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Abstract
Myeloperoxidase (MPO), an abundant heme-containing enzyme present in neutrophils,

monocytes, and macrophages, is produced in high levels during inflammation, and associ-

ated with poor reproductive outcomes. MPO is known to generate hypochlorous acid (HOCl),

a damaging reactive oxygen species (ROS) utilizing hydrogen peroxide (H2O2) and chloride

(Cl-). Here we investigate the effect of activated immune cells and MPO on oocyte quality.

Mouse metaphase II oocytes were divided into the following groups: 1) Incubation with a cat-

alytic amount of MPO (40 nM) for different incubation periods in the presence of 100 mMCl-

with and without H2O2 and with and without melatonin (100 μM), at 37°C (n = 648/648 total

number of oocytes in each group for oocytes with and without cumulus cells); 2) Co-cultured

with activated mouse peritoneal macrophage and neutrophils cells (1.0 x 106 cells/ml) in the

absence and presence of melatonin (200 μM), an MPO inhibitor/ROS scavenger, for different

incubation periods in HTFmedia, at 37°C (n = 200/200); 3) Untreated oocytes incubated for 4

hrs as controls (n = 73/64). Oocytes were then fixed, stained and scored based on the micro-

tubule morphology and chromosomal alignment. All treatments were found to negatively

affect oocyte quality in a time dependent fashion as compared to controls. In all cases the

presence of cumulus cells offered no protection; however significant protection was offered

by melatonin. Similar results were obtained with oocytes treated with neutrophils. This work

provides a direct link between MPO and decreased oocyte quality. Therefore, strategies to

decrease MPOmediated inflammation may influence reproductive outcomes.

Introduction
There are many challenging questions and issues surrounding poor reproductive outcomes.
Many of these problems have come to the forefront of the medical field with greater
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expectations from medical science. A substantial body of literature has proposed a link between
oxidative stress and poor reproductive outcomes [1–3]. Oxidative stress, generated by reactive
oxygen species (ROS) overproduction [1, 4] or myeloperoxidase (MPO) activity [5, 6], plays a
central role in inflammation that causes these conditions [7, 8]. The deleterious actions of acti-
vated macrophages, the major source for ROS and MPO, are secondary to their ability to
migrate to any site in the female genital tract and cause their cellular effects at the level of the
oocyte [9–13]. Under normal and inflammatory conditions, activated macrophages are found
in the cumulus cell mass within the cumulus oocyte complex (COC) [11, 12]. At sites of inflam-
mation, the amount of MPO generated has been reported to reach a concentration of 1–2 mM
[14]. High levels of MPO have been found in the collected peritoneal fluid samples of patients
with chronic genital diseases [15, 16], polycystic ovarian syndrome (PCOS) [17, 18], advanced
stages of endometriosis [16, 19, 20], and pelvic inflammatory disease [16, 21, 22]. Moreover,
elevated MPO levels have also been found in the follicular fluid of women with chronic anovu-
lation [23], which correlated to a decline in their fertility.

Myeloperoxidase generates hypochlorous acid (HOCl) through MPO activity in the pres-
ence of chloride (Cl-) and hydrogen peroxide (H2O2) [24, 25]. Activated neutrophils generate
around 150−425 μMHOCl/hr, while at areas of inflammation, the HOCl level can be reach as
high as 5 mM [26, 27]. Under these conditions, HOCl not only destroys invading pathogens
but can also cause damage through its capacity to react with other biomolecules, including
aromatic chlorination, aldehyde generation, chloramine formation, and oxidation of thiols [4,
28]. Accumulation of HOCl can also mediate hemoprotein heme destruction and subsequent
free iron release and protein aggregation through a feedback mechanism involving MPO dete-
rioration [29]. Both, HOCl and increased iron levels have been involved in several inflamma-
tory conditions such as endometriosis [19, 30]. HOCl is much more powerful oocyte aging
accelerant than other ROS through its ability to deteriorate the oocyte microtubule morphol-
ogy (MT) and chromosomal alignment (CH), which are markers of oocyte quality [4].
Although MPO and HOCl are found in large amounts during inflammation contributing to
poor reproductive outcomes, little is known about the exact mechanisms through which MPO
affects oocyte quality.

Recently, utilizing HPLC and amperometric integrated H2O2-selective electrode, our group
demonstrated real time in vivo measurements of intracellular H2O2 and its ability to diffuse
outside the oocyte to activate extracellular MPO generating HOCl [31]. The ability of this
investigation to provide a precise measurement of in situ H2O2 was secondary to limiting reac-
tivity with nearby biological processes and minimizing loss caused by diffusion. Thus, it could
be demonstrated through the use of catalase that the measurements were that of H2O2 and not
an unknown substance in our system [31]. Our results showed that the diffused H2O2 triggered
MPO chlorinating activity, which in turn facilitated oocyte quality deterioration, which was
shown to be preventable if oocytes were pre-treated with melatonin. Melatonin, a known pineal
hormone involved in the regulation of circadian rhythms [32, 33] has identified as a potent
inhibitor of MPO chlorination activity and a potent scavenger of its final product, HOCl [34–
36]. The beneficial effect of melatonin on oocyte quality and fertilization has been previously
described [36–39].

The current study demonstrates that MPO has a detrimental effect on oocyte quality
through its chlorination activation, and defines the link between MPO (purified and naturally
secreted from macrophages and neutrophils) and oocyte quality (MT and CH) deterioration,
a mechanism that can be prevented by using melatonin. These results may help in designing
treatment plans for assisted reproductive technologies for patients with inflammatory
conditions.
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Materials and Methods

Materials
Hydrogen peroxide, melatonin, Human tubular fluid (HTF) media were purchased from life
technology, anti-α tubulin antibody, and Alexa Fluor1 488-AffiniPure Goat Anti-Mouse IgG
(H+L) were purchased Jackson ImmunoResearch. Propidium iodide (PI), 1% bovine serum
albumin (BSA), 0.1% M glycine, 0.1% Triton X-100, sodium nitrite, and trypan blue, lipopoly-
saccharide (LPS) were purchased from Sigma Aldrich (St. Louis, MO, USA). Normal goat
serum 2% was purchased from Invitrogen and powdered milk, 0.2%, was obtained from the
grocery store. Peritoneal macrophage cells (non-stimulated, adherent, and non-dividing)
derived from female C57BL/6 mice were obtained from Astarte Biologics, LLC (Bothell, WA)
(1 x 106 /1ml), macrophage cell media and other supplements were also obtained from Scien-
Cell Research Laboratories, Inc. (Carlsbad, CA). The macrophage media (DMEM) with its sup-
plemented materials and 10% Fetal Bovine Serum (FBS) were obtained from Science Cell
Research Laboratories (Carlsbad, CA). Peritoneal neutrophil cells (non-stimulated, adherent,
and non-dividing) derived from female C57BL/6 mice were obtained from Astarte Biologics,
LLC (Bothell, WA) (1 x 106 /1ml), neutrophil cell media and other supplements were also
obtained from ScienCell Research Laboratories, Inc. (Carlsbad, CA).

Other chemicals and reagents were of the highest purity grades available and obtained from
Sigma Aldrich.

Methods
Myeloperoxidase Purification. Myeloperoxidase was purified initially from detergent

extracts of human leukocytes by sequential lectin affinity and gel-filtration chromatography
[40–42]. Trace levels of eosinophil peroxidase that may be contaminating were then removed
by passage over a sulfopropyl Sephadex column [41]. Purity of isolated MPO was established
by demonstrating a Reinheitzal (RZ) value of 0.85 (A430/A280), SDS–PAGE analysis with
Coomassie blue staining, and gel tetra- methylbenzidineperoxidase staining to the absence of
eosinophil peroxidase activity. Enzyme concentration was determined spectrophotometrically
utilizing extinction coefficients of 89,000 M−1 cm−1/heme of MPO [43].

Hydrogen peroxide solution. The H2O2 solutions were prepared fresh in phosphate
buffer (PH 7.4), after which the concentration of the working solutions was determined
spectrophotometrically (extinction coefficient of 43.6 M-1 cm-1 at 240 nm) [44, 45]. During
the preparation process, all the solutions were kept on ice to minimize decomposition.

Melatonin solution: A stock solution of melatonin was dissolved in dimethylformamide
(DMF) and diluted to the required concentration with phosphate buffer (pH = 7.4). The final
concentration of DMF in all melatonin solutions was less than 1% and did not interfere with
MPO activity or have any effect on oocyte quality [46].

Oocyte preparation. Metaphase II mouse oocytes (with and without cumulus cells) were
obtained from a B6C3F1 mouse crossed with a B6D2F1 mouse in cryopreserved straws using
ethylene glycol-based slow freeze cryopreservation protocol (Embryotech Lab). Oocytes at this
stage were used as they are arrested in a mature stage just prior to fertilization and demonstrate a
dense array of filaments with bundles forming the meiotic spindle as the scaffold for segregation
of genetic material [2, 47]. Metaphase II (MII) oocytes are known to be exposed to some ROS
during ovulation [4, 48, 49]. The major functional parameters used to assess oocyte quality at
this stage are spindle microtubule morphology (MT), chromosomal alignment (CH) and organi-
zation of the cumulus oocyte complex (COC) as it has been established that they can be affected
by changes in the oocyte microenvironment such as increased ROS. Furthermore, we chose to
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use frozen-thawed oocytes instead of fresh as both our group and others have performed many
experiments on both and found that treatment of fresh and frozen oocytes with ROS had yielded
similar and reproducible results [4, 50–54]. Institutional Review Board approval was not
required, as the oocytes were obtained from Embryotech. Oocytes were transferred from straws
to phosphate-buffered saline (Dulbeco’s PBS) and washed to remove excess cryoprotectant for 5
minutes. Oocytes were then transferred to HTF media and incubated at 37°C and 5% CO2 for 60
minutes to allow repolymerization of spindles. The oocytes were then screened for the presence
of polar bodies confirming their metaphase II stage [5]. Ten to twenty oocytes from each group
were discarded as they were found to be immature or displayed disrupted zona pellucida (ZP).

Purified myeloperoxidase treatment on oocytes (with and without
cumulus cells)
Using the same processes for oocytes handling as mentioned in the previous section, meta-
phase II mouse oocytes with (n = 648) and without cumulus cells (n = 648) were divided into
the following groups, which were performed in triplicate. Oocytes were divided into groups
with and without cumulus cells to study the protective effect of cumulus cells.

Group 1 (n = 120 cumulus/n = 120 without cumulus): oocytes incubated with fixed concen-
tration of MPO (40 nM) at different incubation periods (3, 6, 12, and 24 hrs); group 2 (n = 120
cumulus/n = 120 without cumulus): oocytes incubated with fixed concentration of MPO (40
nM) + 20 μMH2O2 at different incubation periods (3, 6, 12, and 24 hrs); group 3 (n = 108
cumulus/n = 108 noncumulus): oocytes incubated with fixed concentration of MPO (40 nM) at
different incubation periods (3, 6, 12, and 24 hrs) preincubated with melatonin (100 μM); group
4 (n = 108 cumulus/n = 108 without cumulus): oocytes incubated with fixed concentration of
MPO (40 nM) + H2O2 (20 μM) at different incubation periods (3, 6, 12, and 24 hrs) on oocytes
preincubated with melatonin (100 μM); group 5 (n = 120 cumulus/n = 120 without cumulus):
Untreated oocytes were used as a control; and group 6 (n = 72 cumulus/n = 72 without cumu-
lus): oocytes with melatonin (100 μM) alone for 24 a hr incubation period. In both groups mela-
tonin was added to media immediately prior to addition of MPO or other compounds. All
oocytes were fixed at the time points (3, 6, 12, and 24 hrs) and evaluated for alteration of the fol-
lowing: MT structure and CH alignment. All experiments were carried out in HTF media con-
taining 100 mM Cl-, which is similar to the physiological oviduct Cl- concentration [55]. All cell
transfers were performed using 200-mmmicropipette tips (ORIGIO, Cooper Surgical).

Macrophage cells co-cultured with oocytes (with and without cumulus
cells)
We followed the protocol of macrophage cell co-culture as described by Honda et al (1994) [56]
with some modifications. The 1 ml vials containing macrophage cells (1.0 x 106 cells/vial) were
thawed at 37°C then centrifuged at 1800 rpm at 4°C for 5 min then the cryopreservative solution
was removed and replaced with the macrophage media, mixed, and 1 μl of the media containing
macrophage cells was used to test the cell viability using Trypan blue dye exclusion assay. Cells
were recounted before utilization and were placed into 30 mm dishes (Falcon). The macrophage
concentration per dish was chosen secondary to previous data which showed a significant
reduction in fertilization rate in the co-culture group as compared to control [56]. Macrophage
cells were stimulated with lipopolysaccharide (LPS) (10 ng/ml) for maximal MPO secretion [57,
58]. Cells were allowed to rest for 16 hr at 5% CO2, 37°C to allow the cells to adhere to the base
of culture dishes. The following day, the macrophage media was removed, washed with PBS
twice, and then with HTF twice to remove the unadherent cells and replaced with HTF media.
Cells were then reincubated at 5% CO2, 37°C to be ready for co-cultured with the oocytes.
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In the triplicate experiment, the oocytes (with n = 200 and without cumulus cells n = 200,
total) were divided into the following groups: group 1: oocytes with and without cumulus cells
incubated with stimulated macrophage cells for 1, 2, 3, and 4 hrs; group 2: oocytes with and
without cumulus cells incubated with stimulated macrophage cells preincubated with a higher
concentration of melatonin (200 μM) to demonstrate the protective effect against higher
amounts of MPO for 1, 2, 3, and 4 hrs; group 3: oocytes with and without cumulus cells incu-
bated with 100 μMmelatonin alone for 4 hrs; group 4: control oocytes receiving no treatment
and incubated for 4 hrs. All groups were incubated in HTF for 4 hrs, 37°C, 5% CO2. We chose
4 hrs of incubation as previous studies stated that 4–6 hrs is the time for optimal fertilization
[59, 60]. The doses of melatonin and HOCl were selected on the basis of our preliminary results
and our previous studies [35, 36]. All oocytes were fixed at the time points (1, 2, 3, and 4 hrs)
and evaluated for alteration of the following: MT structure and CH alignment.

Neutrophil cells co-cultured with oocytes (with and without cumulus
cells)
The 1 ml vials containing neutrophil cells (1.0 x 106 cells/vial) were thawed at 37°C then centri-
fuged at 1800 rpm at 4°C for 5 min then the cryopreservative solution was removed and
replaced with the neutrophil media, mixed, and 1 μl of the media containing neutrophil cells
was used to test the cell viability using Trypan blue dye exclusion assay. Cells were recounted
before utilization and were placed into 30 mm dishes (Falcon). The neutrophil concentration
per dish was chosen secondary to previous data which showed a significant reduction in fertili-
zation rate in co-culture group as compared to control [56]. Neutrophils were stimulated with
lipopolysaccharide (LPS) (10 ng/ml) for maximal MPO secretion [57, 58]. Cells were allowed
to rest for 16 hr at 5% CO2, 37°C to allow the cells to adhere to the base of culture dishes. The
following day, the neutrophil media was removed, washed with PBS twice, and then with HTF
twice to remove the unadherent cells and replaced with HTF media. Cells were then reincu-
bated at 5% CO2, 37°C to be ready for co-cultured with the oocytes.

In the experiment, the oocytes (with n = 100 and without cumulus cells n = 100, total) were
divided into the following groups: group 1: oocytes with and without cumulus cells incubated
with stimulated neutrophil cells for 1, 2, 3, and 4 hrs; group 2: control oocytes receiving no
treatment and incubated for 4 hrs. All groups were incubated in HTF for 4 hrs, 37°C, 5% CO2.
We chose 4 hrs of incubation as previous studies stated that 4–6 hrs is the time for optimal fer-
tilization [59, 60]. All oocytes were fixed at the time points (1, 2, 3, and 4 hrs) and evaluated for
alteration of the following: MT structure and CH alignment.

Immunofluorescence staining and fluorescence microscopy
Oocytes were fixed in a solution prepared from 2% formaldehyde and 0.2% Triton X-100 for
30 minutes and then treated with blocking solution (PBS, 0.2% Powdered Milk, 2% Normal
Goat Serum, 1% BSA, 0.1 M Glycine and 0.1% Triton X-100) for 1 hr followed by PBS washing
for 3 minutes. The oocytes were then subjected to indirect immunostaining using mouse pri-
mary anti-α tubulin antibody against the MT (1:100, overnight) and secondary Alexa Fluor1

488-AffiniPure Goat Anti-Mouse IgG (H+L) (1:50, 1 h). The secondary antibody used was spe-
cifically able to bind to our primary antibody. As a control, we incubated the oocytes with sec-
ondary antibody for the same incubation time used for our experiments and observed no
spindle signals in the oocytes. The chromosomes were stained using PI for 10 min. Stained
oocytes were loaded into anti-fade agent on slides with two etched rings. Images were obtained
utilizing both immunofluorescence and confocal microscopy.
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Confocal microscopy, assessment of microtubules and chromosomal
alignment
Confocal microscopy, assessment of microtubules morphology and chromosomal alignment
slides were examined with the Zeiss LSM 510 META NLO (Zeiss LSM 510 META) microscope
using PI (red) and Alexa Fluor1 488 (green) fluorescent filters with excitation and emission
wavelengths of 470 and 525 nm, and 495 and 519 nm, respectively. Oocytes were localized
using a 10x magnification lens and spindle alterations assessed using 100x oil immersion lens.
The MT was stained fluorescent green, which was distinct from the fluorescent red staining of
chromosomes. The alterations in the MT and CH were compared with controls and scored by
three different observers blinded to treatment groups based on a previously published scoring
system using comprehensive evaluation of the individual optical sections and the 3-D recon-
structed images [36, 61]. Scores of 1–4 were assigned for both MT and CH alterations, with
scores 1 and 2 combined for good outcomes meaning microtubules were organized in a barrel-
shaped with slightly pointed poles formed by organized microtubules crosswise from one pole
to and chromosomes were normally arranged in a compact metaphase plate at the equator of
the spindle. Scores of 3 and 4 signified poor outcomes and consisted of spindle length reduc-
tion, disorganization and/or complete spindle absence, and chromosome dispersion or aber-
rant condensation appearance.

Detection of ROS generation in oocytes after exposure to MPO
The oocytes without cumulus cells (n = 20) were incubated with MPO (40 nM) or without (con-
trol, n = 20) for 24 hours. Generation of ROS was evaluated using the Cellular Reactive Oxygen
Species Detection Assay Kit Abcam (ab186029 (Cambridge, UK)) as instructed by manufac-
turer. After fixation by 2% formaldehyde and permeabilization with 0.2% Triton X-100 for 30
minutes, nuclei were stained with DAPI. Images of ROS-mediated deep red fluorescence were
taken using a Nikon Eclipse 90i epifluorescence microscope. The fluorescence intensity of each
oocyte image was measured from quantification of mean pixel intensities using NIS-Element
(Nikon, Shinagawa-Ku, Tokyo, Japan). The overall fluorescence unit for MPO treatment group
of oocytes was calculated relatively to control group and represented as normalized relative fluo-
rescent unit (RFU). The Student's t -test was performed on the RFU to test if the difference
between control and MPO treatment groups is statistically significant (p<0.05).

Statistical analysis. Statistical analyses were performed using SPSS version 21.0 (SPSS
Inc., Chicago, IL, USA). One-way ANOVA analyses were performed to compare the percent-
age of oocytes with poor outcomes (scores 3 and 4) for MT and CH between controls with vari-
ous time intervals and each treatment group applied to cumulus and non-cumulus oocytes.
The same ANOVA procedures were also performed to investigate the effects of different treat-
ments on cumulus and non-cumulus oocytes at different time intervals. Pair wise comparisons
made using Tukey’s post hoc test following significant ANOVA tests, which defined as
P<0.05. Independent t tests were conducted to compare the cumulus and non-cumulus
oocytes for each treatment and time interval combination.

Results

Effect of purified MPO/melatonin on MT and CH of metaphase II oocytes
with and without cumulus cells
To test whether MPO activation through the extra-oocyte diffusion of H2O2 could deteriorate
the mouse metaphase II oocyte quality, we investigated the time dependent effect of MPO, in
the absence and presence of melatonin, a potent MPO inhibitor, on oocyte MT and CH in the
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absence and presence of cumulus cells. Incubation of the oocytes with MPO alone (40 nM)
showed significant deterioration in oocytes quality in a time depended manner as judged by
alterations in the MT and CH in the treatment groups and cumulus cells show no protection
(Fig 1A and 1B-upper Panels). Whereas the presence of 100 μMmelatonin showed significant
protective effect on MT and CH when incubated with MPO for shorter periods (3 hrs) and this
protection was lost at longer time of incubation (Fig 1A and 1B). Pre-supplementing the oocyte
medium with more melatonin concentrations (400 μM), showed protection in the oocyte qual-
ity up to 6 hrs of incubation with MPO (data not shown). Furthermore, at the 6 hr incubation
period in oocytes pretreated with melatonin, a significant protective effect was noted in the
cumulus compared to noncumulus group. This indicates that in the 6 hr time period melatonin
was able to support cumulus cell antioxidant machinery against HOCl assault, which mani-
fested as preserved oocyte quality. These results concluded that preservation of normal MT

Fig 1. Images of oocytesmicrotubule morphology (MT) and chromosomal alignment (CH) obtained using Confocal Zeiss LSM 510 META NLO
microscope. A) Oocytes without cumulus cells showed: -Upper Panel: Detrimental time dependent effect of MPO (40 nM) on MT and CH. -Lower Panel:
MLT supplementation (100 μM) showed normal MT and CH in the presence MPO at 3 hrs of incubation similar to controls and alterations in MT and CH by
increasing the incubation time. B) Oocytes with cumulus cells showed similar observations as in A for MPO effect in the absence and presence of MLT.
Collectively, cumulus cells failed to offer significant protection against MPO catalytic activity. Scale bars: 50μm. Results depict observations made after three
experiments.

doi:10.1371/journal.pone.0151160.g001
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and CH under MPO activity could be achieved by using the antioxidant and MPO inhibitor,
melatonin.

For comparison, the effect of MPO, in the absence and presence of melatonin, on MT and
CH were quantitated based on our well-established 1–4 scoring system (see method section for
more details) and the percentages of poor scores were plotted as a function of time (Figs 2 and
3). Fig 2 upper Panel showed the time dependent increase in the percentage of poor scores for
MT and CH for oocyte with and without cumulus cells incubated with MPO. In the absence of
cumulus cells, 3 hr incubation with MPO showed 44.4% poor scoring and stayed almost the
same at 6 hr incubation and increased to 70%, and 100% at 12 and 24 hrs, respectively, com-
pared to control group 18%. Similar results were observed for oocytes MT and CH with cumu-
lus cells incubated with the same amount of MPO for the same incubation periods (30%, 38%,
70%, and 82% poor scores, respectively, compared to control groups 9.0%).

Fig 2. The effect of MPO/HOCl system on oocytes quality in the presence and absence of cumulus cells. Both panels show triplicate experiments of
the percentage of oocytes with cumulus (n = 648) (green bars) versus those without (n = 648) (gray bars) with poor microtubule morphology (MT) scores
observed in the untreated oocytes compared to oocytes treated with a fixed catalytic MPO concentration (40 nM) without addition of H2O2 (20 μM) (upper
panel) and after addition of H2O2 (20 μM) (lower panel). All oocytes were incubated to different times of incubation (3, 6, 12 and 24 hrs) followed by indirect
immunofluorescence staining method to observe MT and CH. Human tubulin fluid (HTF) media contains similar chloride (Cl-) concentration (~100 mM) to the
oviduct fluid. There is a time dependent effect of MPO activity on oocytes quality in the presence and absence of cumulus cells (p < 0.05). Cumulus cells fail
to protect MT against damage fromMPO activity (p > 0.05). Similar results were observed for the chromosomes alignment (CH). One-way ANOVA and
independent t-test using SPSS 22.0 used to analyzed the results as following: (a) P < 0.05 non-cumulus oocytes as compared to control. (b) P < 0.05
cumulus oocytes as compared to control. The standard error for each point was estimated to be less than 10%. H2O2 addition on the oocytes in the lower
panel showed no significant difference compared to oocytes in the upper panel.

doi:10.1371/journal.pone.0151160.g002
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Fig 3 showed the protective effect of melatonin on oocyte quality against MPO treatment.
Oocytes without cumulus cells incubated with MPO/melatonin showed a significant decrease
in the percentages of poor scores MT and CH at 3 hr (7%) of incubation compared to longer
incubation periods 6, 12 and 24 hrs (57%, 70%, and 100%, respectively) (p<0.001) (Fig 3 upper
panel/gray bars). Whereas, the poor scores for cumulus oocytes incubated for the 3, 6, 12, and
24 hrs with melatonin/MPO were approximately 1.3%, 23.3%, 50%, and 70%, respectively as
compared with the control group score average of 1.0% (Fig 3 upper Panel/green bars). In con-
trol experiments, oocytes incubated with melatonin alone for 24 hr showed poor scores of
~10.0% similar to untreated oocytes. Cumulus cells showed signs of protection against MPO in
the presence of melatonin at 6 hrs of incubation (p<0.05).

Fig 3. The protective effect of melatonin against MPO/HOCl system on oocytes quality in the presence and absence of cumulus cells. Both panels
show triplicate experiments of the percentage of oocytes with cumulus (n = 648) (green bars) versus those without (n = 648) (gray bars) with poor microtubule
morphology (MT) scores observed in the untreated oocytes compared to oocytes treated with a fixed catalytic MPO concentration (40 nM) without addition of
H2O2 (20 μM) (upper panel) and after addition of H2O2 (20 μM) (lower panel) after pre-supplement the oocytes media with melatonin (100 μM). All oocytes
were incubated to different times of incubation (3, 6, 12 and 24 hrs) followed by indirect immunofluorescence staining method to observe MT and CH. Human
tubulin fluid (HTF) media contains similar chloride (Cl-) concentration (~100 mM) to the oviduct fluid. Melatonin showed a significant protection against MPO
activity at 3 hrs incubation (p < 0.05) as it works as direct HOCl scavenger and MPO inhibitor. The poor scores in MT showed by increasing the time of
incubation caused as melatonin have been consumed. Cumulus cells fail to protect MT against damage fromMPO activity (p > 0.05). H2O2 addition on the
oocytes in the lower panel showed no significant difference compared to oocytes in the upper panel. Similar results were observed for the chromosomes
alignment (CH). One-way ANOVA and independent t-test using SPSS 22.0 used to analyzed the results as following: (a) P < 0.05 non-cumulus oocytes as
compared to control. (b) P < 0.05 cumulus oocytes as compared to control. (c) P < 0.05 between cumulus and non-cumulus oocytes. The standard error for
each point was estimated to be less than 10%.

doi:10.1371/journal.pone.0151160.g003
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To determine whether MPO activation is the major cause for oocyte quality deterioration,
we repeated the same experiments in the presence of exogenously added H2O2 (20 μM) to the
oocyte media immediately after MPO addition and incubated the oocytes for the same incuba-
tion times (3, 6, 12 and 24 hrs) in the absence and presence of 100 μMmelatonin (Figs 2 and 3-
lower Panels). Our results showed that in the absence of cumulus cells, the poor scores for MT
and CH for 3, 6, 12 and 24 hrs of incubation periods with MPO/H2O2 alone were 60%, 60%,
100% and 100% respectively (Fig 2-lower Panel/gray bars). In the presence of cumulus cells,
the percentage of poor scores for 3, 6, 12, and 24 hrs of incubation periods with MPO/H2O2

alone were 50%, 50%, 60%, and 100% respectively (Fig 2-lower Panel/green bars). Results in
this section mirrored those of the above experiment (Fig 2, upper Panel) in which H2O2 supple-
mentation had no additional effect on oocyte quality (p>0.05), and again cumulus cells did not
appear to provide protection to the oocyte (p>0.05). The poor scores of non-cumulus oocytes
(for MT and CH) incubated with melatonin/MPO/H2O2 for 3, 6, 12, and 24 hr incubation
were 20%, 63.3%, 73.3%, and 100% respectively (Fig 3 lower Panel/gray bars). Under these cir-
cumstances, melatonin also showed protection at 3 hrs of incubation, but not in the other incu-
bation periods. In the presence of cumulus cells, the poor scores for oocytes MT and CH
incubated with the same treatments for the same incubation periods were 25%, 60%, 60%, and
100% respectively (Fig 3 lower Panel/green bars). Results in this section mirrored results with-
out addition of H2O2, in that the presence of melatonin protected against MPO with H2O2 in
the 3 hr group (p<0.001); but not in the 6, 12, or 24 hrs groups (p>0.05). Cumulus cells did
not showed a protective effect after 6 hrs of incubation in the presence of melatonin and MPO
with H2O2 (p>0.05). Collectively, inhibiting MPO activity by using melatonin preserved the
quality of the oocytes, thus MPO activity was the major cause of poor oocyte quality. To better
understand the mechanism through which MPO affects oocyte quality, ROS generation was
monitored. Oocytes were incubated with MPO for 24 hrs, where the maximum negative effect
of MPO was observed, and significant increase in ROS generation was noted as compared to
control (Fig 4). The inset of Fig 4 shows the treatment oocyte saturated with red color indicat-
ing ROS generation as compared to the control oocyte demonstrating less color, this effect was
quantitated in terms of relative fluorescence units (RFU) and the difference showed statistical
significance (p<0.05). Collectively, these results demonstrate that MPO deteriorates oocyte
quality in a time dependent manner through an ROS mediated mechanism and melatonin dis-
plays some protective ability against these insults.

Effect of stimulated macrophages and neutrophils on MT and CH of
metaphase II oocytes without and with cumulus cells
Since purified MPO activity was responsible for oocyte quality deterioration, then we test
whether the exposure to stimulated macrophages could mediate deterioration of the oocytes
quality through a mechanism that involves the MPO catalysis. To test this hypothesis, we co-
cultured the oocytes with stimulated macrophages as function of time, in the presence and
absence of melatonin (200 μM). As showed in Fig 5, in the absence of cumulus cells, the poor
scores for the oocytes incubated with stimulated macrophage for 1, 2, 3 and 4 hrs were approxi-
mately 35.5%, 54.4%, 78.5% and 100% for MT and CH (Fig 5). In the presence of cumulus
cells, the average poor scores for the oocytes incubated with stimulated macrophage cells for 1,
2, 3 and 4 hrs was approximately 43.3%, 36.1%, 65.7% and 93.3% for MT and CH (Fig 5). Over-
all, as showed in Fig 2, increasing the incubation time increased significantly the poor scores
for MT and CH (p<0.05). Fig 6 demonstrated the power of melatonin to inhibit the activity of
naturally MPO secreted from stimulated macrophages. The poor scores for noncumulus
oocytes MT and CH incubated with melatonin/stimulated macrophage cells for 1, 2, 3 and 4
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hrs were approximately 20.5%, 63.8%, 93.3% and 100% (Fig 6). While, in the presence of
cumulus cells, the poor scores for MT and CH for 1, 2, 3 and 4 hrs were approximately 8.9%,
58.3%, 86.6% and 93% (Fig 6). Overall, melatonin showed significant protection of MT and
CH quality at 1 hr of incubation with macrophage cells (p<0.05) compared to longer time peri-
ods. The control group had poor scores for approximately 20% of noncumulus and 16.6% for
cumulus oocytes (p>0.05). Cumulus cells showed a non-significant protective effect against
MPO secreted from stimulated macrophages in the presence and absence of melatonin at 2, 3,
and 4 hrs of incubation (p>0.05). Collectively, the major cause for oocyte quality deterioration
is the activation of macrophages as well as MPO that can be successfully inhibited by using
melatonin.

Next, we co-cultured the oocytes with stimulated neutrophils as function of time, which
yielded similar results. In the absence of cumulus cells, the poor scores for the oocytes incu-
bated with stimulated neutrophils for 1, 2, 3 and 4 hrs were approximately 50%, 70%, 90% and
100% for MT and CH. In the presence of cumulus cells, the average poor scores for the oocytes
incubated with stimulated macrophage cells for 1, 2, 3 and 4 hrs were approximately 50%, 65%,
80% and 100% for MT and CH. Overall, increasing the incubation time increased significantly

Fig 4. Reactive oxygen species generation in oocytes exposed to MPO.Oocytes without cumulus cells
were exposed to MPO (40nM) for 24 hours incubation to determine intracellular ROS generation. The
fluorescence intensity was estimated as relative fluorescence unit (RFU) and plotted as a bar graph to
present the fold changes in ROS production upon MPO treatment relative to untreated control oocytes. Error
bars indicate ± relative standard error of mean (SEM). * p<0.05 vs. controls. Inset presents representative
images of control and oocyte exposed to MPO for 24 hours. Scale bars: 50 μm. Images shown are from a
typical experiment performed at least three times.

doi:10.1371/journal.pone.0151160.g004
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the poor scores for MT and CH (p = 0.00) (data not shown). Cumulus cells showed a non-sig-
nificant protective effect against MPO secreted from stimulated neutrophils at 2, 3, and 4 hrs of
incubation (p = 0.9). Collectively, either utilizing stimulated macrophages or neutrophils, the
major cause for oocyte quality deterioration is the activation MPO that can be successfully
inhibited by using melatonin.

Discussion
Recent studies have shown that intra-oocyte H2O2 concentration is relatively high and diffuses
to the extracellular environment of the oocyte [31, 62]. Our current study confirms and extends
these results and indicates that the diffused H2O2 deteriorates oocyte quality through MPO
activation independent of cumulus cells and exogenously added H2O2, and could be prevented
by treatment with melatonin, a potent inhibitor of MPO chlorinating activity [34–36]. Simi-
larly, stimulated macrophages and neutrophils were also found to deteriorate oocyte quality
independent of cumulus cells presence in a time dependent fashion, and could be prevented by

Fig 5. The direct effect of stimulatedmacrophages on oocyte quality, microtubule morphology (MT) and chromosomal alignment (CH), in the
absence (gray bars) and presence (green bars) of cumulus cells. There was a significant time dependent effect of stimulated macrophages on MT and
CH (p<0.05). Cumulus cells did not offer significant protection against macrophages activity (p>0.05). The experiments were conducted with three
replications and the error bars represent the standard error of the mean.

doi:10.1371/journal.pone.0151160.g005
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melatonin. Macrophages and neutrophils are one of the principal defense mechanisms of
innate immunity [63, 64] as a source of MPO and other toxic molecules used in controlled
environments to degrade invading pathogens [24, 65]. Although, the association between mac-
rophages and infertility has been repeatedly reported [66–68], the current work is the first to
mechanistically link the MPO activity with the deterioration in the oocyte quality, which
adversely influences infertility.

All the indications point to diffused intra-oocyte H2O2 being sufficient to trigger the MPO
chlorinating activity (generation of HOCl), which was responsible for the loss of oocyte quality.
Hydrogen peroxide is a naturally occurring molecule within the oocyte and a high portion
appears to diffuse outside the oocyte [31]. Hydrogen peroxide is an uncharged stable molecule,
and permits through biological membranes in a fashion similar to water [69, 70] via limited dif-
fusion and transport through specialized proteins known as aquaporins [71]. MPO activated
through intraoocyte diffused H2O2, was found to negatively affect oocyte quality in a time
dependent manner in a similar fashion to that recently observed when oocytes were treated with
increasing concentration of exogenous HOCl (Shaeib et al., in press. 2015). Treatment with
HOCl disturbs the antioxidant capacity of cumulus cells by decreasing the number and/or via-
bility of these protective cells (Shaeib et al., in press. 2015). Indeed, MPO treatment was found
to mediate cumulus oocyte damage to almost the same extent as that in the absence of cumulus
cells. HOCl may mediate oxidative damage and/or oocyte fragmentation through its ability to

Fig 6. The protective effect of melatonin (MLT) against stimulated macrophages activity on oocytes quality (MT and CH) in the absence (gray bars)
and presence (green bars) of cumulus cells. The presence of melatonin (200 μM) showed significant protection for MT and CH at 1 hr incubation (p<0.05).
In general, cumulus cells did not offer significant protection against macrophages activity (p>0.05). The experiments were conducted with three replications
and the error bars represent the standard error of the mean.

doi:10.1371/journal.pone.0151160.g006
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undergo numerous reactions with biomolecules, including aromatic chlorination, chloramine
formation, aldehyde generation, and oxidation of thiols [4, 28]. Preservation of oocyte quality
by melatonin provides further evidence for the involvement of MPO activation in causing
oocyte quality deterioration [35, 36]. The ability of MPO to utilize melatonin as a one electron
substrate to produce substances with less antioxidant potential, such as N1-acetyl-N2-formyl-
5-methoxynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), limits the dura-
tion of the oocyte protection by the amount of the melatonin provided [72, 73]. Previously, we
have shown that pre-incubation of oocytes with increasing concentrations of melatonin prior to
HOCl treatment significantly prevented HOCl-mediated deterioration of oocyte quality [36]. It
has been further demonstrated that, under specific condition, melatonin treatment could signifi-
cantly improve fertilization and pregnancy rates [74, 75]. This work provides a direct link
between MPO and deterioration of oocyte quality leading to poor reproductive outcomes.

Several inflammatory diseases such as endometriosis, polycystic ovarian syndrome, diabe-
tes, are not only associated with increased ROS production but also increased MPO levels [16–
20, 76, 77]. In these disorders, elevated MPO levels have also been linked directly or indirectly
with decline in fertility [2, 78]. We have previously showed that oocytes obtained from women
with endometriosis display granulosa cells apoptosis, increased nitrotyrosine, premature corti-
cal granule exocytosis in oocytes, disrupted microtubule morphology, and disrupted chromo-
somal alignment [79]. The deterioration of these oocyte quality parameters is not only caused
by ROS but may also occur through MPO catalysis consistent with our current results [5, 31,
36]. Elevated MPO activity shifts the environment from one of host defense to one capable of
host damage directly through the generation of ROS or indirectly through hemoprotein heme
destruction and subsequent free iron release [29]. Free iron (most commonly Fe2+) through
H2O2 driven Fenton reaction yields •OH, which propagates deterioration in oocyte quality
contributing to the development of infertility [80–82]. MPO can also consume NO as a physio-
logical one-electron (1e-) substrate [83]. Direct quantitative NO measurements utilizing NO-
selective electrodes revealed that there is a significant amount of NO inside the oocyte [84].
NO deficiency has been shown to deteriorate oocyte quality and accelerate oocyte aging [50,
52]. Thus, MPO may damage the oocytes through multiple pathways: generation of oxidants
such as HOCl and •OH, serving as a source of free iron, and depleting NO.

MPO is produced in high levels during inflammation throughout of the female reproductive
tract from stimulated inflammatory cells such as neutrophils, monocytes, and macrophages [1,
85–87]. The distribution of macrophages in the ovary during different stages of oocyte develop-
ment, as well as their presence in peri-ovulatory human follicular fluid, suggest that macro-
phages play important roles in folliculogenesis and tissue restructuring at ovulation [10, 11].
Indeed, during oocyte development in mice, rats, and humans, macrophages are recruited into
the cellular layers of the follicle causing their numbers to be greatest just prior to ovulation [10,
12]. Activation of these macrophages or recruitment of other immune cells in the presence of
inflammation for any reason can therefore contribute to deterioration in oocyte quality. Acti-
vated macrophages, like neutrophils, may mediate oocyte quality damage not only through
triggering of MPO chlorinating activity, but also through ROS and cytokine cascades. Previ-
ously, we have shown that ROS such as O2

•-, H2O2,
•OH, and ONOO-, as well as, IL-6, gener-

ated in the process of oxidative stress, not only regulates the inflammatory setting and
contributions in keeping of chronic inflammatory state but also directly or indirectly affects the
metaphase-II oocyte spindle and thus chromosomal alignment and significantly contributes to
infertility [4, 5, 46, 51]. Similarly, treatment with melatonin (MPO inhibitor and ROS scaven-
ger) highlights the culpability of immune cells in affecting oocyte quality.

Parallel to increased expression of MPO in inflammation, research has demonstrated eleva-
tions in macrophage concentration and activity in conditions such as polycystic ovarian
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syndrome and endometriosis related infertility [11, 88–91]. Non-activated peritoneal macro-
phages when co-cultured with the oocyte post fertilization leads to higher rates of development
in in-vitro embryos when compared to the control group [56]. In support of the variable role of
macrophages based on activation status, an association has been demonstrated between endo-
metriosis and increased numbers of macrophages; however concluded based on colorimetric
assay of MPO activity, that impaired function or abnormal activation, and not macrophages
population size is important for endometriotic tissue proliferation [78, 92]. Similarly, high con-
centrations of inflammatory cytokines (TNF and IL-1) secreted from activated macrophages
have been shown to cause deleterious effects on pre-implantation embryos [93]. Therefore,
increased macrophage activation in the follicular fluid may cause a disruption in folliculogen-
esis and the deterioration in oocyte quality observed in pathologic conditions causing infertility
[9, 66, 94, 95]. As shown in in vitro studies, oxidative states generated upon activating macro-
phages and neutrophils may also compromise oocyte quality by affecting the meiotic spindle
and therefore the alignment of the chromosomes [4, 5, 31, 36, 46, 51, 61]. Thus, irrespective of
whether purified MPO or activated macrophages are utilized, this works provides an initial
mechanistic link between MPO activity and deterioration in oocyte quality.

In addition to its ability to serve as a potent inhibitor of the chlorinating activity of mamma-
lian peroxidases and a scavenger of ROS, melatonin serves as a transition metal chelator,
thereby reducing the downstream adverse effects such as lipid peroxidation, protein oxidation,
and DNA damage [36, 96–99]. Melatonin is also unique among other HOCl scavengers, as its
oxidation products have no biologically deleterious effects and therefore has broad therapeutic
indications including cardiovascular disease, immune dysfunction, sleep disturbance and sub-
fertility [100, 101]. Collectively, melatonin’s ability to inhibit the chlorinating activity of MPO
or scavenging neutrophil or macrophage driven HOCl might be a useful therapeutic approach
in reducing adverse reproductive outcomes caused by inflammation mediated deterioration in
oocyte quality.

In conclusion, our current work showed for the first time the link between stimulated- mac-
rophages and neutrophils, major sources of MPO, and oocyte quality deterioration, highlight-
ing the implications of these cells in infertility caused by inflammatory conditions. Melatonin
has potential therapeutic effects in preserving oocyte quality, thus improving reproductive out-
comes in patients with chronic inflammation.
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