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Abstract: In recent years, greenhouse-based precision agriculture (PA) has been strengthened by
utilization of Internet of Things applications and low-power wide area network communication.
The advancements in multidisciplinary technologies such as artificial intelligence (AI) have created
opportunities to assist farmers further in detecting disease and poor nutrition of plants. Neural
networks and other AI techniques need an initial set of measurement campaigns along with extensive
datasets as a training set to baseline and evolve different applications. This paper presents LoRaWAN-
based greenhouse monitoring datasets over a period of nine months. The dataset has both the
network and sensing information from multiple sensor nodes for tomato crops in two different
greenhouse environments. The goal is to provide the research community with a dataset to evaluate
performance of LoRaWAN inside a greenhouse and develop more efficient PA monitoring techniques.
In this paper, we carried out an exploratory data analysis to infer crop growth by analyzing just
the LoRaWAN signals and without inclusion of any extra hardware. This work uses a multilayer
perceptron artificial neural network to predict the weekly plant growth, trained using RSSI value from
sensor data and manual measurement of plant height from the greenhouse. We developed this proof
of concept of joint communication and sensing by using generated dataset from the “Proefcentrum
Hoogstraten” greenhouse in Belgium. Results for the proposed method yield a root mean square error
of 10% in detecting the average plant height inside a greenhouse. In future, we can use this concept
of landscape sensing for different supplementary use-cases and to develop optimized methods.

Keywords: artificial intelligence; ANN; greenhouse; LoRaWAN datasets; MLP; precision agriculture;
smart farming; sensor network

1. Introduction

In the wake of recent global warming, greenhouse farming has helped farmers to
reduce investment risks [1], led by precision agriculture (PA) technologies. It saves crops
from extreme hail, heat, and wind along with providing a variety of solutions with optimal
conditions to maximize quality yields and profitability. Greenhouse technology creates an
ideal climate-controlled environment for plants or crops to ensure higher productivity with
minimum labor costs. Greenhouse farming increases stability and security by enabling
year-round farming with minimized production risk and more control against diseases.

In the greenhouse, environmental factors such as ventilation, light, humidity, and
temperature can be controlled, allowing the farmer to create suitable micro-ecosystems
for plants. Internet of Things (IOT)-enabled greenhouses achieve this by collecting data
from various points inside the greenhouse at unprecedented granularity. An effective
IOT solution for greenhouse incorporates a wireless sensor network (WSN) for processing
and analyzing the data using cloud services. This provides new insights to the grower
along with aligned recommendations for better decision-making. IOT-based evaluation of
greenhouse before and during the crop growth assists growers to evaluate and adjust mi-
croclimate parameters. The main elements of a IOT-based data acquisition solution should
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be low power, exhibit accuracy, and support real-time processing. Internal and external
conditions of the greenhouse impacts sensor, functional properties, and communication
links as well [2]. A low-power wide area network (LPWAN) is the most optimal technology
for agricultural operations inside a greenhouse [3]. A variety of LPWAN technologies
exist, such as NB-IOT, Sigfox, and LoRaWAN. Among these, LoRaWAN is adapted on a
higher scale due to its low cost, long-range communication, and low-power capabilities [4].
These technologies give flexibility to cover a vast distance with lower costs, but limit the
frequency and amount of data transmission.

Typically, not all crops are suited for greenhouses, but those requiring a narrow
range of environmental variables are well suited. For example, tomatoes are well suited
to be grown inside greenhouses, as they need a great deal of attention. Tomatoes are
highly susceptible to diseases such as powdery mildew, a fungal disease that can hamper
the cultivated crops [5]. Another important fungal disease that impacts tomato crop,
typically in Europe, is Oidium neolycopersici [5]. Infections are seen as powdery white
lesions on the tomato leaves and spread by the dispersion of its spores. This impacts
growth of a plant, fruit quality, and premature senescence. These diseases depend upon
environmental conditions such as temperature, humidity, and light. Once it starts spreading,
it is vital to diagnose as early as possible and apply chemical control using fungicides.
Moving or isolating infected or diseased plants from the rest of the crop can help in
prevention of crop disease throughout the greenhouse in limited time and space. Therefore,
climate control methods are a fundamental segment of pest and disease management inside
the greenhouse.

To support stringent monitoring of the greenhouse, not only does deployment of
sensor network need to be exploited, but it is also imperative to find newer strategies to
examine plant health in the greenhouse. One such strategy is to employ existing wireless
sensing systems inside the greenhouse and tailor application actions accordingly. An
example could be to use wireless signals of the existing communication infrastructure
to detect several aspects of crop growth. Installation of radar for such a use case can
provide a rich representation of environment. However, a typical IOT-based greenhouse
solution does not have radar, and adding it would add heavy cost and complexity to the
solution. Therefore, in this paper, we propose a proof of concept (POC) to predict weekly
plant growth that can be used to derive other macroenvironmental features, such as crop
health, using wireless communication signals only. Specifically, for this concept, we use
received signal strength indicator (RSSI) of an LoRaWAN-based sensor network in the
greenhouse to detect expected plant growth and answer the hypothesis questions such
as prediction of weekly plant growth. In a greenhouse, it is very crucial to continuously
analyze plant growth and accordingly manage the nutrients supply. Detecting plant growth
using wireless signals, i.e., without adding any extra infrastructure, can have significant
benefits such as aid in plant growth management. It can also enhance spatial representation
of plants in the greenhouse to support KPI requirements.

1.1. Related Work

There exist some research contributions that used sensors and radars for environmental
sensing. For example, to sense parking lots, Wu and Zwick [6] used sensing infrastructure
to build a car park detection system. In these work scenarios, the application usually
uses RSSI fluctuations in real time with path loss models to evaluate positioning. For
example, Li et al. [7] proposed a method for indoor positioning based on RSSI distance
model. Many positioning solutions such as GPS (Global Positioning System) have been
used for outdoor applications. However, methods such as angle of arrival (AOA) and time
of arrival (TOA) have been consequently used for effective indoor positioning. Paramount
consideration is that the radio signals face interference and fluctuations caused by indoor
obstacles. To handle this issue of solving complex RSSI estimation, many machine learning
(ML) and artificial intelligence (AI) learning methods have been employed, such as neural
network (NN) and fuzzy logic. Ahmadi and Bouallegue [8] carried out a comprehensive
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survey on ML techniques and RSSI for localization in WSN. It emphasizes RSSI-based
sensing, since there is no need for additional hardware to measure this parameter. Another
approach uses high-resolution maps along with Geographic Information System (GIS) to
draw inference on landscape design [9].

With the increase in development of AI, the greenhouse sector has been able to change
the dynamics of efficiency and precision. AI acts as a bridge between plants, growers, and
an IOT or climatic control system inside a greenhouse. It helps the grower to identify a
problem, forecast long-term issues, and harvest accordingly. Both researchers and industries
are very active in optimizing and developing AI-based solutions for greenhouses. From
an academic perspective, Wageningen University and Research (Netherlands) [10] is one
of the leading academic institutes for AI-controlled cultivation. Hosts of companies such
as Microsoft [11] and LetGrow [12] have been early adopters of AI for their commercially
available solutions. Efficiency and cost are two primary features driving solutions to
incorporate AI. Applications for greenhouses such as Luna by iUNU [13] use computer
vision through AI to scan throughout the production area. It uploads images to analyze
using different AI algorithms. Another solution, Bold Robotic Solution [14], works on AI
systems using sensors to monitor and identify efficiency and production issues. It observes
patterns to make corrections in controlling the equipment.

In our recent survey [15], we highlighted the significance of integrating multidis-
ciplinary approaches towards the future of agriculture by proposing an “AgriFusion”
architecture. It emphasizes that the optimal way to achieve agricultural demand is by
integration of technologies such as AI and WSN in a unique system architecture. A com-
prehensive review on different sensor data analytics and ML algorithms is performed
in [16], specifically on WSN using ML for forecasting and data mining. artificial neural
network (ANN) does not rely on previous characteristics and assumptions to outline inputs
and outputs. In a paper by Ghosal et al. [17], efficiency improvement of semiconductor gas
sensors is achieved using an ANN model. Application of ANN is extending to greenhouse
application. An article by Escamilla-García et al. [18] performs an extensive survey on dif-
ferent ANNss in greenhouses. Most of the study was focused on prediction of microclimate
and highlights need for the hybrid model using ANN and physical models for a better
solution. The work by P. Anjaiah [19] carried out an analysis of feedforward architecture for
various greenhouse tasks. It presents many ANN applications in the context of greenhouse,
majorly for prediction and variation of microclimate. This paper also emphasizes a major
guideline for future work, by developing models to predict and manage the generated infor-
mation. Another recent comprehensive review, by Sharma et al. [20], concludes that future
scope in the agricultural sector is through an ML approach for sustainable use of available
resources. It lists different multilayer perceptron (MLP) use-cases, for example, agricultural
dataset tested with MLP algorithm, identification of cucumber virus through MLP neural
network classifier, and harvesting application through object detection feature trained on
an MLP. Another work by Castañeda-Miranda and Castaño [21] carried out frost control in
the greenhouse using MLP in the central region of Mexico. Ref. Mavridou et al. [22] brings
orientation of semistructured environments which are normally known to the grower, so
that this information could be used by an ML algorithm for different use-cases, such as
deterministic automation tasks and others related to them. Ref. Moon et al. [23] used MLP
for interpolation of the greenhouse environment and demonstrated that MLP has the best
performance among interpolation methods applied over greenhouse data. By an in-depth
review of the state of the art, we observed that MLP was majorly used in a hybrid system
such as using image and model-based features [24], thereby we took this as a motivation to
use MLP for our work as discussed in Section 3.
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1.2. Contributions

This paper presents LoRaWAN-based greenhouse monitoring datasets which can be
used to develop different methods for PA. All datasets were collected in real greenhouse
environments; no simulation models were used. Firstly, we created a dataset by deploying
27 sensors for a tomato greenhouse based in the research center Hoogstraten (PCH), Bel-
gium. Thereafter, we deployed 19 sensors in another greenhouse in the Netherlands, again
for the tomato crop. Secondly, we carried out the outliers identification and data analysis
over collected datasets for building our POC. The datasets are published in Zenodo with
the DOI 10.5281/zenodo.5793685.

Considering the above-discussed state-of-the-art, there is involvement of external
support from entities, such as radars, sensors, etc., for sensing approach. This limits
application specifically in the agricultural context precisely because of cost. To the best of
our knowledge, this is the first POC which proposes a method where a grower can infer
plant growth inside a greenhouse using only LoRaWAN signals, without really integrating
any new sensor or infrastructure. We propose an AI-based MLP method to derive inference
on plant growth by predicting the weekly plant height. To this end, we employed RSSIs as
solely input features and weakly measurements of plant heights as labels for the supervised
learning, as described in Figure 1. In addition, we further used the dataset to analyze
LoRaWAN channel utilization, relation between temperature and humidity readings in
the greenhouse, and impact of optimal number of sensors for sensing and their respective
location for landscape sensing.

Greenhouse

1 Sensor 27 Sensor

Chamber 1 Chamber 2

Plant Height

Admin

Backend

Data 
Storage Visualization

Correlation between 
RSSI and Plant Height

Motivation

Training and Validation

MLP
Data Analysis

POC
Challenges

Landscape 
Sensing

Figure 1. Figure illustrating the flow of experiments and data interaction to derive landscape sensing
in the greenhouse. Data from chamber 1 is taken to set up the hypothesis, and chamber 2 data along
with manual plant height data recorded from the admin in greenhouse is used for MLP.

The remainder of this paper is structured as shown in Figure 2. Section 2 describes
deployment of the LoRaWAN-based sensors in the greenhouse, dataset collection method-
ology, and end-to-end connectivity empowering data flow and respective visualization.
Section 3 demonstrates sensor layout in the greenhouse that is used for developing the
POC. Section 4 explains the utilization of AI in sensing, along with the methodology used
in this work. In Section 5, we discuss the results and analysis over utilization of RSSI to
analyze crop growth. Section 6 lists the important challenges and learning drawn from
deployment that can help to build more precise multidisciplinary AI solutions and outline
ideas for future work. Finally, Section 7 draws the conclusions of this work.
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1.2. Contributions

2. LoRaWAN Based Deployment in the Greenhouse

4. MLP Rational and Deployment

3. Smart Agriculture Design

5. Results and Analysis

2.1.Dataset Collection Methodology 

7. Conclusion

2.2. Motivation for Joint Communication and Sensing

1.1. Related Work1. Introduction

6.1. Challenges6. Perspective  6.2. Future Work and Open Research Questions

Figure 2. Structure of the paper.

2. Lorawan-Based Deployment in the Greenhouse

The experiments were conducted in a greenhouse located in PCH—Belgium, over a
tomato crop. It is a research innovative center, managing 166 crop trials in the greenhouse
over a period of one year. Tomato, strawberries, and bell peppers are the main crops
cultivated in this greenhouse. Our experiments using WSN were conducted on a tomato
crop and results were applied directly to enhance the production quality. The deployment
architecture of the WSN setup in the greenhouse is shown in Figure 3. It consists of sensor
and gateway deployment inside the greenhouse. We used imec’s OCTA-Connect sensor
setup, leveraging LoRaWAN connectivity for the deployment as described in [25] and
shown in Figure 4. The area of greenhouse ranges from 500 m2 to 1000 m2, thereby we used
LoRaWAN technology for communication to balance out distance and keep it as a low-cost
solution. Data collected by sensors are wirelessly forwarded to a Kerlink gateway installed
in the PCH admin room, i.e., approximately 150 m away from the greenhouse experiment
chamber. All the sensor setups have air-flow box enclosures to protect them against
spray and water with a provision to stack and plug different sensors such as temperature,
humidity, and light, as depicted in Figure 4. These sensors collect raw data and forward it
to the things network web server, following it to our local backend using MQTT to parse,
store in MongoDB database, and visualize in a custom-designed ThingsBoard dashboard.
All analysis of the data, such as time graphs, alerts, etc., is performed by the user to take
necessary action for crop management. Readings from sensors are received at the sampling
period of 5 min.

Alerts, Advise, Time Graphs

Data Scientist, Botanist

Webserver

Cloud

Greenhouse Deployment

Admin

Mongo
Database

Thingsboard
Visualization

Backend Data 
Parser

MQTT subscription 
from thingsnetwork

store 
data

Visualize 
data

The Things 
Network 

Webserver

OctaConnect 
Sensors

LoRaWAN 
Gateway

Tomato plant 
chambers

Sensing 
nodes

Greenhouse 
IT Room

Wireless transmit 
sensor data

Forwarding data to 
the things network

Figure 3. Architecture of the LoRaWAN-based sensor deployment and end-to-end data flow for a
greenhouse monitoring application.
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A B
Figure 4. OCTA-Connect hardware modules that are used for the sensor setup. (A) Octa module
setup with onboard temperature and humidity sensors. (B) Casing for the sensor setup deployed in
the greenhouse with air-flow mechanism.

Deployment location of sensors inside the greenhouse chamber is shown in Figure 5.
The first left part of Figure 5A shows complex infrastructure inside the greenhouse that can
potentially impact RSSI. Next, Figure 5B shows a different row of plantations with grown
tomato plants. Lastly, in Figure 5C, plants grow further and bypass the height level of sensors
denoted as air-flow sensor boxes. At this point, most of the sensors are surrounded by plants.
The substrate mat is located approximately 80 cm above the ground. Plants reach 3.5 m
height before they are lowered again, and this is carried out for all plants to maintain even
plant growth. This measurement of the plant height is taken from the substrate slab onwards.
Tomatoes are sown normally by the end of January and are planted in the greenhouse using
rock wool substrate by the end of March with a distance of 20 cm apart.

Figure 5. Greenhouse layout and sensor deployment in the greenhouse. (A) Complex infrastructure
of the greenhouse. (B) Row of plants inside the greenhouse. (C) Sensor deployment in the greenhouse
(air-flow (AF) boxes).
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2.1. Dataset Collection Methodology

Lastly, a large dataset of LoRaWAN messages was obtained from the greenhouse.
Altogether, we collected datasets from two greenhouses based in Belgium and Netherlands,
respectively. For the greenhouse in Belgium, messages were received from 27 sensors
with temperature and humidity data over a period from April 2020 till November 2020. A
few sensors worked only till July, due to battery or hardware issues, and were removed
from the field. Each sensor sent messages in a range of 24,886 to 36,250 messages, which,
in total from 27 sensors, makes a huge dataset. For our second deployment, we had
19 sensors deployed from July till December, with an average of 23,575 messages from each
of the sensors. Each record in the dataset has a timestamp, temperature, humidity, RSSI,
and SNR value. There are a few messages that were dropped or missed due to battery
replacement and can be taken care of in data cleaning before actually modeling the data.
Concisely, more knowledge can be extracted from data by observing from hourly, daily, and
weekly basis as a greenhouse by default has properties of stable microclimatic conditions.
Another important aspect is that all messages in both the greenhouses are received by their
respective dedicated LoRaWAN gateways.

2.2. Motivation for Joint Communication and Sensing

One of the strategies to achieve high quality of yield is to use sensors to monitor
microclimate conditions in the greenhouse. There can be dense sensor deployment to assess
difference in microclimate conditions, such as temperature and humidity gradients, due
to solar radiation, heating, plant growth, ventilation, etc., in the greenhouse. To be able to
predict behavior of plant growth in the greenhouse, we looked into sensing conditions. For
the development of prediction model and learning, input variables need to be measured
over a time period, for example, weekly growth of the plant, change in RSSI, temperature,
humidity, etc.

We analyzed the data from typical deployment of a single sensor box in a tomato
crop greenhouse chamber for a period of seven months. This single sensor was deployed
in tomato growing chamber 1, as shown in Figure 1. The RSSI changes in a greenhouse
due to several factors, such as harvesting, spraying, and regular monitoring, along with
plant growth. Thereby, in order to void the impact of short-term interference, we took
the average RSSI for this single sensor. For example, in different RSSI use-cases such
as localization, gathered RSSI values are averaged over a sampling period to obtain the
estimation [26]. We took the RSSI from our storage/dataset and took the monthly average
from January till July, as shown in Figure 6. This period covered the full crop cycle from
sowing season to the harvesting of crop (7 months). Altogether, a total number of 77,945
LoRaWAN messages containing temperature and humidity values of the greenhouse were
received at our backend from this single sensor. Each message also had the battery level
appended, which was used to foresee and change the batteries of sensors to minimize
message loss. In our database, we stored these values along with RSSI, SNR, and gateway
ID to obtain insights of communication link for each of the messages received. As part
of regular manual measurements, PCH (greenhouse admin) took weekly measurement
of the plant height. Initially, we performed knowledge discovery on data received from
PCH, i.e., weekly plant height, and correlated them with received signal strengths during
the same period for one sensor to inquire for any relation, if exists. The derived relation
is shown in Figure 6. It depicts that with growth of the plants, there is a corresponding
relational change in RSSI values. The linear analysis of plant height and RSSI data explains
the phenomena of stunted growth, which can further infer possibility of plant disease, etc.
With these results from one sensor, we further used another set of 27 sensors for MLP, as
shown in Figure 1, for learning and predicting the plant height. This relation can be used to
extrapolate events to forecast a better estimate of crop health inside the greenhouse.
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Figure 6. Relation of RSSI and plant growth over the period of 7 months from January to July for
tomato crop.

3. Smart Agriculture Design

There are several challenges to establish an AI-based landscape sensing inside a
greenhouse. Firstly, continuous flow of messages is required from multiple sensors to
accommodate multipath profiles and spatial distribution analysis. Secondly, applying
an AI/ML approach to learn from large dimensions of data, including features such as
plant height, is complex and computationally expensive. To conceptualize the idea of
AI-based greenhouse monitoring, we used the dataset of 27 air-flow (AF) sensor boxes as
measurement stations on nine adjacent rows in a 3 × 9 mesh that covered the greenhouse
compartment of 250 m2, as illustrated in Figure 7. The location of the gateway was near
sensor AF40 and the exit from greenhouse was near sensor AF42. All 27 deployed sensors
sent temperature and humidity readings at an interval of 5 min. This experiment was
carried out on the data for a period of 4 months, i.e., April to July, considering crop
season and message consistency. Each of the sensors sent approximately 17,000 messages,
i.e., a total of 459,000 messages were received at our backend. We also received weekly
measurement of plant height over the same period from PCH. Without adding overhead in
the sensing setup, we took RSSI features and plant height measurements to come up with
an MLP capable of predicting the plant height and map with real-time data. For example, a
grower in the greenhouse can have a prediction model that can estimate plant growth in a
given week and can suggest if the plant is doing well or needs some attention concerning
nutrients, potential disease, etc.

: Sensor : LoRaWAN Gateway AF: Air Flow

Greenhouse Admin

AF16

AF17

AF18

AF19

AF20

AF21

AF22

AF23

AF24

AF25 AF28 AF31 AF34 AF37 AF40

AF26

AF27

AF29 AF32 AF35 AF38 AF41

AF42AF30 AF33 AF36 AF39

Chamber 2

Door

Top Row

Middle Row

Bottom Row

: Tomato Plants

Figure 7. Visual representation of the chamber for growing tomato crop inside the greenhouse,
along with the deployment location of sensor boxes, denoted as AF (air-flow) in each row of tomato
plantation inside the greenhouse.
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4. MLP Rational and Deployment

There are several types of NN, classified based on their structure, data flow, activation
filter, etc. For instance, multilayer perceptron, convolutional neural network, radial basis
function neural network, and recurring neural network are among types of NN that can
be used as per the application requirement [27]. The application can vary between text
processing, speech recognition, image analysis, translation, or a specific use case, such
as our work on greenhouse monitoring. MLP is a class of feedforward artificial neural
networks and is best suited for applications such as machine translation and complex
classification of the data. In this type of NN, input data travel through neurons of various
layers. It is a fully connected NN, as every node is connected to all the neurons of next layer.
MLP neural networks were initially inspired by the biological neurons in the brain. Every
neuron of an MLP network applies an activation function on top of a set of weighted inputs.
Layers of interconnected artificial neurons form an MLP neural network that performs a
regression on the input data. The weights are numeric values that are determined and
tuned during a learning phase to minimize overall root mean square error (RMSE) of
regression on a subset of the dataset, known as learning data. In our setup, there are three
layers in the NN, i.e., input layer (input vector), one hidden layer, and, lastly, output layer
(the predicted plant height).

The formation of an MLP set in training a supervised AI network is achieved through
gathered sensor data, as discussed in the previous section for greenhouse sensing. Since
we have a predefined manual set of data, gathered from the greenhouse in the form of
plant heights, we used RSSI proportional to that measurement as the input feature set.
The full characteristics of our MLP are given in Table 1. We used an MLP with an input
size of 27. The size of the hidden layer was 54, and we used well-known log-sigmoid [28]
as an activation function for this hidden layer. The output layer is composed of a single
neuron, with an activation function to give a linear regression of the plant height. Error
back propagation algorithm with a learning rate of 15 and momentum of 0.75 is used for
the learning stage.

Table 1. MLP network characteristics.

Parameter Value

Type of neural network Multilayer perceptron (MLP)
Size of input 27
Size of layers 54
Activation function Log-sigmoid
Activation function of last layer Linear
Learning algorithm Back propagation (BP)
Learning rate 15
Momentum 0.75

The processing of data is illustrated in Figure 8. It shows data usage from two separate
tracks, i.e., one from the greenhouse and the other from sensors. Data collected from the
greenhouse are weekly plant heights measured by the grower. We process this data to obtain
an average plant height and perform normalization for better data interpretation between
0 and 1. We used a feature scaling method [29] to normalize the independent features of
data, i.e., RSSI and plant height. This preprocessing of data using min–max normalization
helped to scale the range in [0, 1] to have each feature contributing proportionately for
learning. This data is used in the output layer of the MLP network to train and test the
performance. Another set of data comes from our dataset of the greenhouse. We took
this data as input to extract RSSI values for each message received at gateway as part of
the data processing. Further, in order to map data from sensors to data received from the
greenhouse, we performed data interpretation in a weekly format by taking an average
of weekly RSSI values. The average weekly data of RSSI were again normalized between
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0 and 1, as in the case of plant height to bring data uniformity. The raw RSSI data from all
sensors are normalized, especially for gradient-based optimization and to accelerate the
learning process, as performed in [30] for deep-learning-based indoor localization using
WiFi RSSI data. These normalized average weekly RSSI data from all 27 sensors were taken
as input features for MLP network. At this stage, we took the dataset from both paths, i.e.,
synchronized sensor and greenhouse data. This set of data acts as input to a data split
function, where part of the data are used for MLP training and the rest to test performance
of the MLP network. In our case, we took 70% of the data for training and the remaining
30% of the data to test the performance of the network. The MLP architecture used in this
experiment is shown in Figure 9. It shows the first layer as input layer, having the data
input of normalized average weekly RSSI value from the 27 sensors. The hidden layer has
54 neurons and is mapped to the output layer. Both input layer and hidden layer have one
extra node, denoted as +1 in Figure 9, which is a bias node, as per MLP neural networks.
There are weight matrices assigned between layers, i.e., w1 and w2. The topmost layer is
the output layer, having normalized plant height for both training and test phases.

Greenhouse

Grower Data 
(Weekly)

Measured 
Height

Average Plant 
Height Normalization

Sensor Data Extract RSSI
Weekly Sensor 

Data (RSSI 
Avg.)

Normalization

Data Split
Data Processing

Train Data

Test Data
Features

Used to test 
performance

Used to test 
train MLP

Data Input

Sensors

Data Interpretation

Figure 8. Data processing stages using inputs from sensors and greenhouse for MLP.

Normalized Input 
Sensors (RSSI) / 

Features

27

54

1

Hidden Layer

Output LayerNormalized Plant 
Height

W1

W2

+1

+1

Figure 9. MLP architecture illustrating input, hidden, and output layer.

The dataset used for our MLP network is given by Equation (1), where N<d> is data
used by the network consisting of the list of weekly RSSI values for n sensors and also
weekly plant height denoted by R<w>

n and P<w>, respectively. T<d> in Equation (2) is input
training data of all the weekly RSSI values, from n sensors. The |.| denotes cardinality of
both sets used in the network, as in Equation (3).

N<d> =
{

Gid(R<w>
n ), P<w>

}
, (1)
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T<d> =
{

R̄<w>
1 , R̄<w>

2 , ...., R̄<w>
n

}
, (2)

|Gid(R<w>
n )| = |P<w>| (3)

5. Results and Analysis

Detecting plant height with the help of RSSI can be considered as an associative
hypothesis problem. Such association is best seen by answering questions, such as “Does
plant growth match expected week plan?”, and checking the insights of sufficient plant
nutrition, disease analysis, and other supporting environmental conditions for plant growth.
Answers to these matters can help the grower to analyze crop growth and take necessary
actions accordingly on a weekly basis. For example, if, for a particular week, plant growth
is not as predicted, then it can immediately trigger risk assessment of the crop for an early
diagnosis, etc.

A training set was constructed using data discussed in Section 4. Two suits of RSSI
values from the sensors with distinct weekly values of plant heights were taken to train
and access the performance of the MLP network. To this end, data were randomly divided
into two subsets with a ratio of 70:30, respectively, for training and testing. The subset used
to evaluate performance was never seen by the MLP before. We defined the performance
in terms of RMSE. In order to test implication of different sensors in the experiment, we
performed classification of different cases with respect to set of sensors and location as
shown in Table 2. The first three case numbers, 1, 2, and 3, were for different sensor count;
next, case numbers 4, 5, and 6 were with respect to location of sensors; and lastly, case
numbers 7, 8, and 9 are three different rows of sensors. Training of all these cases are shown
in Figure 10. We observed that training was not achieved properly if we used only one
sensor for landscape sensing. The rest of the cases had uniform training close to measured
height. Validation of all different cases are demonstrated in Figure 11a–c. We notice that
the best prediction is achieved in a case of using all 27 sensors or from the set of 18 sensors
deployed farthest from the gateway (case 3). By picking just nine sensors in any form from
the deployed list, prediction is not good, as seen in Figure 11b. Further, more interesting
results are seen in Figure 11c, where sensors close to the gateway have minimum plants in
between them and the gateway, so they are not able to predict the plant height, and stand
as worst-case scenario. The predicted plant heights using 27 sensors for different week
numbers 3, 5, 8, and 12 are very close to the measured height. We calculated RMSE for
predicting the plant height using different cases, as in Table 2. The worst case for RMSE
came in using case 4, i.e., extreme left sensors farthest from the gateway, and the best result
came for case 2, i.e., in using all 27 sensors. The RMSE for validating network using all
27 sensors is 10%.

Table 2. Considering different number of sensors from the deployment and location (Figure 7)
for validation.

Case No. Sensor No. Sensor Location

1 Only AF29 Single center sensor
2 AF16–AF42 All 27 sensors
3 AF16–AF33 18 extreme left sensors
4 AF16–AF24 9 extreme left sensors
5 AF25–AF33 9 sensors from middle
6 AF34–AF42 9 extreme right sensors
7 AF16, 19, 22, 25, 28, 31, 34, 37, 40 All top row sensors
8 AF17, 20, 23, 26, 29, 32, 35, 38, 41 All middle row sensors
9 AF18, 21, 24, 27, 30, 33, 36, 39, 42 All bottom row sensors
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From the above results, we also wanted to see change in RSSI from different sets of
sensors in the greenhouse to analyze the impact of location. It is interesting from the angle
of how the RSSI from different sensors varies in regard to the interference. Hypothetically,
top-row sensors have the least amount of interference from plants and can communicate
directly to the gateway. These sensors have no further row of plants in front of them, but
just the greenhouse wall. Middle-layer sensors are surrounded by plants from all directions
and plants also grow around these sensors linearly. Sensors in this row have plant growth
in all directions that can directly impact the RSSI. Lastly, bottom-row sensors are farthest
from the gateway and have nonuniform plant growth around them, as the bottom side
is the wall and they have different growth of plants in the direction of the gateway. We
normalized RSSI values for all three sets of sensors and observed the relation over a time
of 1200 h in Figure 12b. As expected, it is shown that front-row sensors had minimum
impact over RSSI, middle-row sensors had linear change in RSSI with the plant growth,
and bottom-row sensors also had linear change in RSSI, but in a scattered manner. These
scattered RSSI values for the bottom row of sensors are mainly due to more numbers of
subjects causing nonuniform interference for each of the sensors.

Week
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gh
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0
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0.8

MH
Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9

Figure 10. Training: Using the combination of different set of sensors as scenarios (case: Table 2) to
analyze its impact on training.

Every message from the sensors whose RSSI values were used had temperature and
humidity measurements from the greenhouse. We analyzed these data to underpin the
relation among these two values as well as their impact in the greenhouse. Normally, it is
expected in the greenhouse to have a stable temperature and humidity conditions suitable
for plant growth. However, we observed that there was huge variation and potential impact
in readings with the outside season change. Figure 13a,b show temperature and humidity
readings from 27 deployed sensors over a period of 70 days. We took the average reading
for each day to illustrate the trend in the readings. It is seen in the figures that in the initial
weeks of plant growth, temperature and humidity readings reported by the sensors do
not vary much, as compared to readings reported in later days. This is potentially due to
plant growth, i.e., as the plant grows, the temperature and humidity become more spatial
throughout the greenhouse. Another important inference from temperature and humidity
values is association with the outside season. During the months of March–April, the
average temperature inside the greenhouse is less than 24 ◦C, and in June it rises above
26 ◦C. For crops such as tomato, it is important to have temperature range between 20 ◦C
to 24 ◦C for a faster and more certain germination [31]. However, with our measurements,
it is seen that temperature goes beyond the range at the later part of the crop cycle. Another
paramount analysis is the inverse association between temperature and humidity, i.e., as
temperature rises at the later stage of plant growth, humidity starts to drop. This inverse
relation is derived by normalizing the temperature and humidity readings, as illustrated in
Figure 12a.
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Figure 11. Validation: Using the combination of different set of sensors as scenarios (case: Table 2) to
analyze its impact on validation in contrast to measured height (MH). (a) Different case with respect
to number of sensors for validation; (b) Different case with respect to set of location-specific sensors;
(c) Using sensors deployed in top, middle, and bottom row respectively.
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Figure 12. Data analysis from all sets of readings captured by the sensors in the greenhouse. (a) In-
verse relation between temperature and humidity; (b) Impact on RSSI from set of sensors deployed
in different rows inside the greenhouse.
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(a) (b)

Figure 13. Temperature and humidity data reported by the deployed sensors in the greenhouse for a
period of 70 days: (a) Temperature data; (b) Humidity data.

There are potential tomato diseases that can spread quickly if temperature and humidity
are not stable in the greenhouse. A few of the major tomato diseases and underlying reasons
are listed in Table 3. It shows the impact of individual temperature and humidity, along
with the combination of both. We noticed from Figure 14a,b that for a crucial percent of the
total time, the range of temperature and humidity were out of the suggested boundaries.

Table 3. Tomato crop disease, majorly caused due to variation of temperature and humidity [33].

Disease Reason

Bacterial spot Warm temperature
Bacterial wilt High temperature and humidity
Buckeye rot High humidity
Early blight High humidity and mild temperature
Gray mold High humidity and cool temperature
Late blight Cool nighttime temperatures, and warm daytime temperatures
Leaf mold High humidity
Septoria leaf spot Dew and high humidity
Southern blight High temperature
Bacterial speck High humidity and cool temperatures

All messages sent from the sensor nodes also had appended message counter to check
the number of messages lost. For each sensor node, the average number of messages
lost was 103 messages, that is 0.5% approximately. This shows that message transmission
from sensor node to backend via gateway was reliable, and LoRaWAN is well suited for
greenhouse monitoring. In Singh et al. [32], traffic analysis and utilization percentage
are calculated for the LoRaWAN network. There were a few channels with utilization
of 10%, and others with 18%. However, over the period, channel utilization has become
more uniform for LoRaWAN as shown in our traffic analysis demonstrated in Figure 15.
We analyzed over 40,000 LoRaWAN messages and, on average, all channels had uniform
utilization, with above 5000 messages per channel.
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(a) (b)

Figure 14. Range of temperature and humidity in different range over the total period of greenhouse
monitoring. (a) Temperature range above 4% and below 12% of threshold, respectively; (b) Humidity
range above 19% and below 4% of threshold, respectively, over the total time span.

Figure 15. LoRaWAN channel utilization for all messages received during the experiment.

6. Perspective

The joint communication and sensing introduced a new perspective in the context of
agriculture that includes challenges and open research questions, as discussed in this section.

6.1. Challenges and Limitations

It is crucial to consider the following limitations and factors for efficient communication-
based sensing in the greenhouse:

• Radio signals can be impacted by the structure and cover material used to build
the greenhouse. Inconsistent and temporal interference by different means can limit
this solution.

• LoRaWAN can send a message to a different gateway that may result in different
RSSI values for each message received. Thereby, tracking gateway ID is important
information for using RSSI values as a feature set.

• The height of sensors from the plant needs to be uniform, such that at any moment
plants should not cover sensors and maintain equal distance from the plant bed.
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As illustrated in Figure 16, plants can grow to the height of deployed sensors and
can cover it with leaves, etc., which may potentially impact signal strength due to
involved interference.

• Knowing the location of sensors can bring added value and can help to infer the location-
specific plant growth. The location of the sensor can be added to the MLP network.

• Size of the greenhouse is an important aspect to be analyzed before deployment to
make sure the LoRaWAN network has good coverage and an optimal number of
sensors required to cover the area.

• There can be several instances where a grower or designated worker visits inside the
greenhouse. Such presence of additional humans or machines may add error to the
prediction model by affecting RSSI values. Recording the time slots of harvesting
period or other manual work inside the greenhouse can help to refine the data prior to
passing them to model.

• Greenhouses are subject to opening and closing of windows, etc., to maintain airflow,
therefore the amount and periodicity of natural ventilation should be regulated or
captured in records.

• Adequate plant spacing, watering, etc., resulting in condensation run-off may have
inference on the signals as well.

• Lifespan of the crop as well as material used in a greenhouse may result in different
signal attenuation performance.

• Apart from the mostly used polycarbonate structure, greenhouses are made up of
glass as well. It is noncombustible, and with layered paned glass, it can impact the
signal propagation.

Figure 16. Sensors covered with plants can result in improper prediction due to the variation in RSSI.

Thereby, it is vital to consider the above challenges before deploying a solution in
the greenhouse.

6.2. Future Work and Open Research Questions

The demand for food is growing exponentially with the increasing population. This
ever-growing requirement for efficient and sustainable crop growth needs the support of
technology such as AI for better assistance. A huge amount of data are accumulated while
sensing the microclimatic features such as temperature and humidity. We can keep adding
these data to the public datasets for better learning. Slowly, growers are adapting to the
advancement in emerging technologies, but still struggle with questions, such as “How
many sensors are required to monitor the greenhouse?”, “How can I make use of data
generated from the greenhouse?”, “Are my plants growing normally?”, “Are my strategy
and crop cycle optimal?”, “How can I obtain insights into plants without adding much
infrastructure and cost?”, etc.

To answer a few of the aforementioned questions—a system that continuously moni-
tors and provides crop input to the grower enabling cost reduction, acting before an issue
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proliferates (disease), and other crop granularities can be beneficial. With our POC, a grower
can use signal strength of the regular sensor communication to predict crop growth. This is
great from the perspective that growers do not need to install extra infrastructure, and it
avoids the manual effort of measuring plant growth and then mapping it with expectations,
as per the crop model. However, this solution can be further enriched by the inclusion of
temperature and humidity values as input features for greenhouse sensing. In the work
by Guidara et al. [34], the authors experimented to analyze the impact of temperature and
humidity on RSSI. They concluded that there is a strong negative correlation between
temperature and RSSI and there is a positive linear correlation between humidity and RSSI.
Thereby, it would be interesting to include the temperature and humidity correlation as
an input feature set to our MLP network for more precise information. Currently, our
solution for predicting the plant height is generic for a full greenhouse chamber. Another
important future work would be to consider location of sensors as an input. This will bring
spatial distribution of the prediction throughout the greenhouse and can help provide
location-oriented plant growth details. By the inference of location-oriented input, growers
can go to a specific location with a potential anomaly to identify the cause of change in
plant heights, such as due to water, start of disease, or fewer nutrients.

The current input to our MLP network does not include data of all aspects (e.g.,
disease and pests) and only uses signal strength of messages from the sensors. To predict
crop growth in a more optimized fashion, it would be required to pass on details of the
greenhouse operations to the AI solution, such as opening and closing of the greenhouse
window, etc. In addition, it might be beneficial to include the details of harvesting, spraying,
and other manual labor in the greenhouses in order to increase precision. Next to that,
it might also be possible to predict other parameters, such as weight of the fruits and
stem diameter (values that are already known to the grower by manual measurement), by
regression model.

7. Conclusions

In the upcoming years, AI and datasets will play a crucial part in the evolution of
greenhouse solutions. With that being said, adoption of AI technology in the greenhouse
will not come without challenges. The greenhouse has a dynamic range of temperature
and humidity, which influences crop behavior and electronic components, along with
the sensors. These variations easily impact the weekly crop plans and self-learning tech-
nology. It takes time to collect data for ML methods, such as NNs, to learn crop cycles
and the involved patterns. Thereby, growers adopting AI solutions may need to hold
back for a seasonal crop cycle to learn intricacies for both crop and environment before
producing results.

This paper describes the monitoring and collection methodology of large datasets for
greenhouse monitoring using 27 sensors over a period of several months. These datasets
are openly available for the global research community and can be an important tool
for research in precision agriculture, and can be an efficient learning tool. This work
stands as the benchmark POC on communication-based sensing using datasets. Use of an
MLP neural network is carried out using RSSI from a deployed LoRaWAN-based sensors
network as an input feature set for predicting plant height. By developing a POC through
an MLP, we concluded that signal strength trends vary in the greenhouse over a crop
period and are proportional to the plant growth. The MLP performance was evaluated
for training and validating over the period of 12 weeks to predict plant height from RSSI.
Results of the developed POC illustrated a good prediction of plant height with the help
of RSSI values having an RMSE of 10% by using a full set of 27 sensors, and for a worst
case in using just nine sensors. Further, with the help of datasets, we analyzed uniform
channel utilization of LoRaWAN signals for communication and inverse relation between
temperature and humidity. We also derived the impact of location of sensors over RSSI and
relation with plant growth.
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AI-assisted solutions for a greenhouse can potentially support growers to improve crop
production. The technical setup of the greenhouse should meet certain criteria to minimize
nonuniform signal attenuation, which is a major limitation of this work for empowering
efficient landscape sensing. This can be majorly due to dynamic changes in infrastructure,
such as from quality of material, change in layout, and bringing or removing infrastructure
from crop chamber in the greenhouse. AI-based sensing using just RSSI with no added
infrastructure can lower the solution cost to growers and improve crop production.
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