
Research Article
Identification of Potential Key Biomarkers and Immune
Infiltration in Oral Lichen Planus

Lou Geng , Xingming Zhang , Yi Tang , and Wenli Gu

Department of Clinical Laboratory, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai 200011, China

Correspondence should be addressed to Wenli Gu; lilygu8@126.com

Received 19 October 2021; Accepted 11 January 2022; Published 26 February 2022

Academic Editor: Prasenjit Mitra

Copyright © 2022 Lou Geng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Oral lichen planus (OLP) is a chronic autoimmune oral mucosal disease that seriously affects the life quality of the
patients. But till now, the exact etiology and pathogenesis of OLP remain unclear. Our study is aimed at finding the key molecules
and pathways involved in the pathogenesis mechanisms of OLP, providing more effective therapeutic strategies for OLP.Methods.
Data from GSE52130 were downloaded from GEO datasets for analysis. Then, we carried out enrichment analysis of the
differentially expressed genes (DEGs) using Gene Ontology (GO) and KEGG pathway analyses. Next, the CIBERSORT
algorithm was used to assess immune cell infiltration in OLP patients. Furthermore, we also constructed a protein-protein
interaction network using STRING and Cytoscape and simultaneously sought potential transcription factors plug-in including
MCODE CytoHubba and iRegulon. In addition, ROC analysis was employed to assess the diagnostic performance of these hub
genes. Lastly, we identified 6 promising novel drugs to treat OLP through Connectivity Map. Results. We illustrated that 255
DEGs were mainly enriched in the focal adhesion pathway and metabolism pathways. Besides, Cibersort analysis showed that
M1 macrophages, T follicular helper cells, and T regulatory cells are more infiltrated in OLP samples. In addition, ROC
analysis demonstrated that these hub genes owned higher diagnostic value in OLP, in which SPRR1B had the highest
diagnostic value. And we also predicted that SOX7 was the most relevant transcription factor of those hub genes. Lastly,
through the CMap database, we identified 6 small molecules as possible treatment drugs of OLP. Conclusion. Our research
identified that SPRR1B could be used as potential biomarkers for the early diagnosis of OLP. In addition, as a chronic
autoimmune oral mucosal disease, OLP has different infiltration types of immune cells. Furthermore, 6 small molecules were
proposed as promising novel treatment drugs for OLP patients. Therefore, our research may provide new impetus for the
development of effective OLP biological treatment options.

1. Introduction

Oral lichen planus (OLP) is a chronic autoimmune oral
mucosal disease affecting 1-2% population worldwide [1, 2]
and is characterized by its recurrence and chronic protrac-
tion course. It can be divided into erosive and nonerosive
OLP according to the condition of the base mucosa of the
lesion. The disease mainly invades buccal mucosa, tongue,
and gingiva, so most patients may manifest ulcers, erosion,
papules, and mucosal exfoliation in the oral cavity, while
others obtain rough, numb, and painful feelings. Pain is
one of the OLP common symptoms and may even interfere
with the patient’s speech, eating, and swallowing.

It has been known that infiltration of T lymphocytes in
lamina propria, formation of keratinocytes, and destruction
of basement membrane is typical histopathological features
of OLP. The helper T cells are the main lymphocytes in
the OLP, which can activate cytotoxic T cells and aggravate
the local immune response and thus induce apoptosis of
keratinocytes [3].

But till now, the exact etiology and pathogenesis of OLP
remain unclear. At present, it is recognized that many path-
ogenic factors, such as autoimmune response, mental stress,
infection, and hypersensitivity, might be involved in the
development of OLP [4]. The treatment of this disease is
mainly with glucocorticoids, nystatin, surface anesthesia,
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antibiotic mouthwash, and so on, but the effect is not
ideal. Meanwhile, these local or systemic immunosuppres-
sors can usually only alleviate clinical symptoms and have
obvious side effects for long-term use [5]. Therefore, eluci-
dating the mechanisms underlying the pathogenesis and
identifying more effective therapeutic strategies for OLP
is essential.

Moreover, OLP has been regarded as one of the precan-
cerous lesions of oral squamous cell carcinoma (OSCC),
which is the most dominant type of oral cancer, accounting
for more than 90% of them [6]. As a result, it is urgent to
clarify the malignant transformation mechanism of OLP to
OSCC, which might benefit to improve the ability of early
diagnosis of OSCC and provide new and more effective
treatment measures.

2. Materials and Methods

2.1. Acquisition of Sample Information. Firstly, we got the
clinical sample’s information of OLP from the Gene
Expression Omnibus (GEO) database (https://www.ncbi
.nlm.nih.gov/geo/). 23 tissue samples were retrieved from
GSE52130; we selected the top 14 ones, including 7 OLP

epithelium samples (OLPE) and 7 healthy control oral epi-
thelium (COE) samples. OLP patients were diagnosed clin-
ically and histologically according to WHO diagnostic
criteria.

To do further analysis, we downloaded all the mRNA
information of these 14 selected samples.

2.2. Data Further Process. Next, we normalized and proc-
essed the original expression matrix using R. After that, we
also selected out differentially expressed genes (DEGs) by
the limma package [7], based on the criteria: at least a 1.5-
fold change between COE samples and OLPE samples and
with adjusted P value < 0.05.

2.3. Enrichment Analysis. Next, all genetic information of
OLPE and COE samples was uploaded to gene set analysis
(GSEA); in addition, we also uploaded the 255 differentially
expressed genes to Ingenuity Pathway Analysis (IPA) data-
base to perform canonical pathway and molecule function
analysis. The default parameters were as follows: both P
value < 0.05 and absolute value of z-score > 2 are considered
significant.
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Figure 1: The differentially expressed genes between OLPE and COE were shown on the heat map and the volcano plot. (a) Heat map of
differentially expressed genes. Blue color represented a lower, and red color represented a higher expression level, while grey color
demonstrated no differential expression. (b) The volcano plot of differentially expressed genes. Blue dots represented significantly
downregulated genes, while red dots represented significantly upregulated genes. COE: control oral epithelium; OLPE: oral lichen planus
epithelium samples.
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Figure 2: Continued.
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Figure 2: GO and KEGG enrichment analyses were conducted on 255 DEGs in the OLPE samples. (a) Biology process enrichment of the
DEGs. (b) Molecular function enrichment of the DEGs. (c) Cellular component enrichment of the DEGs. (d) KEGG pathway enrichment of
the DEGs.
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Figure 3: Continued.
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Enrichment plot: KEGG_ECM_receptor_interaction
0.0

0.1

–0.2

–0.3

–0.4

–0.5

–0.6

–0.7

En
ric

hm
en

t s
co

re
 (E

S)

p.value p.adj.val ES

0.00 0.00 –0.6988

‘Control’ (positively correlated)

Zero cross at 10887

‘OLP’ (negatively correlated)

1.5
1.0
0.5
0.0

–0.5
–1.0
–1.5

Ra
nk

ed
 m

et
ric

 (s
ig

na
l 2

 n
oi

se
)

0 5,000 10,000 15,000 20,000
Rank in ordered dataset

Enrichment profile
Hits
Ranking metric scores

(d)

Figure 3: Continued.
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Enrichment plot: KEGG_Cytokine_cytokine_receptor_interaction
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Figure 3: h.all. v 6.2.symbols.gmt (Hallmarks) gene set database was used to analyze the whole gene expression value of the OLPE and COE
samples. GSEA first filtered the gene set according to the number of genes contained in the gene set, with the minimum number of 15 genes
and the maximum number of 500 genes by default. Significant gene sets were cut-off by FDR < 0:25 and P value < 0.05.
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2.4. Gene Ontology (GO) and Pathway Enrichment Analyses.
We next perform GO and KEGG enrichment analyses of the
DEGs. GO includes three categories, respectively, molecular
function (MF), biological processes (BP), and cellular com-
ponents (CC) [8]. KEGG is a knowledge database for sys-
tematic analysis of gene function in terms of the networks
of genes [9]. On the other hand, Reactome is a pathway
database which provides intuitive bioinformatics tools for
the visualization, interpretation, and analysis of pathway
knowledge. In this part of the study, P < 0:05 was used as
the threshold value, and the number of genes enriched in
each pathway was ≥2.

2.5. Immune Infiltration Analysis. The CIBERSORT algo-
rithm was used to estimate the relative abundance of 22
human immune cell types for purpose of elucidating the
immune infiltration landscape of OLP. It could evaluate the
infiltration proportions of immunocyte types in OLP samples
by using the LM22 gene signature based on deconvolution
[10]. We loaded DEGs between normal and OLP tissue sam-
ples into the CIBERSORT website (https://ciberfortstanford
.edu/), and the threshold value was set to a P value < 0.05.
Then, we obtained the immune score of 22 immune cells
and visualized them by using R packages “ggplot2.”

2.6. Gene Cluster Identification and Protein-Protein
Interaction (PPI) Network Analysis. The DEGs in OLPE
samples were uploaded to STRING to obtain the protein
network interaction diagram, in which a combination score
of >0.4 was set as a threshold value [11]. Next, the result
of STRING analysis was imported into Cytoscape v.3.7.2,
and protein cluster analysis of differential expressed genes
was conducted using Molecular Complex Detection
(MCODE) plug-in [12]. The genes contained in the gene
cluster with the highest scores were imported into the
STRING to draw the protein interaction network and fur-
ther analysis of which biological processes this gene cluster
was participated in. Accordingly, we could regard the nodes
with higher degrees of interaction as hub nodes.

2.7. ROC Analysis. The GSE38616 dataset was downloaded
from the GEO database and used as validation datasets.
Receiver operating characteristic (ROC) curve analysis was
used to evaluate the diagnostic value of these hub genes. P
value < 0.05 was considered statistically significant.

2.8. Analysis of Hub Genes and Transcription Factors
Associated with OLP. CytoHubba is a Cytoscape plugin
app, which has provided a simple and convenient method

Table 1: KEGG and Reactome pathway enrichment analyses for differentially expressed genes (P < 0:05).

ID Terms Count P value

Upregulated

hsa04512 ECM-receptor interaction 9 3.06E-07

hsa04974 Protein digestion and absorption 8 4.79E-06

hsa05146 Amoebiasis 7 1.65E-04

hsa04510 Focal adhesion 9 1.80E-04

hsa04611 Platelet activation 6 0.00336272

hsa04151 PI3K-Akt signaling pathway 9 0.005079306

hsa04145 Phagosome 6 0.006175871

hsa05144 Malaria 4 0.006529778

hsa04726 Serotonergic synapse 5 0.0109323

hsa00590 Arachidonic acid metabolism 4 0.011940849

hsa05323 Rheumatoid arthritis 4 0.031412058

hsa04912 GnRH signaling pathway 4 0.034212174

hsa04750 Inflammatory mediator regulation of TRP channels 4 0.041234535

hsa04940 Type I diabetes mellitus 3 0.042639686

hsa02010 ABC transporters 3 0.046388375

Downregulated

R-HSA-211859 Biological oxidations 11 1.950E-7

R-HSA-5579029 Metabolic disorders of biological oxidation enzymes 3 1.380E-4

hsa00982 Drug metabolism-cytochrome P450 4 0.002280447

hsa00340 Histidine metabolism 3 0.003265313

hsa00260 Glycine, serine, and threonine metabolism 3 0.010053474

hsa00380 Tryptophan metabolism 3 0.010557146

hsa00330 Arginine and proline metabolism 3 0.016186014

hsa01100 Metabolic pathways 10 0.037458967
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to explore key nodes in biological networks and select the
degree method to probe the PPI network for hub genes.

Subsequently, the Cytoscape plugin iRegulon was used to
analyze transcription factors regulating marker genes [13].
Parameter settings were as follows: minimum identity
between orthologous genes = 0:05 and maximum false dis-
covery rate on motif similarity = 0:001. The normalized
enrichment score (NES) was the output result. The higher
the scores were, the more reliable the results were. Tran-
scription factors and target gene pairs with NES > 7 were
selected.

2.9. CMap Analysis. The Connectivity Map (CMap) (https://
portals.broadinstitute.org/cmap) is an effective tool for pre-
dicting potential drugs that may affect the biological state

encoded in gene expression signatures [14]. The enrichment
score indicative of similarity was calculated, ranging from −1
to 1. A positive connectivity score indicated that the drug
could induce a similar pathway of disease progression,
whereas a negative one revealed that the drug could be a
therapeutic drug for OLP.

3. Results

3.1. Sample Information Processing and Screening of
Differentially Expressed Genes. Based on the sample informa-
tion, 255 differentially expressed genes (DEGs) picked out
from the OLPE samples, in which 187 genes were upregu-
lated and 68 genes were downregulated. The screening cri-
teria for DEGs were as follows: adjust P value < 0.05 and

5

4

3

2

1

0

–l
og

 (B
‑H

 p
‑v

al
ue

)

LX
R/

RX
R 

A
ct

iv
at

io
n

In
tr

in
sic

 p
ro

th
ro

m
bi

n
ac

tiv
at

io
n 

pa
th

w
ay

SP
IN

K1
 p

an
cr

ea
tic

 ca
nc

er
pa

th
w

ay

Re
tin

ol
 b

io
sy

nt
he

sis

Fa
tty

 ac
id

 D
‑o

xi
da

tio
n

PP
A

R 
sig

na
lin

g

N
eu

ro
pr

ot
ec

tiv
e r

ol
e o

f
TH

O
P1

 in
 A

lzh
ei

m
er

’s 
di

se
as

e

p3
8 

M
A

PK
 si

gn
al

in
g

H
ep

at
ic

 fi
br

os
is 

sig
na

lin
g

pa
th

w
ay

IL
‑6

 si
gn

al
in

g

D
en

dr
iti

c c
el

l m
at

ur
ac

tio
n

Xe
no

bi
ot

ic
 m

et
ab

ol
ism

 P
XR

sig
na

lin
g 

pa
th

w
ay

A
cu

te
 p

ha
se

 re
sp

on
se

sig
na

lin
g

To
ll‑

lik
e r

ec
ep

to
r s

ig
na

lin
g

G
P6

 si
gn

al
in

g 
pa

th
w

ay

Ch
ol

ec
ys

to
ki

ni
n/

G
as

tr
in

-
m

ed
ia

te
d 

sig
na

lin
g

Su
pe

rp
at

hw
ay

 o
f m

el
at

on
in

de
gr

ad
at

io
n

N
F-
𝜅

B‑
sig

na
lin

g

Ph
os

ph
ol

ip
as

es

A
ry

l h
yd

ro
ca

rb
on

 re
ce

pt
or

sig
na

lin
g

Positive z‑score
z-score = 0

Negative z‑score
No activity pattern available

Threshold

(a)

Sized by ; z‑score Colored by ; z‑score

All
Organismal injury and abnormalities Small molecule biochemis... Lipid metabolism Cellular movement Inflammatory re... Cellular growth... Cellular deve...

Cancer

Molecular transport

Cell To‑cell signaling and ... immune cell traffi...

Cardiovasul... Connectiv... Cardiovas... Drug met...

Tissue deve...
Carbohydr... Immunolog... Skeletal...

Tissue... inflamm... cellul... Con...

Cel... Ren... Infe... Ren...
Gastroin...

Nervous sys...
Organ d...

Der...

Ske...

cel...

Res....

Fre...

V....

C...

O....

C....

O.... H...

Hematological system dev... Hematological dis...

Organismal...

(b)

Figure 4: Further pathway analysis by using IPA was conducted on 255 DEGs in the OLPE samples. (a) The canonical pathway analysis of
IPA. The color depth in the bar chart represented the z-score, and generally, an absolute z-score greater than 2 was considered meaningful.
(b) Disease and function analysis of IPA. Orange meant z − score > 0, blue meant z − score < 0, and grey meant no z-score; z − score > 2
meant the function was significantly activated, and z − score < −2 means the function was significantly inhibited.
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∣log2 Fold Change ∣ ≥1:5. According to the analysis of these
gene expressions, the heat map and the volcano plot are
made as shown in Figure 1.

3.2. GO and KEGG Enrichment Analyses. Then, GO and
KEGG enrichment analyses were conducted on 255 DEGs in
the OLPE samples by using R. Genes ontology and biological
functional analysis indicated that the 255 DEGs in OLPE sam-
ples were most related to skin development in the biological
process, and extracellular matrix structural constituent in the
molecular function, in addition, cornified envelope in the cel-
lular component as shown in Figures 2(a)–2(c).

On the other hand, KEGG pathway analysis showed
the 255 DEGs genes were significantly enriched in pro-
tein digestion and absorption, ECM-receptor interaction,
focal adhesion, and metabolism pathways, such as drug
metabolism-cytochrome P450, glycine, serine and threo-
nine metabolism, and tryptophan metabolism, as shown
in Figure 2(d).

In addition, analysis of the pathway enrichment indi-
cated that DEGs in OLPE samples were mainly enriched in
the IL-17 signaling pathway. It has been well known that
OLP is an autoimmune disease, in which IL-17 mRNA and
protein with higher expression, so the IL-17 signaling path-
way may have a critical role in OLP. And recent research
found that Renin could significantly upregulate the expres-
sion of IL-17 by promoting STAT4 phosphorylation in oral
keratinocytes, which provided promising potential targeted
therapies for OLP patients [15].

3.3. The DEGs in the OLPE Samples Were Mainly Enriched
in Focal Adhesion Pathway and Metabolism Pathway. Gene
set enrichment analysis (GSEA) was used for enrichment
analysis of the samples’ genes. The significantly enriched
gene sets were set at a default cut-off as P value < 0.05 and
FDR < 0:25. The enrichment analysis of gene sets indicated
that the focal adhesion pathway, ECM-receptor interaction,
primary immunodeficiency, autoimmune thyroid disease,

chemokine signaling pathway, and cytokine receptor inter-
action were significantly enriched in OLPE samples as
shown in Figure 3. Accordingly, it was reasonably concluded
that OLP might be related to primary immunodeficiency
diseases and autoimmune driven diseases, such as autoim-
mune thyroid disease. Moreover, the enrichment analysis
also showed that there are some common pathways and
pathophysiological mechanisms between OLP and immune
diseases, which gives us a deeper understanding of OLP.

Table 2: IPA canonical pathways.

Pathways -log P Z-score

Activation pathways

Intrinsic prothrombin activation 5.68 2.828

Neuroprotective role of THOP1 in Alzheimer’s disease 2.9 2.828

Dendritic cell maturation 1.9 2.646

GP6 signaling pathway 1.63 2.449

Cholecystokinin/gastrin-mediated signaling 1.62 2.449

Acute phase response signaling 1.88 2.236

Toll-like receptor signaling 1.74 2.2361

p38 MAPK signaling 2.72 2.121

Phospholipases 1.42 2.000

Inhibitory pathways

SPINK1 pancreatic cancer pathway 4.74 -2.828

PPAR signaling 3.07 -2.121

PXR signaling pathway 1.88 -2.121

Super pathway of melatonin degradation 1.47 -2.000

Table 3: IPA significant functions.

Functions Z-score P value

Activated functions

Release of lipid 2.93 1.2E-03

Cancer 2.77 2.56E-05

Release of fatty acid 2.764 1.08E-03

Release of eicosanoid 2.592 1.48E-03

Growth of malignant tumor 2.436 1.98E-03

Quantity of catecholamine 2.376 1.76E-03

Release of prostaglandin E2 2.361 1.86E-6

Transport of molecule 2.265 7.78E-4

Cancer of cells 2.228 1.28E-6

Activation of phagocytes 2.211 8.66E-4

Concentration of dopamine 2.204 1.81E-3

Neoplasia of cells 2.190 3.32E-4

Leukocyte migration 2.150 1.51E-3

Cell movement of leukocytes 2.125 6.93E-4

Malignant solid tumor 2.093 1.49E-5

Cell movement of granulocytes 2.078 4.2E-3

Neurotransmission 2.049 5.08E-3

Activation of myeloid cells 2.003 1.19E-3

Inhibited functions

Replication of hepatitis C virus -2.219 3.74E-3
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Figure 5: Continued.
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In addition, it was shown that the KEGG and Reactome
pathways of upregulated DEGs were significantly enriched
in ECM-receptor interaction, protein digestion, absorption,
amoebiasis, and focal adhesion, but those pathways of down-
regulated DEGs were enriched in biological oxidations, drug
metabolism-cytochrome P450, and metabolic pathways, as
shown in Table 1.

3.4. Further Pathway Analysis by Using IPA. To further val-
idate our results and identify crucial molecules involved in
the progress of the OLP, a total of 255 differentially
expressed genes were uploaded to Ingenuity Pathway Anal-
ysis (IPA) for core analysis. We used the IPA software to
further validate the results of DEGs. A total of 20 canoni-
cal pathway analysis results showed that 9 pathways were
activated and 4 pathways were inhibited significantly, as
shown in Figure 4(a) and Table 2. Specifically, intrinsic
prothrombin activation pathway had the highest activation
scores.

On the other hand, the heat map could indicate the
results of disease and function analysis, which showed there
were 10 main functional modules about 255 differentially
expressed genes in the OLPE samples, namely, organismal
injury and abnormalities, renal and urological disease, can-
cer, small molecule biochemistry, molecular transport, lipid
metabolism, cell-to-cell signaling and interaction, hemato-
logical system development and function, cellular move-

ment, hematological system development and function,
and immune cell trafficking. Figure 4(b) and Table 3 show
significantly activated and inhibited functions among these
main modules. From the point of view of the analysis, we
could draw conclusions that OLP might have a close rela-
tionship with tumor, and those upregulated DEGs were
mainly enriched in cell migration and movement pathways.
In addition, the analysis results also indicated that OLP’s
occurrence might be related to hepatitis C virus infection.

3.5. Analysis of Immune Cell Infiltration. As OLP was an
immune-driven disease and we also identified some
immune-related pathways including the IL-17 signaling
pathway, dendritic cell maturation, chemokine signaling
pathway, and cytokine receptor interaction, so we used the
CIBERSORT algorithm to estimate the abundance of
immune cells in OLP. The results revealed that macrophages
M1, activated dendritic cells, T cell follicular cells, and CD8
T cells account for a large proportion of immune cells, as
shown in Figure 5(a). The distribution of 22 types of
immune cells in each sample showed the immunological dif-
ferences between OLP samples and control ones, as shown
in Figure 5(b). And the box plot in Figure 5(c) visualizes
those differences in each type of immune cell. The results
showed that OLP samples displayed a significantly increased
abundance of T cell regulatory (Tregs), macrophages M1,
and T cell follicular helper than the control.
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Figure 5: The abundance of 22 infiltrating immune cell types in OLP was showed. (a) Barplot showed the proportion of 22 types of
infiltrating immune cell in OLP samples. (b) Heat map showed the abundance of immune cells in each sample. (c) Barplot showed the
proportion of each immune cell type between normal and OLP samples, in which the green represented normal samples and the red
represented OLP samples. P value < 0.05.
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Figure 6: Continued.
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Figure 6: Protein-protein interaction network analysis was processed with Cytoscape, and different clusters were analyzed by MCODE. (a)
The STRING database file was uploaded into Cytoscape v.3.7.2 to draw protein-protein interaction network, and different clusters analyzed
by MCODE were noted with different colors. The significance of P value was shown by the size of node. The color of the nodes showed the
change of the DEGs, and the smaller the P value is, the larger the diameter of node is. The color of the edge represented the value of
combined score from 0.4 to 1, grey to dark. (b). The cluster 1 had 19 nodes and 171 edges, and the cluster score is 19.00. (c) The cluster
2 network had 9 nodes and 36 edges with 9.00 cluster score. (d) The cluster 3 network had 29 nodes and 89 edges with 6.357 cluster
score, in which the upregulated nodes were colored in red, but the downregulated ones were colored in blue.
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3.6. Protein-Protein Interaction (PPI) Network Analysis. To
filter out the hub genes from the differentially expressed
genes in the OLPE sample, we next uploaded 255 differen-
tially expressed genes to the STRING for further analysis
and obtained 245 nodes and 586 edges. The local clustering
coefficient was 0.411 and PPI enrichment P value < 1:0e −
16; then, the TSV format file was downloaded and proc-
essed with Cytoscape as shown in Figure 6(a). MCODE
was used to process the network data to identify gene clus-
ters as shown in Figures 6(b)–6(d), and genes in the first
three-gene cluster with the highest score ranking were
selected for BP enrichment analysis. Next, we imported
these cluster genes into the Metascape database to analyze
and then found that the genes in the gene cluster 1 and
cluster 2 were mainly involved in cornification and forma-
tion of the cornified envelope as shown in Table 4, which
was consistent with the pathological results and basic path-
ological process of oral lichen planus.

But actually, what interested us most was cluster 3,
which enriched more related ways and might play more
important roles in OLP. The 29 genes in gene cluster 3
mainly participated in posttranslational protein phosphory-
lation, inflammatory response to antigenic stimulus, fever
generation, blood vessel development, signaling by PDGF,
response to nutrient levels, response to inorganic substance,
negative regulation of cytokine-mediated signaling pathway,
and regulated exocytosis pathway, all of which were with
high statistical significance according to P values.

3.7. Hub Genes and Transcription Factors Associated with
OLP. Using the degree method, we identified LOR, CDSN,
PI3, FLG, LCE3D, S100A7, SPRR1B, SPRR2G, SPRR2B,
and SPRR2E as hub genes, as shown in Figure 7(a). Further-
more, we downloaded the focal adhesion KEGG pathway
diagram, as shown in Figure 7(b). Focal adhesion and
PI3K-Akt signaling pathway, ECM-receptor interaction,
and cytokine-cytokine receptor interaction exit a crosslink.
It was well known that the focal adhesion pathway plays a

major role in the pathogenesis of OLP, which was also related
to hematopoiesis, tumor metastasis, vascular diseases, and
malignant transformation. On the other hand, the metabolism
disorder had a close relationship with the development of
OLP. It had been shown that the HIF1α/PLD2 axis was asso-
ciated with glycolysis and induces T cell immunity in oral
lichen planus [16]. Asmetabolic changes are significant during
the malignant transformation of primary OLP cells, it is
important to focus on changes in metabolism.

In addition, the transcription regulatory network of these
hub genes was shown in Figure 8. Among them, the tran-
scription factors with an NES score > 7 consisted of FOXO6
(Forkhead Box O6, NES = 8:638), SIM1 (SIM BHLH Tran-
scription Factor 1, NES = 7:917), NEUROD2 (Neuronal Dif-
ferentiation 2, NES = 7:992), SOX7 (SRY-Box Transcription
Factor 7, NES = 7:767), and YY1 (YY1 Transcription Factor,
NES = 7:477). Since SOX7 targets more hub genes, it plays a
more important role in the progression of OLP.

3.8. Construction and Validation of the Prognostic Model.
Dataset GSE38616 was treated as the validation set; we con-
ducted ROC analysis to evaluate the diagnostic performance
of 10 specifically expressed hub genes and used area under
the curve (AUC) as an indicator combining sensitivity and
specificity, which could describe the intrinsic effectiveness of
diagnostic tests. It was shown that those hub genes owned
higher diagnostic value in OLP, in which SPRR1B had the
highest diagnostic value (AUC: 0.837). And the AUC of other
genes in OLP were in turn as follows: CDSN (AUC: 0.816),
SPRR2G (AUC: 0.796), SPRR2B (AUC: 0.776), PI3 (AUC:
0.755), SPRR2E (AUC: 0.735), S100A7 (AUC: 0.735), LOR
(AUC: 0.735), LCE3D (AUC: 0.714), and FLG (AUC: 0.694),
as shown in Figure 9. Therefore, we hypothesized that SPRR1B
might be biomarkers for the early diagnosis of OLP.

3.9. Identification of Potential Compounds. To identify the
potential drugs for regulating the progression of OLP, we
applied the upregulated and downregulated tags to query

Table 4: Top 3 gene cluster analysis by Metascape database.

Cluster Terms Count P value

Cluster 1

GO:0070268 Cornification 9 -21.14

Cluster 2

R-HSA-6809371 Formation of the cornified envelope 18 -40.17

GO:0070268 Cornification 9 -16.2

Cluster 3

R-HSA-8957275 Posttranslational protein phosphorylation 6 -8.54

GO:0002437 Inflammatory response to antigenic stimulus 5 -7.92

GO:0001660 Fever generation 3 -6.74

GO:0001568 Blood vessel development 9 -6.74

R-HSA-186797 Signaling by PDGF 4 -6.18

GO:0031667 Response to nutrient levels 7 -5.8

GO:0010035 Response to inorganic substance 6 -4.34

GO:0001960 Negative regulation of cytokine-mediated signaling pathway 3 -4.05

GO:0045055 Regulated exocytosis 6 -3.53
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the CMap database. As presented in Table 5, the top positively
correlated compounds included pimethixene, caffeic acid,
proadifen, clenbuterol, withaferin A, cinnarizine, molindone,
and parthenolide, which might make disease deterioration.
On the contrary, the top 6 negatively correlated compounds
had a relatively prominent function in reversing differential
expression during OLP progression, and they were AG-
013608, Prestwick-857, harmalol, bumetanide, MK-886, and
NU-1025. These findings suggested that these 6 small mole-
cule compounds might be potential drugs for OLP patients.
However, the above conclusions need to be further verified.

4. Discussion

OLP is a common chronic mucocutaneous inflammatory
disease and is also regarded as a potentially malignant oral

disorder by WHO because 1.63% of lesions initially diag-
nosed as OLP evolved into OSCC. In this study, we screened
255 differentially expressed genes from OLP epithelium
samples through the array dataset GSE52130, in which 187
upregulated and 68 downregulated genes. Next, the results
of gene enrichment analysis suggested that the differentially
expressed genes in the OLPE samples were mainly enriched
in the focal adhesion pathway and metabolism pathway.

It has been known that metabolism become the focus of
the etiology of immune diseases, which could coordinate the
proliferation and differentiation of T cells [17]. And OLP is
T cell-mediated inflammatory disorder, and metabolic path-
way has been regarded as an important part of the OLP
pathophysiological mechanism. Furthermore, the metabolic
changes of OLP cells are closely related to the development
of disease and malignant transformation. Studies have
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Figure 7: Hub genes associated with OLP were showed on the hub gene network and the focal adhesion diagram. Focal adhesion KEGG
pathway diagram. (a) Top 10 genes were identified as hub genes by means of degree method, all of which were upregulated. (b) The
focal adhesion pathway diagram was downloaded from KEGG website.
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shown that succinate accumulates in OLP and OSCC at both
tissue and cell levels, which activates the hypoxia-inducible
factor-1α (HIF-1α) pathway and induces apoptosis, so succi-
nate plays a key role in metabolic changes during the malig-
nant transformation from OLP to OSCC [17].

Other researchers found that the mTOR pathway was
upregulated in OLP patients, which played an important role
in the immune metabolism of T cells. Targeted mTOR gly-
colysis pathway could significantly inhibit the proliferation
of T cells and block its DNA synthesis, thereby inducing cell
apoptosis and regulating Th17 subsets differentiation [18].
In addition, HIF1α and phospholipase D2 (PLD2) are highly
expressed in local T cells of OLP, and HIF1α could upregu-
late the expression of PLD2 and promote T cellular immu-
nity of OLP through glycolysis [16]. So, the metabolic

changes of OLP are especially worthy of our further explora-
tion, and the intervention to OLP metabolism might be a
new therapeutic schedule.

On the other hand, the adhesion pathway is enriched in
various diseases including cancer. As we known, the focal
adhesion and ECM-receptor interaction pathways have been
found to be involved in the development of OSCC [19]. In
addition, it had been reported that HPV-mediated cervical
malignancy might disrupt the process of cell homeostasis
because of local immunosuppression, then damage the focal
adhesion and decomposition of extracellular matrix, there-
fore promote the invasion, diffusion, and metastasis of can-
cer cells [20]. Besides, it has been found that integrin α3
could recruit the c-Src/extracellular signal-regulated protein
kinase cascade and induce the phosphorylation of focal
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Figure 8: We showed the transcription regulatory network of these hub genes. (a) Five transcription factors with an NES score > 7 were
predicted by iRegulon and visualized by the Cytoscape. We showed regulatory network between transcription factors and targeted genes,
in which SOX7 could overlap with seven genes, so it might play a more important role in the progression of OLP. (b) The normalized
enrichment score (NES) of SOX7 was 7.767.
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Figure 9: ROC curve of the 10 specifically expressed hub genes for OLP. We conducted ROC analysis to evaluate diagnostic performance of
10 specifically expressed hub genes and used area under the curve (AUC) to indicate the intrinsic effectiveness of diagnostic tests. It was
showed that SPRR1B had the highest diagnostic value (AUC: 0.837), and other genes AUC were in turn as follows: CDSN (AUC: 0.816),
SPRR2G (AUC: 0.796), SPRR2B (AUC: 0.776), PI3 (AUC: 0.755), SPRR2E (AUC: 0.735), S100A7 (AUC: 0.735), LOR (AUC: 0.735),
LCE3D (AUC: 0.714), and FLG (AUC: 0.694). Therefore, we hypothesized that SPRR1B might be biomarkers for early diagnosis of OLP.
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adhesion kinase, thus enhance migration and invasion of
cervical cancer cells and promote angiogenesis through
matrix metalloproteinase 9 [21]. Therefore, targeting the
focal adhesion pathway is expected to become a new thera-
peutic strategy to slow down the development of the disease
and improve the patient’s condition.

As the enrichment analyses of OLP have showed its cor-
relation with immune function, we then conducted Ciber-
sort analysis. The immune infiltration profiles were
different between normal and OLP samples, and the OLP
displayed increased abundance of Tregs, macrophages M1,
and T cell follicular helper. It has been well known that
Tregs have emerged as important mediators in inflamma-
tory and autoimmune diseases. Researchers had found that
OLP patients had a higher proportion of Tregs both in
serum and in tissues than healthy ones, which suggested that
Tregs might contribute to the immunopathogenesis of OLP,
and it might provide a new therapeutic target for OLP treat-
ment [22]. As reported, macrophages could involve in the
immunopathogenesis of OLP; in addition, CD68+ macro-
phages could serve as a diagnostic indicator of OLP [23].
Furthermore, the pathogenetic functions of T follicular
helper cells, a subtype of CD4+ T-helper cells, significantly
increased in OLP, which also were involved in pathogenesis
of OLP [22]. Therefore, our findings might be essential to
future target studies of OLP immunotherapies.

Filaggrin (FLG) and loricrin (LOR) are skin barrier pro-
tein, and LOR is a major cell envelopes (CE) component. It
had been reported that LOR and FLG were abnormally
upregulated in atopic dermatitis, which played a critical role
in disease development [24]. It has been well known that
OLP is a hyperkeratotic mucosal disease, and recently,
researchers have found that the expression of filaggrin and
filaggrin-2 markedly increased in OLP patients [25], which
might suggest that filaggrin is essential to keratinization.
Our findings about FLG also provide strong evidence for this

viewpoint. In addition, late cornified envelope protein 3D
(LCE3D), one of hub genes we have found, is also a specific
development associated gene, which participated in the for-
mation of stratum corneum, and was associated with psori-
asis vulgaris and atopic dermatitis [26].

Corneodesmosin (CDSN) is identified as an adhesive
protein maintaining cohesion and intercellular integrity in
skin. And the deficiency of CDSN in mouse skin causes epi-
dermal barrier defects including severe skin detachment,
increased transepidermal water loss, and easy penetration
of toluidine blue [27]. But until now, the function of CDSN
in OLP has not been reported.

PI3 is also known as elafin, an endogenous serine prote-
ase inhibitor produced by epithelial and immune cells.
Research has shown that elafin is closely related to innate
immune, and proteolytic cleavage of elafin may impair the
innate immune function of the protein [28]. In addition, ela-
fin expression levels and subcellular localization could be
used as a biomarker for cervical cancer severity [28]. In
our study, we also found that PI3 mRNA expression was sig-
nificantly upregulated in OLP patients. From our knowl-
edge, it is the first report that PI3 might be acted as a
novel biomarker in OLP.

S100A7, s100 calcium binding protein A7, is a mem-
ber of S100 protein family. Researchers have found that it
was abnormally upregulated in esophageal squamous cell
carcinoma (ESCC), which might promote tumor progression
by impacting M2 macrophage infiltration and angiogenesis;
thereby, S100A7 was expected to act as a therapeutic target
for ESCC treatment [25]. Moreover, based on whole gene
expression profiling, it had been identified as a novel candi-
date biomarker related to OSCC [29].

It has been well known that SPRR family molecules
played important functions in the progression of many dis-
eases, so SPRR families, especially SPRR1B, may be potential
predictive biomarkers of lung adenocarcinoma [30].
Research has found that overexpression of SPRR1B in OSCC
stem-like cells was positively correlated with these cells
growth by activating of MAP kinase signal [30]. In addition,
overexpression of SPRR2B could promote cell proliferation
in gastric adenocarcinoma byMDM2-p53/p21 signal pathway
[31]. Moreover, researchers also found that SPRR2E was one
of gene prognostic signature for OSCC [32]. In our study, we
have identified that SPRR1B might be acted as potential pre-
dictive biomarkers and treatment targets in OLP.

Furthermore, we also identified that FOXO6, SIM1,
NEUROD2, SOX7, and YY1 might be the regulators of
OLP, especially SOX7, which would be worthy of further
exploration in order to provide clues for improving clinical
treatment effects of OLP.

Currently, there are no effective treatments for OLP, due
to its unknown etiology. In this respect, based on the analy-
sis of DEGs, we also selected 6 drugs which might help to
develop new targeted drugs for OLP by using the CMap
database. NU-1025 is a PARP inhibitor, which could sensi-
tize temozolomide-treated glioblastoma cell lines and
decrease drug resistance [33]. Besides, NU-1025 can inhibit
cell proliferation and induce apoptosis in human breast can-
cer cells [34].

Table 5: Small molecule drugs identified by Connectivity Map.

Drugs Enrichment

Positive compounds

Pimethixene 0.811

Caffeic acid 0.797

Proadifen 0.752

Clenbuterol 0.711

Withaferin A 0.708

Cinnarizine 0.649

Molindone 0.642

Parthenolide 0.633

Negative compounds

AG-013608 -0.455

Prestwick-857 -0.719

Harmalol -0.751

Bumetanide -0.765

MK-886 -0.909

NU-1025 -0.935
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MK-886, an inhibitor of the 5-lipoxygenase-activating
protein (FLAP), could suppress leukotriene biosynthesis
and reduce choroidal neovascularization in age-related mac-
ular degeneration models [35]. Literature reviews show that
bumetanide has a promising effect in many diseases, includ-
ing organ fibrosis, neonatal epilepsy, and heart failure [36].
Harmalol, a beta carboline alkaloid, can induce apoptosis
in HepG2 via binding to DNA sequences [37]. Besides,
AG-013608 and Prestwick-857 have not yet been reported
as an active drugs for any disease. Therefore, our research
may provide new impetus for the development of effective
OLP biological treatment options.

5. Conclusion

Our research demonstrated that SPRR1B could serve as
potential biomarkers for the early diagnosis of OLP and
identified 6 small molecules as promising novel treatment
drugs for OLP patients.
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