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Introduction

A file of nucleic acid sequences itself is not descriptive. Accompanying information describing

data, known as metadata, is important for fueling artificial intelligence and ensuring data lon-

gevity as technologies evolve. Poor metadata can significantly lower the value of sequencing

experiments by limiting the reproducibility of the study and its reuse in integrative analyses.

Furthermore, metadata provides the basis for supervised machine learning algorithms using

labeled data and indexing Next Generation Sequencing datasets into public repositories to

support database queries and data discovery. Thus, metadata is key for making data Findable,

Accessible, Interoperable, and Reusable (FAIR) [1].

Several empirical studies have shown the need for better practices in curating scientific data

[2–5]. Community efforts to improve metadata quality include various minimum metadata

standards such as Minimum Information about a Next-Generation Sequencing Experiment

(MINSEQE) [6] or broader principles such as the FAIR guidelines. However, there is a lack of

consensus or compliance for many of these standards.

Here, we distilled a few pragmatic principles, which are summarized in Fig 1, to help data

producers collect and store high-quality metadata about sequencing experiments. Ultimately,

we hope these will increase the resource value of public sequencing data.

Rule 1: Think beyond your initial study question

Metadata is usually specific to a given study, thus the decision of what metadata to collect

should be largely determined during the experimental design phase knowing what variables

will be created. Think beyond your immediate biological questions, and record everything that

systematically varies in the experiment. As early as sample collection, record sufficient descrip-

tive information that will allow others to reproduce your experiment. After sample collection

is finished, it will be more difficult to remember sample details, for example, since key person-

nel might not be present anymore in the lab. Remember to add sufficient details needed to

reproduce your study or to support database queries that will discover your data. An example

of something which might be missed is information about DNA or RNA fragmentation,

sequencing adapter ligation, and library enrichment steps prior to sequencing. Alnasir and col-

leagues [7] report only 4% of metadata records in the MINSEQE-compliant Sequence Read

Archive (SRA) repository contain information about these protocol steps, causing biases in

meta-analyses of SRA records.
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In addition to experimental details, the metadata record should also provide technical

details such as barcodes, linkers, and other nucleotide information. Capture the computational

aspects such as processing pipelines and the respective software versions. Publish your code

and processing environment as a Git repository, Docker container, computational notebook,

or Code Ocean capsule. Provide all the code and data needed to reproduce your figures (e.g.,

count tables). In subsequent rules, we give progressively more concrete ways to design (see

Rule 2) and implement (see Rule 3) custom metadata records.

Rule 2: Follow community standards

Meta-analyses, increasingly performed using machine learning approaches, are using metadata

to incorporate disparate datasets and find new insights into biological processes. To ensure

compatibility of your study with similar studies, adhere to established community standards

and formats for metadata and data.

The FAIR guidelines [1] offer high-level advice for making data FAIR. The MINSEQE stan-

dard [8] was established by the Functional Genomics Data Society (FGED) similar to the Mini-

mum Information About a Microarray Experiment (MIAME) standard for microarrays [9].

These standards are intended to provide the minimum descriptive information to enable data

reuse, and many public repositories are MINSEQE compliant. The Dublin Core Metadata Ini-

tiative [10] developed standards and best practice recommendations for creating and sharing

metadata, available through the Dublin Core User Guide (dublincore.org/resources/

userguide/). The Global Alliance for Genomics and Health (GA4GH) [11] also provides stan-

dards and tools for sequencing data, such as the Genomic Data Toolkit (ga4gh.org/genomic-

data-toolkit/).

As a first step, determine the minimum standards and requirements of your target reposi-

tory and journal. Adhering to these requirements is a prerequisite for publishing scientific

data. Beyond the minimum standards, it is strongly encouraged to add as much experimental

detail as possible.

Rule 3: Implement a metadata model

A metadata model spells out the terms, relationships, and categories used to describe samples

and data in a structured manner. One example of a metadata model is the International

Human Epigenome Consortium (IHEC) metadata model [12]. Several large-scale sequencing

projects, such as the Functional Annotation of the Mammalian Genome (FANTOM5) [13],

Encyclopedia of DNA Elements (ENCODE) [14], and the Danio Rerio Encyclopedia of DNA

Elements (DANIO-CODE) [15], have established additional metadata models to customarily

describe their data in a systematic way that allows for integrative analysis of disparate datasets.

Fig 1. Summary of recommendations for metadata collection at 3 key stages of a sequencing project: before samples collection, during data production, and prior

to publication. Note that the rules become increasingly more concrete as the project progresses.

https://doi.org/10.1371/journal.pcbi.1008260.g001
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Create a similar metadata specification by listing all the possible terms that will describe

your data. Organize terms into progressively broader categories until obtaining only a few

umbrella categories that reflect the experimental workflow from sample collection to data pro-

cessing. Within each category, providing certain terms may be required or optional based on

how these are used in downstream analysis.

We previously created a custom metadata specification using a similar approach [16]. We

used a top-down structure to capture metadata across the entire experimental workflow from

biological sample to library preparation, sequencing procedure, sequencing files, and pro-

cessed files. We defined 6 metadata sections corresponding to the experiment workflow: Series,

Biosample, Assay, Applied Assay, Sequencing, and Data. Under each section, we defined

weights on the terms such as required (e.g., biosample type), conditionally required (e.g., target

of a chromatin immunoprecipitation sequencing (ChIP-seq assay)), and optional terms (e.g.,

chemistry version used for sequencing).

The Investigation/Study/Assay Tab-Delimited (ISA-TAB) [17] format is widely used for

submitting metadata to repositories. The ISA-TAB format can be implemented as text-based,

such as comma-separated values (CSV), tab-separated values (TSV), Excel-based, or relational

database depending on the data volume and project resources.

For a smaller sequencing project, it might be useful to take advantage of tools specifically

designed for capturing metadata, such as the Center for Expanded Data Annotation and

Retrieval (CEDAR) Workbench [18] or ISA-TAB tools [19] (isa-tools.org/index.html). For

larger projects, custom implementations can be considered such as the ENCODE Data Coor-

dination Center (DCC) [14] or FANTOM5 Semantic catalogue of Samples, Transcription Ini-

tiation, And Regulations (SSTAR) [13].

To help mitigate potential reproducibility issues, consider using workflow management

tools (e.g., nf-core [20], Cromwell [21], and Galaxy [22]) and workflow description standards

(Common Workflow Language (CWL) [23] and Workflow Description Language (WDL)

[21]).

Rule 4: Use ontologies and controlled vocabularies

Maximize the use of ontologies and controlled vocabularies within the metadata fields (see

Rule 3). This will reduce misannotations and ensure metadata consistency and compatibility

with other datasets. We recommend using a minimum set of ontologies to describe samples

(i.e., cell lines, primary cells, and primary tissues), sequencing details (assay types and plat-

forms), or diseases. Useful resources are the Open Biological and Biomedical Ontology (OBO)

Foundry [24], National Center for Biomedical Ontology (NCBO) BioPortal [25], or European

Bioinformatics Institute (EBI) Ontology Lookup service [26].

When an ontology is not available, consider using controlled vocabulary terms to minimize

misannotations in the metadata. For example, create a list of controlled terms such as for file

formats (e.g., FASTQ and BAM), for sequencing instruments (e.g., HiSeq X, etc.), or for plat-

forms (Illumina, Ion Torrent, PacBio, etc.) in order to restrict entries to a predefined vocabu-

lary. This will limit the introduction of errors in the metadata record and ease the data input as

well.

Rule 5: Store and disseminate your metadata

It is best practice to create a data management plan (DMP) before generating research data

[27]. One component of any DMP is the infrastructure for delivery, analysis, and long-term

storage of sequencing data and its description. Give careful consideration to the security, data

loss prevention, and ease of accessibility for collaborators and analysts. Any metadata that
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contains potentially sensitive information should be encrypted and stored in a secure location.

Data loss prevention includes measures such as automated backups, storage in multiple loca-

tions, and long-term archiving considerations. Metadata should still be easy to share with the

research community and collaborators.

Several publicly funded resources are available for long-term archiving and dissemination

of sequencing data and accompanying metadata. The National Center for Biotechnology

Information database of Genotypes and Phenotypes (NCBI dbGAP) [28] and the European

Genome-phenome Archive (EGA) [29] resources specialize in permanent archiving and shar-

ing of personally identifiable genetic and phenotypic data resulting from biomedical research

projects including sequencing data. For data that are not personally identifiable, the NCBI

SRA [30], the European Nucleotide Archive (ENA) [31], and the DNA Databank of Japan [32]

make biological sequence data available to the research community. GEO [33] and BioSamples

[34] collect mainly metadata and references to the respective sequencing data in other data-

bases. In addition, institutional repositories (IRs) funded by the host institution may provide

additional storage and data dissemination mechanisms as a complement to specialized public

sequence repositories. Some examples of IRs are the Science for Life Lab Data Centre (www.

scilifelab.se/data/) and the Beijing Institute of Genomics (BIG) Data Center [35].

Consider data and metadata submission requirements when developing a DMP. In case

you propose a large-scale project, consider reaching out for input to streamline future

submissions.

Rule 6: Identify a data steward

The data production process spans several stages. Thus, metadata collected over an extended

time span might not always be complete or consistent. Sometimes, key personnel move on,

causing projects to fail moving forward. The best practice is to assign 1 person from the begin-

ning of the project to be responsible for maintaining and periodically reviewing data records.

It can be a data manager, a data officer, or any person with data management competence.

Ensure this person will stay engaged throughout the life span of the project. This will allow

them to identify issues before key personnel move on to other projects. The data steward can

also ensure that policy decisions are applied consistently and timely.

Some institutions provide data support, such as information about data policy, help with

making DMPs, or e-infrastructure resources. Take advantage of the data resources provided

by your institution and ensure compliance with university policies.

Rule 7: Do quality checks

Quality control of sequencing data is important, but it is beyond the scope of this paper. Here,

we focus on metadata quality checks as rapid ways to identify inconsistencies and eliminate

errors in the metadata. Perform checks systematically as early as the sample collection phase.

Beyond that, validate the accuracy of the metadata against the data. For example, a sample is

supposed to be male or female, or a certain gene should be knocked out in the sample. More

detailed validations can use data-driven methods, such as clustering samples and identifying

outliers. Identify and flag missing values, validate entries against accepted ontology or con-

trolled terms, and validate file formats. Avoid recording 0 for missing values, rather use an

appropriate flag (e.g., NA). We recommend designing a file naming scheme and discarding

poor quality data early to avoid duplication of records. Be clear about the meaning of terms

used in describing your data. For example, clearly distinguish technical and biological repli-

cates. Finally, ask the data generator to verify their metadata. Manual curation remains the

gold standard for ensuring high-quality metadata.
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Rule 8: Identify legal requirements for metadata

Sequencing experiments in human samples raise special ethical and regulatory concerns. The

principal investigator is responsible to be aware of and comply with national or regional legal

policies applicable to the location where the data are physically stored. Sensitive metadata like-

wise must comply with domestic and international standards, including the General Data Pro-

tection Regulation (GDPR) and Health Insurance Portability and Accountability Act

(HIPAA). Verify the requirements of the funding agency, publishing journal, or university for

sensitive data. For medical grade sequencing data, additional standards exist, such as

ISO13485:2016 or ISO 27001.

Rule 9: Make data freezes

Data changes with time as files are reprocessed, and metadata is corrected or added. A data

freeze is a snapshot of raw and processed sequence files, metadata, and computational work-

flows at specific time points. Large consortium projects such as FANTOM5 [13] and ENCODE

[12] manage ever evolving datasets and metadata by performing periodic data freezes. How-

ever, any sequencing project, whether large or small, can benefit from freezing data by creating

a resource that will never be changed and can be referenced later on. Each freeze captures the

state of data in a system that can be used as a reference point for future analyses.

Match major updates throughout the life span of your project by data freezes. In the best

case, a freeze documentation (User’s Manual) with the version number and time-stamped

changelog is created alongside every freeze. Importantly, no modifications may be done to a

data freeze, and any changes have to be realized by additional data freezes.

Rule 10: Enhance metadata and acknowledge stakeholders

Enable people to find your data and quickly get an overview before inspecting the metadata

spreadsheets or flat files by giving a graphical abstract, summary statistics on data (dataset size,

etc.), or provide a track hub for genome browsers.

Finally, the metadata record is a good place to acknowledge contributors to your data, for

example, sequencing centers, data centers, funding agencies, etc. Make sure to use the correct

identifiers provided by the funding agencies (project grant numbers) or sequencing centers.

This will allow research institutions and funding bodies who are parsing metadata to generate

summary metrics about the scientific output and impact of the work. It will also ensure contin-

ued backing for your institution’s support departments.

Conclusion

As sequencing technologies evolve, investigators generate an increasing amount of genomics

data. Each sequencing sample may be described by many aspects (metadata) including experi-

mental details, sequencing protocol, and computational steps. This description is directly

linked to the longevity and future reuse of sequencing datasets. Here, we distilled some advice

on how to address the challenges of high-quality metadata collection for research groups with-

out dedicated data support.
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2. Gonçalves RS, Musen MA. The variable quality of metadata about biological samples used in biomedi-

cal experiments. Sci Data. 2019; 6:190021. https://doi.org/10.1038/sdata.2019.21 PMID: 30778255

3. Hu W, Zaveri A, Qiu H, Dumontier M. Cleaning by clustering: methodology for addressing data quality

issues in biomedical metadata. BMC Bioinformatics. 2017; 18(1):415. https://doi.org/10.1186/s12859-

017-1832-4 PMID: 28923003

4. Berrios DC, Beheshti A, Costes SV. FAIRness and usability for open-access omics data systems.

AMIA Annu Symp Proc. 2018; 2018:232–241. PMID: 30815061

5. Roche DG, Kruuk LEB, Lanfear R, Binning SA. Public data archiving in ecology and evolution: how well

are we doing? PLoS Biol. 2015; 13(11):e1002295. https://doi.org/10.1371/journal.pbio.1002295 PMID:

26556502

6. Taylor CF, Field D, Sansone S-A, Aerts J, Apweiler R, Ashburner M, et al. Promoting coherent minimum

reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol.

2008; 26(8):889–896. https://doi.org/10.1038/nbt.1411 PMID: 18688244

7. Alnasir J, Shanahan HP. Investigation into the annotation of protocol sequencing steps in the sequence

read archive. Gigascience. 2015; 4:23. https://doi.org/10.1186/s13742-015-0064-7 PMID: 25960871

8. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, et al. Minimum informa-

tion about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001;

29(4):365–371. https://doi.org/10.1038/ng1201-365 PMID: 11726920

9. Brazma A, Robinson A, Cameron G, Ashburner M. One-stop shop for microarray data. Nature. 2000;

403(6771):699–700. https://doi.org/10.1038/35001676 PMID: 10693778

10. Deserno TM, Welter P, Horsch A. Towards a repository for standardized medical image and signal case

data annotated with ground truth. J Digit Imaging. 2012; 25(2):213–226. https://doi.org/10.1007/

s10278-011-9428-4 PMID: 22075810

11. Vis DJ, Lewin J, Liao RG, Mao M, Andre F, Ward RL, et al. Towards a global cancer knowledge net-

work: dissecting the current international cancer genomic sequencing landscape. Ann Oncol. 2017; 28

(5):1145–1151. https://doi.org/10.1093/annonc/mdx037 PMID: 28453708
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