1002/adts.201800180
https://doi.org/10.1002/adts.201800180
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1016/j.matt.2019.11.013
https://doi.org/10.1016/j.matt.2019.11.013
https://doi.org/10.1039/C9SC05704H
https://doi.org/10.1039/C9SC05704H
https://doi.org/10.1039/C9SC05704H
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c01716?rel=cite-as&ref=PDF&jav=VoR

