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Synthetic photoplethysmogram 
generation using two Gaussian 
functions
Qunfeng tang1,2, Zhencheng Chen2*, Rabab Ward1 & Mohamed Elgendi1,3,4*

Evaluating the performance of photoplethysmogram (PPG) event detection algorithms requires a 
large number of PPG signals with different noise levels and sampling frequencies. As publicly 
available PPG databases provide few options, artificially constructed PPG signals can also be used to 
facilitate this evaluation. Here, we propose a dynamic model to synthesize PPG over specified time 
durations and sampling frequencies. In this model, a single pulse was simulated by two Gaussian 
functions. Additionally, the beat-to-beat intervals were simulated using a normal distribution with 
a specific mean value and a specific standard deviation value. To add periodicity and to generate a 
complete signal, the circular motion principle was used. We synthesized three classes of pulses by 
emulating three different templates: excellent (systolic and diastolic waves are salient), acceptable 
(systolic and diastolic waves are not salient), and unfit (systolic and diastolic waves are noisy). 
The optimized model fitting of the Gaussian functions to the templates yielded 0.99, 0.98, and 0.85 
correlations between the template and synthetic pulses for the excellent, acceptable, and unfit 
classes, respectively, with mean square errors of 0.001, 0.003, and 0.017, respectively. By comparing 
the heart rate variability of real PPG and randomly synthesized PPG for 5 min in 116 records from the 
MIMIC III database, strong correlations were found in SDNN, RMSSD, LF, HF, SD1, and SD2 (0.99, 
0.89, 0.84, 0.89, 0.90 and 0.95, respectively).

Cardiovascular disease (CVD) is the leading cause of death and morbidity around the  world1. The number of 
patients suffering from CVD increases each year. An electrocardiogram (ECG) is the most widely used method 
for detecting CVD; however, photoplethysmography (PPG) has increasingly been used to measure cardiovascular 
status over the last decade. An increasing number of PPG-based devices, such as smartphones and wearable 
devices, are now being used for monitoring and primary health  screening2,3. PPG detects blood volume changes 
in the microvascular tissue bed caused by the pressure of circulating blood.

PPG is usually measured at body extremities, such as fingers, ears, and  wrists4. It provides valuable physi-
ological and pathological information about the cardiovascular system. The PPGs waveform characteristics 
and harmonic information can be related to the changes in the characteristic parameters of the cardiovascular 
system. Applications of PPG sequences include assessment of heart rate, oxygen  saturation6, blood  pressure7, 
cardiac  output8, respiration  rate5, and other indicators of cardiovascular function. The shape of the PPG waveform 
is variable; it differs from subject to subject and depends upon the measurement location and an individual’s 
health status.

The PPG waveform represents one cardiac cycle, comprising the onset, the systolic peak, the diastolic peak, 
and the dicrotic  notch9. The onset is the starting point of the PPG beat. It corresponds to the point at which the 
heart pumps blood to the blood vessels. It is also the endpoint of the previous beat. The systolic wave, shown in 
blue in Fig. 1a, is the segment from onset to the dicrotic notch, caused by the rapid pumping of blood from the 
left ventricle, a rapid rise in arterial blood pressure, and the expansion of the arterial wall. Subsequently, at the 
late stage of left ventricular pumping, the blood flow velocity slows down, the blood flow into the aorta is less than 
that to the periphery, the dilated artery begins to shrink back, and the arterial blood pressure gradually decreases.

The diastolic wave, shown in red in Fig. 1a, is the point from the dicrotic notch to the endpoint. The left ventri-
cle diastolic reflux pushes the aortic valve closed, and arterial blood pressure continues to drop. The dicrotic notch 
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is associated with the closing of the aortic  valve10. Note that a number of factors, such as gender, age, and disease, 
can change the morphology and duration of the PPG pulse, making it appear different from a normal PPG pulse.

There are four publicly available PPG databases: Multiparameter Intelligent Monitoring in Intensive Care 
(MIMIC III)11, BioSec.Lab12, PPG-BP13, and Wrist  PPG14. The MIMIC database signals are recorded at a sam-
pling rate of 125 Hz and have different time durations, but the subject’s condition at the time of measuring is not 
clear. The signals were recorded at 100 Hz in the BioSec.Lab PPG dataset with a 3-min duration of each segment, 
and these subjects are measured at the fingertip, and in different conditions, such as relax, after exercise, short 
time-lapse and long time-lapse. The signals recorded in the PPG-BP database are sampled at a rate of 1 kHz for 
2.1 s, and the measuring site is the fingertip. In the Wrist PPG database, the signals were recorded at a sampling 
rate of 256 Hz and varying durations, and recorded during exercise, the measuring site is the wrist. Typically, 
algorithms developed and tested on these databases are database-dependent. To evaluate developed algorithms 
reliably, it needs to test them in different conditions. Although the recording conditions of different databases 
may differ, there are few options for different conditions, which makes it challenging to evaluate the performance 
of currently available algorithms in different clinical settings over a range of noise levels and sampling rates. 
There is a need for a synthesizer that can generate PPG dynamically (with variable lengths, different sampling 
rates, different types of morphologies, and noise levels). Besides, synthesized PPG signals can also be used to 
reconstruct missing segments of the PPG signal.

Modeling of PPG pulses has been attempted earlier studies. Shariati and Zahedi compared four linear para-
metric  models15. Wang et al. used multi-Gaussian functions to fit a single PPG  waveform16. They compared the 
simulation effects of different numbers of Gaussian functions. However, these only addressed a single heartbeat. 
Other papers generated a PPG signal from a sequence of pulses. Martin-Martinez et al.17 proposed stochastic 
modeling to synthesize PPG signals. They designed a single-pulse model based on two Gaussian functions 
comprising 10 parameters. The mean of two autoregressive moving average models was used to approximate 
these 10 parameters; however, the original PPG signal is required for the time evolution of the 10 parameters 
in the model. Sološenko et al. proposed a model for simulating PPG during atrial  fibrillation18. They used one 
log-normal and two Gaussian waveforms to simulate a single pulse and extract the RR intervals from the ECG 
in order to connect individual PPG pulses according to the RR intervals; however, their model required an ECG 
signal as an input parameter. In contrast, this paper proposes a dynamic model that can generate synthetic PPGs 
with different lengths and sampling frequencies.

Results
The dataset we used was 116 subjects from the MIMIC III  database11. The PPG for each subject was recorded at 
a sampling frequency of 125 Hz for a duration of 5 min.

Similarity in single pulses. To test the ability of the model to simulate different shapes of PPG pulse, the 
model was used to emulate three  classes19 of normalized PPG templates (referred to as excellent PPG, acceptable 
PPG, and unfit PPG). Excellent PPG occurs when the systolic and diastolic waves are salient. Acceptable PPG 
occurs when the systolic and diastolic waves are not salient, but the heart rate can be determined. Unfit PPG 
occurs when the heart rate cannot be determined and the systolic and diastolic waves cannot be distinguished. 

Figure 1.  The main idea of the proposed modeling method. The blue color represents the systolic wave, and the 
red color represents the diastolic wave. (a) One-beat PPG waveform. (b) The circular motion principle. ω is 
the angular velocity; it is fixed per pulse, but changes with different pulses. This figure shows how the circular 
motion will be used to generate a PPG waveform in a periodical manner.
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There is one template for each class of PPG pulse. These templates are extracted manually from the database we 
used and from different subjects.

The mean square error (MSE) and the correlation coefficient were used to evaluate the model-fitting accuracy 
of the algorithm. MSE is expressed as follows:

where zp(n) and s(n) represent individual points of the synthetic PPG and real PPG, respectively, and l  is the 
length of the signal.

Figure 2 shows the morphology of the excellent and acceptable template PPG and the synthetic PPG using 
the optimization parameters. And Fig. 5 shows the result of simulating the unfit template. The corresponding 
optimized parameters, MSEs, and correlations are shown in Table 1. This model achieved a high correlation and 
low MSE when simulating the excellent and acceptable templates. Note that the length of these templates was 
different.

Variability of beat-to-beat intervals. Valley-to-valley intervals are always similar to peak-to-peak inter-
vals in PPGs; both of them correspond to heart  rate20. To test the pulse duration generated by the proposed 
model, we compared heart rate variability (HRV) of the synthetic PPG and the real PPG. The real PPGs are the 
116 subjects from the MIMIC III database. For each real PPG, we synthesized a PPG by the proposed model with 
the same mean heart rate and standard deviation of the beat to beat intervals. To look for the peaks, the real PPG 
is filtered by the Chebyshev II filter at the frequency range 0.5–15 Hz. And then, a simple algorithm that looks 
for local maxima within a small window was used to detect the peaks. After synthesizing the PPG without noise, 
the synthesized PPG will undergo the same processing to obtain peaks. These peaks were used to calculate the 
HRV parameters. Note that the synthetic PPG is the same length as real PPG.

HRV is defined as the variation in the time interval between heartbeats. We compared the HRV parameters 
of real PPG and synthetic PPG for the following: standard deviation of beat to beat intervals (SDNN) and root 

(1)MSE =
1

l

l
∑

n=1

(s(n)− zp(n))
2,

Figure 2.  Synthesized PPG signal using (a) excellent pulse template and (b) acceptable template. The optimal 
parameters for generating synthesized PPG signals based on these templates are shown in Table 1. An excellent 
PPG template means that the systolic and diastolic waves are salient (more clinical features, including heart 
rate, can be determined). An acceptable PPG template means that the systolic and diastolic waves are not salient 
(only heart rate can be determined). Here, MSE is the mean square error between the synthetic PPG and the 
template PPG, and r is the correlation coefficient. This figure shows that the model can generate excellent and 
acceptable PPG pulses with high correlation and low MSE.
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mean square of the successive differences between adjacent beat-to-beat intervals (RMSSD) in the time domain, 
low-frequency (LF) power and high-frequency (HF) power in the frequency domain, the standard deviation of 
the Poincare plot (PP) perpendicular to the line of identity (SD1) and the standard deviation of the PP along to 
the line of identity (SD2)21,22. LF is the total spectral power of all beat-to-beat intervals between 0.04 and 0.15 Hz, 
while HF is total spectral power between 0.15 and 0.4 Hz.

Figure 3 shows the comparison of the HRV between the synthetic PPG without noise and the real PPG over 
a 5-min interval of data for the 116 records. Pulse parameters of the synthetic PPG corresponded to those of 
the excellent pulse template. Figures (a), (c), (e), (g), (i) and (k) are Normalized Bland-Altman Plots of SDNN, 
RMSSD, LF, HF, SD1, and SD2, respectively. Average = (simulate′ + real′)/2 and difference = real′ − simulate′ 
where real′ and simulate′ are the normalized values of HRV parameters for real PPG and synthetic PPG signals. 
The equation of normalization is X ′ = (X−mean of X) /standard deviation of X , where X stands for the HRV 
parameters. Figures (b), (d), (f), (h), (j) and (l) are correlations of SDNN, RMSSD, LF, HF, SD1, and SD2, respec-
tively. The HRV of the synthetic PPG was correlated to the real PPG according to the mean heart rate and SDNN.

Noise addition. Figure 4 shows the 10-s synthetic PPG generated by the dynamic model. Different levels of 
noise were added to Fig. 4a–c. Min-max normalization was performed after adding noise. Three different values 
of low-frequency noise were added in Fig. 4a, five different values of high-frequency noise were added in Fig. 4b, 
and a mixture of five different values, including low and high-frequency noise, was added in Fig. 4c.

Discussion
This work developed a dynamic model for generating synthetic PPGs with any sampling frequency and dura-
tion that are characteristic of real PPGs. The average morphology can be controlled by specific parameters as in 
dynamic ECG  models23. Table 2 compares our work to other studies. The reason behind using only two Gaussian 
functions to represent the main two phases of the cardiac cycle: Diastole and systole. Increasing the number of 
Gaussian functions can improve the fit  accuracy16, but the advantage of using only two Gaussian functions is that 
the function parameters correspond to the features of the systolic and diastolic peaks. We used MSE and correla-
tion as similarity measures to compare between the original PPG signal and synthesized. The reason behind using 
MSE is it is a very popular distance measure for quantifying  similarity24, and the reason behind using Pearson’s 
Correlation coefficient is the robustness in quantifying morphological changes in time series physiological signals 
such as  PPG25. To obtain optimal parameters for the model, the two similarity measures were used simultane-
ously. In other words, we optimized the model’s parameters based on MSE and Pearson’s correlation coefficient 
at the same time. By using the optimized parameters, this model can simulate both excellent and acceptable real 
PPG pulses even if only two Gaussian functions are used; however, it is not highly correlated for unfit templates. 
It is difficult to accurately extract the features using the morphology of unfit PPG beats. If a higher fit accuracy 
is required, we could easily add more Gaussian functions in a single pulse to the model.

The dynamic model converts the independent variable t in the Gaussian functions from time to angle using 
the arctan2 function. The six model parameters are then used as is without additional tuning for generating 
PPG waveforms. Optimized model parameters (obtained from tuning a certain PPG template) can be used for 
synthesizing modified forms of the PPG signal by changing the sampling rate, morphology and duration. This 
formulation could be considered as an improvement over previous formulations. Moreover, the formulation of 
the model is more clinically appealing and interpretable as the two Gaussian functions are representing systole 
and diastole.

Another advantage of the proposed model is that it can generate PPG signals without using additional biosig-
nals such as ECG. The proposed model generates beat-to-beat intervals in a random fashion to simulate real 
PPG signals. Martin-Martinez17 used two autoregressive moving average models to approximate beat-to-beat 
intervals based on real PPG signals; however, it requires the original PPG to generate a synthesized PPG signal. 
Sološenko18 used an additional biosignal (from an ECG) to induce variability in the beat-to-beat durations of the 
synthesized PPG signal. In contrast, our proposed model only requires the mean HR and the standard deviation 
of the beat-to-beat intervals to synthesize a PPG without the need for additional biosignals.

The objective of this work was to define a model that could generate synthetic PPGs representing excellent and 
acceptable PPG waveforms. The model could not simulate unfit forms. As shown in Fig. 5, the MSE between the 
synthetic PPG and the real PPG was 0.0166 and the correlation was 0.85 for the unfit template. The optimization 

Table 1.  The optimal parameters for each PPG template obtained using the interior point method. θ1 and 
θ2 are the position of the peak centers of the first Gaussian function and the second Gaussian function, 
respectively; a1 and a2 are the peak heights, b1 and b2 are the standard deviations of the first and second 
Gaussian functions; respectively. MSE is the mean square error, and r is the correlation coefficient. An excellent 
PPG template means that the systolic and diastolic waves in pulse are salient. An acceptable PPG template 
means that the systolic and diastolic waves are not salient, but heart rate can be determined. Unfit means that 
the heart rate cannot be determined and the systolic and diastolic waves cannot be distinguished.

Template a1 θ1 b1 a2 θ2 b2 MSE r

Excellent 1.0000 − 1.5161 0.6303 0.1999 0.8186 1.0225 0.001 0.995

Acceptable 0.7303 − 1.5510 0.7283 0.5291 − 0.2553 1.2271 0.003 0.988

Unfit 0.9288 − 1.0241 1.2055 0.4916 2.2684 1.2055 0.017 0.851
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parameters are shown in Table 1. The optimization algorithm stopped when the current step size was less than 
the selected value of the step-size tolerance (1× 10−10) . The value of the objective function cannot be close to 
zero when the PPG is unfit.

Using two Gaussian functions to represent a single PPG waveform is not sufficient to adequately capture 
the morphological changes of the unfit template. Therefore, one of our next steps is to increase the number of 
Gaussian functions to generate different PPG morphologies, including unfit waveforms. Note that the beauty 
of the proposed method is the clinical interpretability of the model as the Gaussian functions are representing 
the systolic and diastolic waves in PPG waveform. The increase in Gaussian functions could be less clinically 
meaningful.

Another limitation of this work is that arrhythmia is not considered due to the lack of clinical information 
available for arrhythmic subjects. It is known that arrhythmia causes changes in the duration and amplitude of 
the PPG  pulse18. These changes impact the morphology of arrhythmia PPG waveforms different from that of 
normal ones. We plan to use other databases to determine the effect of different types of PPG waveform mor-
phologies, and induce arrhythmic beats into the normal synthetic signal. We will also test event detectors (e.g., 
to detect systolic waves) based on this model. However, the proposed model could allow us to understand the 
underlying changes in abnormalities (e.g., changes of parameters for generating systolic and diastolic waves in 
subjects with and without hypertension).

It is essential to have the ability to add different types of noise to the simulated PPG signals to simulate dif-
ferent real-life conditions. For example, in the case of signal-to-noise ratio greater than 2, adding low-frequency 

Figure 3.  Comparison of HRV between the real PPG and the synthetic PPG over 5-min duration in 116 
subjects. (a), (c), (e), (g), (i) and (k) are Normalized Bland-Altman Plots of SDNN, RMSSD, LF, HF, SD1 
and SD2, respectively. Average = (simulate′ + real′)/2 and difference = real′ − simulate′ where real′ and 
simulate′ are the normalized values of HRV parameters for real PPG and synthetic PPG signals. The equation of 
normalization is X ′ = (X−mean of X) /standard deviation of X , where X stands for the HRV parameters. (b), 
(d), (f), (h), (j) and (l) are correlations of SDNN, RMSSD, LF, HF, SD1 and SD2, respectively. r is the correlation 
coefficient. p is the p value. ms = milliseconds. This figure shows that the model can obtain a synthetic PPG with 
a similar HRV to a real PPG by given the same mean heart rate and standard deviation of beat-to-beat intervals.
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noises (< 0.5 Hz) may cause a baseline wander, adding the noises in which the frequency is between 0.5 and 15 Hz 
may change the morphology of PPG pulse. High-frequency noises (greater than 30 Hz) may make the signal not 
smooth. Dark noise or white noise will have the above effects at the same time due to the wide spectrum. We can 
add different types of noise according to different needs.

conclusions
The dynamic model presented in this study, based on two Gaussian functions, offers a promising new method 
for analyzing and synthesizing PPG signals. The synthesized PPG signal can be generated with different beat-
to-beat intervals, similar to a real PPG signal. The model can better simulate the characteristics of the excellent 

Figure 4.  Comparisons of synthetic PPGs with different noises. (a) Three different low-frequency noise levels 
were added. The amplitudes of noise signals are 0.3, 0.4 and 0.1, and the frequencies are 0.3 Hz, 0.2 Hz and 
0.9 Hz, respectively.(b) Five different high-frequency noise signals were added. The amplitudes of noise signals 
are 0.1, 0.03, 0.05, 0.04 and 0.05, and the frequencies are 50 Hz, 60 Hz, 70 Hz, 90 Hz and 100 Hz, respectively. (c) 
Five different noise signals were added. The amplitudes of noise signals are 0.4, 0.2, 0.3, 0.02 and 0.04, and the 
frequencies are 0.1 Hz, 0.7 Hz, 0.5 Hz, 70 Hz and 90 Hz, respectively. The blue part in (b) is the systolic wave and 
the red part is the diastolic wave. This figure shows that the synthetic PPG generated by the proposed model is 
similar to the real PPG in the MIMIC III database.

Table 2.  Comparison of different published studies. This table shows that the proposed model uses only two 
Gaussian functions with six parameters to generate random synthetic PPG with different lengths, without the 
need for additional biosignals. HRV is heart rate variability and N/R means not reported.

Year Author # of functions
Number of 
parameters

Signal 
dependent Signal length

Beat-to-beat 
variability

HRV 
validation

2020 This work 2 Gaussians 6 None Dynamic Yes Yes

2017 Solosenko et al.18 1 log-normal and 
2 Gaussians 12 ECG Dynamic No N/R

2014 Martin-Martinez 
et al.17 2 Gaussians 10 Original PPG Dynamic Yes N/R

2013 Wang et al.16 4 or 5 Gaussians 12 or 15 None Fixed No N/R
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and the acceptable PPG templates with a fewer number of parameters when compared with currently available 
models. Further research is needed to generate arrhythmic PPG signals.

Methods
The PPG generator consists of two main parts: modeling a single PPG waveform and generating a PPG signal. 
The main idea behind the work is to generate a sequence of PPG waveforms based on the circular motion prin-
ciple, as shown in Fig. 1.

Modeling single PPG pulses. In this model, the PPG waveform is the trajectory of motion in the three-
dimensional space described using a Cartesian coordinate system (x, y, z). The periodicity of PPG is represented 
by circular motion, as shown in Fig. 6a. The trajectory of motion in the (x, y) plane is mapped to the unit circle. 
One sweep of the circle corresponding to a peak-to-peak interval or heartbeat. (x, y) is defined as:

where t  is the time, and ω is the angular velocity used to control the duration of the pulse, calculated by:

where T is the duration of the PPG pulse.
The trajectory in the z direction is the resulting PPG signal. θ is introduced as an independent variable for 

motion in the z direction. θ is the four-quadrant inverse tangent of (x, y), defined as:

Regardless of the changes to (x, y), θ is considered to the range of (−π ,π) . Peaks on the PPG, such as the systolic 
peak and the diastolic peak, were simulated by Gaussian functions, defined as:

where A is the peak height, µ is the position of the peak center, and σ is the standard deviation of the two Gauss-
ian functions.

These two peaks were placed along the unit circle at fixed angles θ1 and θ2 . In this model, z is the sum of 
the Gaussian functions for the variable θ . A periodical PPG waveform is generated through circular motion as 
follows:

(2)
{

x(t) = cos(ωt)
y(t) = sin(ωt),

(3)ω =
2π

T
,

(4)θ(t) = atan2(y(t), x(t))

(5)g(θ(t)) = A exp

(

−
(θ(t)− µ)2

2σ 2

)

,

Figure 5.  Synthesized PPG waveform based on the unfit template. The optimal parameters of the synthesized 
unfit PPG waveform are shown in the row corresponding to the unfit group in Table 1. Unfit means that the 
heart rate cannot be determined and the systolic and diastolic waves cannot be distinguished. Here, MSE is the 
mean square error between the synthetic PPG and the template PPG, and r is the correlation coefficient. This 
figure shows that the proposed model cannot synthesize the unfit PPG pulses.
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where t0 is the end time of the previous beat, π is used to align the initial point of this model to the position of 
the onset (θ = −π) in a PPG waveform.

The method used for the selection of parameters is introduced in the next section. The corresponding changes 
to x , y , θ , and z over a single period are shown in Fig. 6b–e; these are repeated in the next pulses. In this figure, 
the pulse duration was one second, and the sample frequency was 125 Hz.

Parametric optimization. The peak height, position of the peak center, and standard deviation of the two 
Gaussian functions were used to determine the morphology of the synthetic PPG. In this study, three types of 
real PPG pulse templates (described earlier) were used to evaluate the model. There was one PPG pulse in each 
type of template. The objective of the optimization step was to determine model parameters that would result 
in matching the synthetic PPG to the real PPG as closely as possible. The corresponding objective function was 
expressed as follows:

s.t. p = {a1, θ1, b1, a2, θ2, b2} . with the constraints:

where zp(n) is the synthetic PPG, l  is the length of the real PPG s(n) , and corr is Pearson’s linear correlation coef-
ficient, to test the correlation between the synthetic PPG and the real PPG, which in turn, calculated as follows:

(6)











x(t) = cos (ω(t − t0)− π)

y(t) = sin (ω(t − t0)− π)

z(t) =
�2

i=1 ai exp
�

−
(θ(t)−θi(t))

2

2b2i

�

,

(7)p∗ = argmin
p

((1− corr(zp(n), s(n)))+

l
∑

n=1

(zp(n)− s(n))2)

(8)

{

0 ≤ a2 < a1 ≤ 1
0 ≤ b1 < b2 ≤ 2
−π ≤ θ1 < θ2 ≤ π ,

Figure 6.  Motion trajectory of a single synthesized PPG waveform. The simulated PPG waveform is based on 
an excellent PPG template (associated model parameters are shown in Table 1). The blue curve represents the 
first Gaussian, which corresponds to the systolic wave, and the red curve represents the second Gaussian, which 
corresponds to the diastolic wave. (a) Synthesized PPG waveform trajectory of one heartbeat in 3-D space, and 
the dotted part is the unit cycle. (b) Changes to the value of x in one period. (c) Changes to the value of y in 
one period. (d) Changes to the value of θ in one period. (e) Changes to the value of z in one period. This figure 
shows how the model generates a systolic wave followed by a diastolic wave using two Gaussian functions.
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where n is the signal length. αi , βi are the individual points with index i, and α , β  are the mean value of α , β . In 
this study, the interior-point  method26 was used to solve the optimization problem.

Pulse duration generator. It is clear from the model that the pulse durations are equal to the onset-to-
onset intervals, also called valley-to-valley intervals in synthetic PPG signals. The difference between valley-
to-valley intervals is represented by the angular velocity ω . The dynamic model can repeat the morphology to 
generate the required signal length. By providing a series of valley-to-valley intervals, the model can synthesize 
a continuous PPG.

The pulse durations in the synthetic PPG are generated using the normal distribution random function with 
mean and standard deviation. The mean value and the standard deviation are calculated according to the mean 
heart rate and the standard deviation of beat-to-beat intervals provided by the user. Variability of parameters on 
a beat-to-beat basis was not considered in this study.

Noise addition. After synthesizing the clean signal, the noise was incorporated into the signal based on the 
specific need identified. In this work, a simple way to incorporate noise signal was introduced. The noise signal 
was defined as:

where B is the amplitude of the noise, and f  is the noise frequency. For instance, an example of incorporating 
low-frequency noise, such as baseline wander, would be to adopt an amplitude of 0.4 and frequency of 0.2 Hz. 
Another example of incorporating high-frequency noise would be to adopt an amplitude of 0.02 and frequency 
of 50 Hz. If necessary, one can add a combination of different frequencies and amplitudes, even including dif-
ferent types of noise to the same synthesized PPG signal.
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