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Abstract: Propargyl terminal Polybutadiene (PTPB) was successfully prepared through hydroxyl
terminal polybutadiene (HTPB) end-capping modification. The FTIR and 13C NMR results indicated
that the HTPB terminal hydroxyl was thoroughly replaced and yielded the target product, PTPB,
with a theoretical propargyl content of 0.66 mmol g−1. In comparison with HTPB, PTPB has a lower
viscosity. Using 1,6-diazide hexane as a curing agent, polytriazole crosslinked polybutadiene (PTriPB)
elastomers with various functional molar ratios (R) were prepared by CuAAC reaction, and the glass
transition temperatures of the resultant PTriPB elastomers were approximately −75 ◦C, measured by
differential scanning calorimetry (DSC), nearly independent of elastomer R values. Mechanical tests
indicated, that with the increase in R, the mechanical properties of PTriPB elastomers exhibit a
parabolic dependence on R. In addition, the thermal stability of PTriPB elastomers were also studied.
The findings revealed some fundamental features of polytriazole crosslinking elastomer prepared by
CuAAC reaction.

Keywords: propargyl terminal polybutadiene; polytriazole polybutadiene elastomers; mechanical
properties; thermal stability

1. Introduction

Polybutadiene is a very important liquid rubber because of its hydrolytic resistance and
higher flexibility at low temperatures, raised from its segment hydrophobic character and low
glass transition temperature; it has been used in a wide array of applications, such as for
sealants, binders, adhesives, waterproof and anticorrosion coatings, foams, electrical insulation,
elastomers, etc. [1]. However, up until now, most crosslinking reactions of polybutadienes still focus
on the polyurethane reaction between hydroxyl terminal polybutadiene (HTPB) and isocyanate
compounds [2,3]. However, the reaction typically comes with some disadvantages, such as the
sensitivity to water and stringent reaction conditions, which easily raise defective network structures
and adversely affect their mechanical properties [4].

The cuprous-catalyzed azide-alkyne Huisgen [3+2] dipolar cycloaddition (CuAAC) reaction is the
most appealing click chemistry reaction for generating 1,2,3-triazole compounds with the advantages
of high efficiency, regioselectivity, mild reaction conditions, no side reaction, insensitive to water, etc.,
and it has become a versatile synthetic tool [5–8]. However, because common cuprous compounds
are hardly soluble in the organic solvents, and easily lose catalytic efficiency due to their oxidation or
disproportion reaction [9], CuAAC reaction is usually carried out under a nitrogen atmosphere, in a
solution in order to make cuprous catalyst stable and uniformly dispersed. For instance, Liu dissolved
azide-functional polystyrene and 3,5-Bis(propargyloxy)benzyl alcohol in toluene solvent and used the
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complex of CuBr and PMDETA (n,n,n′,n′′,n′′-pentamethyldiethylenetriamine) as a catalyst. Under a
nitrogen atmosphere, the mixture solution was stirred at ambient temperature for 1.5 h, achieving a
hydroxyl-containing double-chain polymer [10]. Similarly, Shingu first dissolved CuBr and PMDETA
in DMF (dimethylformamide) solvent, and then a solution of triazido-triethynyl-containing polymer in
DMF was added into the solution, using a syringe pump, at an extremely slow rate, at 100 ◦C, under a
nitrogen atmosphere. By the intramolecular CuAAC reaction, a µ-ABC tricyclic miktoarm star polymer
was prepared [11].

Unlike solution reactions, conventional cuprous catalysts for CuAAC reactions are not fit for the
polymer bulk reaction. Moszner mixed multifunctional azides, alkynes and copper (II) acetate together
and realized CuAAC bulk step-growth copolymerization in virtue of copper (II) acetate photoreduction
under the light irradiation [12]. Schubert directly used CuOAc as the catalyst, and bulk polymerized
multifunctional alkynes and azides through CuAAC reaction, and obtained a series of step-growth
polymers [13]. However, these polymers contain a great quantity of triazole ring structure with a high
glass transition temperature and cannot be used as elastomers. Reshmi used a little amount of cuprous
iodide (CuI) solution of acetonitrile as a catalyst and prepared a CuAAC end-crosslinked propargyl
terminated polytetramethylene oxide elastomer, using glycidyl azide polymer as a cross-linker [14].
Nevertheless, the strong toxicity of acetonitrile seriously restricts its application scope.

We envisioned that some cuprous organic complexes could meet the demand of miscibility with
prepolymer and proper chemical stability and would be effective catalysts to bulk prepare triazole
crosslinked elastomer. Moreover, we found that a copper(I) hexafluoroacetylacetonate cyclooctadiene
complex can decrease the activation energy of azide-alkyne cycloaddition from 85 to 46 kJ mol−1 and
meet conventional requirement of elastomer preparation [15]. Up until now, few studies on bulk CuAAC
end-crosslinking polybutadiene elastomers have been reported. In this study, propargyl terminal
polybutadiene (PTPB) was synthesized by terminal group modification of HTPB and characterized in
detail. Using a cuprous hexafluoroacetylacetonate cyclooctadiene as the catalyst and 1,6-diazide hexane
as the curing agent, polytriazole crosslinked polybutadiene elastomers (PTriPB) were prepared through
bulk CuAAC reaction, under conventional conditions. Meanwhile, the structures and properties of
PTriPB elastomers were also studied in detail.

2. Materials and Methods

2.1. Materials

The prepolymer used was hydroxyl terminal polybutadiene (HTPB, hydroxyl value 0.68 mmol g−1;
molecular weight ~6500 g mol−1 by gel permeation chromatography) and provided by Liming Research
Institute of Chemical Industry. All other agents were purchased and directly utilized without
further explication.

2.2. Synthesis of 1,6-diazide hexane

Referring to [16], NaN3 (1.0 g, 15.0 mmol) was added into a solution of the dichlorohexane
(10.0 mmol) in DMF (15.0 mL). The mixture reacted at 60 ◦C for 10 h, followed by adding distilled
water (100.0 mL). The resultant mixture was extracted with ether (3 × 10 mL), and the organic layer was
combined and washed three times with distilled water (3 × 10 mL). The solvent ether was removed,
and the compound was achieved, whose azide content is 11.9 mmol g−1.

2.3. Preparation of PTPB

Into a three-neck flask fitted with a thermometer, a condenser, a mechanical stirring and nitrogen
inlet, 12.5 mmol potassium t-butoxide and 100 mL tetrahydrofuran (THF) were added. After stirring for
30 min at 0 ◦C, HTPB (14.7 g, 10 mmol hydroxyl) dissolved in 140 mL n-heptane was added and reacted
for 3 h. Then, 20 mmol propargyl bromide was added dropwise. After adding propargyl bromide, the
resultant mixture was warmed to 30 ◦C and reacted for another 2 days. The mixture obtained was
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successively washed twice with 2 × 150 mL brine. The organic layer was separated and evaporated
under reduced pressure, to obtain the target product, propargyl terminal polybutadiene (PTPB), at a
yield of approximately 14 g. The synthesis route for PTPB is shown in Scheme 1.
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2.4. Preparation of PTriPB Elastomers

The compositions of polytriazole crosslinked polybutadiene (PTriPB) elastomer are listed in
Table 1. All components were mixed uniformly, degassed under vacuum and cured at 50 ◦C till the
characteristic peaks of azide or alkynyl were thoroughly disappeared in virtue of FTIR detection,
and PTriPB elastomers crosslinked by bulk CuAAC reaction were obtained. R is the mole ratio of the
curing agent 1,6-diazide hexane functional group to the PTPB functional group, and the catalyst used
was a copper(I) hexafluoroacetylacetonate cyclooctadiene complex.

Table 1. PTriPB elastomer components in gram.

Sample R Catalyst Prepolymer PTPB 1,6-diazide hexane

S1 0.8 0.005 10 0.44
S2 0.9 0.005 10 0.50
S3 1.0 0.005 10 0.55
S4 1.1 0.005 10 0.61
S5 1.2 0.005 10 0.66
S6 1.3 0.005 10 0.72

2.5. Instrumentation

Infrared spectra were recorded on a Nicolet 6700 infrared spectrometer (Waltham, MA, USA).
Then, 13C-NMR spectra were recorded on a Bruker 600 spectrometer (Switzerland), using gated
decoupling, a spectrum width of 20 KHz, a recycle delay of 25 s, a 90◦ pulse and >500 scans.
Chemical shifts were reported in ppm, relative to tetramethylsilane (TMS). The molecular weights
of HTPB and PTPB were determined by using a WATERS1515 gel permeation chromatograph
(Milford, MA, USA), solution concentration 0.1 mg mL−1, column temperature 40 ◦C, flux 1 mL min−1.
Viscosity measurements were performed by using a rheostress 300 rheometer (Karlsruhe, Germany) with
a 20 mm parallel plate geometry, a gap size 1 mm, a shear rate range 1~100 s−1, and collected once every
2 s for 60 s. The glass transition temperatures of PTriPB elastomers were tested by differential scanning
calorimetry (DSC, 204 F1, Selb, Germany). All the experiments were carried out in a dry nitrogen
atmosphere. The temperature ranged from −110 to 60 ◦C, with a heating rate of 10 K min−1. At room
temperature, the mechanical properties of PTriPB elastomers (specification 100 mm × 20 mm × 5 mm)
were measured on an Instron 6022 mechanical tester (Boston, MA, USA), at a crosshead speed of
100 mm min−1. The thermal gravimetric analysis (TGA) was performed on a Netzsch 209 F1 thermal
analyzer (Selb, Germany), under nitrogen atmosphere, at a heating rate of 10 ◦C min−1, from 40 to
800 ◦C. The samples of 10 mg were used, and the gas flow rate was 60 mL min−1.

3. Results and Discussion

3.1. PTPB Structure

The FTIR spectra for HTPB and PTPB are shown in Figure 1. HTPB shows major characteristic
vibrations, such as C–H stretching vibration at 3007, 2913, and 2848 cm−1; C=C stretching vibration at
1641 cm−1; and C–H bending vibration at 1431, 961, and 911 cm−1. As for O–H stretching vibration
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peak, it is not easily distinguished because of its lower content within HTPB. These are in good
agreement with the report [17]. However, in comparison with HTPB, PTPB presents characteristic
peaks of propargyl group at 3306 and 627 cm−1 because of the terminal hydroxyl of HTPB having been
etherified, in addition to other characteristic peaks of polybutadiene.
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Figure 1. FTIR spectra for HTPB and PTPB.

The 13C NMR spectra for HTPB and PTPB are shown in Figure 2. Polybutadiene is comprised of
the cis/trans-1,4 enchainment, vinyl-1,2 enchainment structures, so it is clear that the peaks at 27.5 and
129.5 ppm are attributed to cis-1,4 enchainment structure, and the peaks at 32.9 and 130.1 ppm are
attributed to trans-1,4 enchainment structure. Meanwhile the peaks at 38.3, 43.6, 142.8, and 114.5 ppm
are attributed to vinyl-1,2 enchainment structures [18,19]. It should be emphasized that the small peaks
at 65.2, 63.8, and 58.6 ppm originate from carbon atoms connected to terminal hydroxyl shown in
Figure 2.
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In the 13C NMR spectra of PTPB, the typical peaks attributed to polybutadiene backbone still exist
at same locations. However, the peaks at 65.2, 63.8, and 58.6 ppm presented in 13C NMR spectra of
HTPB thoroughly disappear in that of PTPB. Instead, the peaks attributed to the propargyl carbon
atom 12, 13, and 14 emerge at 58.3, 74.3, and 79.9 ppm, respectively. These suggest that the terminal
hydroxyl of HTPB has been thoroughly etherified, having yielded the target product PTPB.

3.2. Propargyl Value

Up until now, there has not yet been a directly quantitative analysis method reported for terminal
propargyl content. In order to determine the propargyl value of prepolymer PTPB, gel permeation
chromatography (GPC) tests were carried out, and the traces of HTPB and PTPB are shown in Figure 3.
The two traces are very similar to each other, and the parameters of HTPB and PTPB evaluated by GPC
are listed in Table 2. The number average molecular weight of HTPB is 6588 g mol−1, and that of PTPB is
6678 g mol−1. Moreover, the polydispersity index of HTPB (2.12) is also very close to that of PTPB (2.11).
Prepolymer HTPB and PTPB have virtually identical molecular weight and distribution. These suggest
that, in the course of PTPB preparation, few chain extension and break reactions occurred, and HTPB
was transformed into PTPB only through end-capping modification. In combination with 13C-NMR
results, it can be inferred that the terminal group content of polybutadiene should stay conservative.
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Table 2. Parameters of prepolymer HTPB and PTPB.

Sample Mn Mw Mz Polydispersity

HTPB 6588 13,979 28,126 2.12

PTPB 6678 14,082 29,139 2.11

According to the given HTPB hydroxyl value (0.68 mmol g−1), the corresponding propargyl
content of PTPB is evaluated to be 0.66 mmol g−1 (see Equation (1)), which was used to determine the
R values of preparing PTriPB elastomer (see Section 2.4).

Cpropargyl = Chydroxyl / [1+ Chydroxyl × (Mpropargyl −1) × 10−3] (1)

where, Cpropargyl is the content of propargyl groups in PTPB, mmol g−1, Chydroxyl is the content of
hydroxyl groups in HTPB, mmol g−1, and Mpropargyl is the molecular weight of propargyl groups
(39 g mol−1).
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3.3. Viscosity

The dependences of viscosities on the shear rates for HTPB and PTPB are shown in Figure 4.
The viscosities of both HTPB and PTPB initially rapidly decrease with the increase in shear rates,
followed by slow decrease and giving shear-thinning characteristics. Clearly, HTPB has remarkably
higher viscosities than PTPB.
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In combination with FTIR, NMR and GPC results, the structure distinguish between HTPB and
PTPB only lie in their terminal groups (hydroxyl for HTPB and propargyl for PTPB), so the discrepancy
in viscosity of HTPB and PTPB should also come from them. It is well-known that hydroxyls are
capable of forming strong hydroxyl bonding interactions with each other, but propargyls are not.
This suggests that there still exists hydroxyl bonding within HTPB matrix, having strengthened the
interaction among the HTPB chains and exhibiting higher viscosity. In contrast, the terminal propargyl
of PTPB has no perceptible interaction with other atoms, and PTPB exhibits a lower viscosity. This is
notably beneficial to the process ability of its elastomer preparation.

3.4. DSC

In virtue of the hydroxyl value (0.68 mmol g−1) and the number average molecular weight
(6588 g mol−1) of HTPB, it can also be inferred that the hydroxyl average functionality of HTPB is
about 4; it is greater than 2 as a result of its transfer reactions occurring during preparation process [20].
This implies that the propargyl functionality of PTPB is also about 4, and the multi-functional PTPB
can be cured by adopting a di-functional azido compound as a curing agent through CuAAC
reaction. Figure 5 is the non-isothermal differential scanning calorimetric (DSC) curves of polytriazole
polybutadiene elastomers (PTriPB) prepared via CuAAC crosslinking reaction between PTPB and
1,6-diazide hexane. It is clear that there only exists a step peak at approximate −75 ◦C for all PTriPB
elastomer S1–S6, which are corresponding to the glass transition temperature of polybutadiene
chains [21]. The glass transition temperatures are almost independent of elastomer R values.
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3.5. Mechanical Properties

At room temperature, well above their glass transition temperature, the mechanical properties of
PTriPB elastomer S1–S6 were measured and are listed in Table 3. It can be observed that the stress at
break (σb) first increases from 0.39 ± 0.02 MPa to 0.70± 0.05 MPa and then decreases to 0.24 ± 0.03 MPa,
with increasing R, respectively. In contrast, the strain at break (εb) first decreases from 396 ± 18 to
329 ± 24% and then increases to 460 ± 18%. The mechanical property maximum and minimum values
simultaneously appear at R = 1.0 (the stoichiometric ratio). Figure 6 shows the typical stress–strain
curves of elastomers. It can be observed that the moduli of elastomers first increase and then decrease
as a function of R values. Moreover, elastomer S3 with R = 1.0 has maximum moduli. The dependence
of the mechanical properties of PTPB elastomers on R presents parabolic.

Table 3. Mechanical properties of PTPB elastomers.

Sample S1 S2 S3 S4 S5 S6

Stress, σb/MPa

1 0.37 0.55 0.63 0.50 0.42 0.30

2 0.38 0.56 0.73 0.58 0.39 0.23

3 0.43 0.65 0.67 0.52 0.39 0.23

4 0.38 0.68 0.78 0.60 0.30 0.20

Average 0.39 ± 0.02 0.61 ± 0.06 0.70 ± 0.05 0.55 ± 0.04 0.38 ± 0.04 0.24 ± 0.03

Strain, εb/%

1 370 370 328 342 388 472

2 387 344 357 321 356 484

3 420 377 281 354 400 438

4 407 329 349 362 360 445

Average 396 ± 18 355 ± 19 329 ± 24 345 ± 13 376 ± 18 460 ± 18
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Figure 6. Stress–strain curves of elastomers.

Considering that CuAAC reaction involves no side-reactions, PTriPB elastomer network structures
can be conceived to be those schematically shown in Figure 7, to further elucidate the mechanical
properties [7]. When R < 1.0, the terminal propargyl content of PTPB is in excess and propargyl
groups cannot be completely reacted with azide groups of curing agent 1,6-diazide hexane, causing the
formation of many dangling strands in the elastomer network. Consequently, the elastomers give
higher apparent effective strand average molecular weight (Ms) and lower apparent effective strand
densities (N0). At the stoichiometric ratio, the terminal propargyl content is equivalent to that of the
azide groups, and terminal propargyl groups are nearly reacted to completion with azide groups of
the curing agent. The resultant network structure approaches that of an integrated lattice, with few
propargyl and azido groups in the elastomer (see Figure 7; R = 1.0); additionally, Ms is minimized
and N0 is maximized. When R > 1.0, the excess azido groups in the curing agent molecules cannot
also be reacted with and are still appended as branches, forming larger meshes. Resultantly, Ms again
increases and N0 again decreases.
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Figure 7. PTriPB elastomer network structures.

According to Flory elasticity theory, the stress and modulus of crosslinked elastomer are
proportional to the density of network chains N0. The greater the density of network chains, the higher
the stress and modulus of crosslinked elastomer, and vice versa [22,23]. Consequently, PTriPB exhibits
maximum stress and modulus at the stoichiometric ratio because of its maximum network
chain density, whereas its minimum strand molecular weight causes the lowest strain at break.
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Therefore, the dependence of the mechanical properties of PTPB elastomers on R presents as parabolic
(see Table 3).

3.6. Thermal Stability

A thermal gravimetric analysis was performed in order to assess the thermal stability of PTriPB
elastomers, and their thermal gravity analysis (TG) and derivative thermogravimetric analysis (DTG)
curves are shown in Figure 8. It is clear that all TG and DTG curves are nearly overlapped, respectively.
The thermal weight loss initiates at 369 ◦C (T5%) and finishes at 485 ◦C, and the accompanying weight
loss is approximately 97%. All DTG curves present the only peaks, indicating that the elastomers
have a one-step decomposition characteristic. The weight loss rates reach a maximum at about 463 ◦C,
which is characteristic of polybutadiene thermal decomposition [24].
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The thermal cleavage temperature of the triazole groups that formed from azide and propargyl
cycloaddition reaction is high up to nearly 570 ◦C [25,26], so the thermal weight loss process of PTriPB
elastomer should only be attributed to the thermal degradation of polybutadiene strands rather than the
polytriazole crosslinks. The thermal stability of the PTriPB elastomers depends on the polybutadiene
strands, but not the polytriazole crosslinks. Additionally, because the fission temperature of urethane
bonds usually lies in the range of 300–400 ◦C [27], the thermal stability of polytriazole crosslinked
polybutadiene elastomers should also be advantageous over that of traditional polyurethane ones.

4. Conclusions

Propargyl terminal polybutadiene (PTPB) was successfully synthesized through terminal hydroxyl
polybutadiene (HTPB) end-capping modification. PTPB has low viscosity because of no hydrogen
bonding interaction among the polymeric chains, which is beneficial to the processing performance of
the elastomer preparation.

Using 1,6-diazide hexane as a curing agent, we prepared the PTriPB elastomers with various
functional molar ratios (R) via CuAAC reaction. The glass transition temperatures of PTriPB elastomers
are approximately −75 ◦C, and the R values hardly affect these values. The mechanical properties
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of the elastomers parabolically depend on the R values. At the stoichiometric ratio, the stress and
modulus give maximum, while the strain gives minimum, simultaneously.

The PTriPB elastomer is characteristic of a one-step thermal decomposition process, and its
thermal stability depends on the polybutadiene strands, instead of the crosslinking triazole groups.
These findings will help researchers discover the more extensive application of CuAAC in the field
of elastomer.
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