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The enzyme glutamine synthetase (GS), also referred to as glutamate ammonia ligase,

is abundant in astrocytes and catalyzes the conversion of ammonia and glutamate to

glutamine. Deficiency or dysfunction of astrocytic GS in discrete brain regions have been

associated with several types of epilepsy, including medically-intractable mesial temporal

lobe epilepsy (MTLE), neocortical epilepsies, and glioblastoma-associated epilepsy.

Moreover, experimental inhibition or deletion of GS in the entorhinal-hippocampal territory

of laboratory animals causes an MTLE-like syndrome characterized by spontaneous,

recurrent hippocampal-onset seizures, loss of hippocampal neurons, and in some cases

comorbid depressive-like features. The goal of this review is to summarize and discuss

the possible roles of astroglial GS in the pathogenesis of epilepsy.

Keywords: epilepsy, epileptogenesis, glutamine synthetase, astrocyte, epilepsy network, mesial temporal lobe
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INTRODUCTION

Astrocytes have historically been thought to serve a primarily structural role by supporting
surrounding neurons (1). Over the last 40 years, however, a growing body of evidence has suggested
that astrocytes serve important roles in normal brain function, and are critical for axonal growth,
energy metabolism, neurotransmitter homeostasis and water/electrolyte balance (2–11). Moreover,
abnormal astrocyte function has been postulated to contribute to the pathogenesis of a wide range
of neurological and psychiatric disorders (12–17).

Following an acute central nervous system (CNS) injury, astrocytes undergo several
morphological and functional changes. These “reactive astrocytes” are present in several
pathological conditions While reactive astrocytes were originally thought to reflect scar tissue in
response to neuronal injury and loss, recent studies have suggested that reactive astrocytes may in
fact play important roles in the causation of many disorders, including epilepsy (18–20).

Glutamine synthetase (GS, also known as glutamate-ammonia-ligase, EC 6.3.1.2), an enzyme
that is highly abundant in astrocytes, is of particular interest due to its roles in health and disease
(21). Systemic mutations of the GS gene have been associated with brain malformations, seizures,
multiorgan failure, and early death (22, 23). Studies have further suggested that acquired GS
deficiencies in discrete areas of the brain might play a causative role in various neurological
disorders and psychiatric conditions including Alzheimer’s disease, hepatic encephalopathy,
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suicide/depression schizophrenia, and epilepsy (24–32). The
goal of this review is to discuss the significance of GS in the
pathogenesis of focal epilepsies, particularly mesial temporal lobe
epilepsy (MTLE), which is one of the most common types of
medication-refractory epilepsies in humans (26, 32–35).

GLUTAMINE SYNTHETASE AND NORMAL
PHYSIOLOGY

GS serves important roles in nitrogen metabolism, acid-base
homeostasis, and cell signaling in many species of prokaryotes
and eukaryotes (36–38). GS is thought to eliminate or reduce the
toxic effects of glutamate and ammonia in the mammalian CNS
by metabolizing these compounds (39–41). Moreover, multiple
physiological processes, including synthesis of glutamate and
GABA, synthesis of proteins, and osmoregulation, rely on a

FIGURE 1 | Schematic representation of key pathways involving astrocytes, glutamatergic neurons, and GABAergic neurons. Each arrow signifies several reactions.

Using ammonia, glutamine synthetase converts glutamate to glutamine. Subsequently, glutamine is taken up by the adjacent neurons and converted to glutamate or

GABA. Astrocytes take up the synaptic glutamate (glutamine–glutamate cycle) or GABA (glutamine–glutamate–GABA cycle) and converts these neurotransmitters to

glutamine via glutamine synthetase. GLN, glutamine; GLU, glutamate; GABA, gamma-aminobutyric acid; aKG, alpha ketoglutarate; TCA, tricarboxylic acid cycle; GS,

glutamine synthetase; PAG, phosphate-activated glutaminase; GAD, glutamic acid decarboxylase; SN1, system N transporter 1; SAT1, system A transporter and

SAT2, system A transporter 2. Figure adapted with permission from (43).

steady supply of glutamine (42). Because GS is the only enzyme
capable of synthesizing large amounts of glutamine in the human
body, changes in its expression and activity are expected to have
significant consequences for normal physiology.

GS and the Glutamine-Glutamate-GABA
Cycle
After its release from the presynaptic neuron, neurotransmitter
glutamate interacts with receptors in the postsynaptic membrane,
followed by its removal from the synapse into astrocytes. After
uptake into astrocytes, glutamate may be converted to glutamine
via glutamine synthetase (Figure 1). Glutamine can subsequently
be transferred from astrocytes to glutamatergic neurons (44, 45).
Once in the glutamatergic neuron, the mitochondrial enzyme
phosphate-activated glutaminase (PAG) converts glutamine to
glutamate (46, 47), which is concentrated in synaptic vesicles
and subsequently released into the extracellular space in response
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to an action potential. The glutamate is either taken up by
astrocytes and converted back to glutamine via GS or taken
up by inhibitory neurons and metabolized to GABA, which is
used during inhibitory neurotransmission (Figure 1). Astrocytic
glutamine can be taken up by GABAergic neuron as precursor
for the inhibitory neurotransmitter γ-aminobutyric acid (GABA)
via glutamate (48, 49). While most of the released GABA is taken
up by the pre-synaptic neuron, some enters astrocytes where it is
converted back to glutamine (50). Thus, astroglial GS is crucial
for both excitatory (glutamatergic) and inhibitory (GABAergic)
neurotransmission (51).

GS and Ammonia Detoxification
The human body contains large amounts of ammonia, produced
mainly by the action of bacterial enzymes on colonic content and
from the hydrolysis of glutamine in the small and large intestinal
cells. While the gut-derived ammonia is mostly metabolized by
the liver, via the urea cycle and the GS reaction, a small amount of
ammonia (10–30 µmol/L) remains in the plasma under normal
conditions. Much higher plasma ammonia concentrations are
detected in pathological conditions such as liver disease and urea
cycle disorders. Because ammonia is neurotoxic and easily crosses
the blood-brain-barrier, an efficient mechanism for clearing
brain ammonia is essential (52). Astroglial GS is critical for
such clearance, because the CNS lacks a functional urea cycle
(52). GS utilizes ammonia, that is taken up by astrocytes, to
convert glutamate to glutamine (Figure 1). The important role
of astrocytes in this process is underscored by the presence of
astrocytic end-feet surrounding the brain endothelial cells, which
serve as a metabolic buffer between the blood and the brain,
thereby reducing the toxic load of ammonia on neurons (53–55).

GLUTAMINE SYNTHETASE AND MESIAL
TEMPORAL LOBE EPILEPSY

Glutamate is the predominant excitatory neurotransmitter in the
adult brain, and perturbed extracellular brain glutamate levels
have been implicated in the pathogenesis of epilepsy, particularly
MTLE. Notably, extracellular glutamate is chronically elevated
in the epileptogenic hippocampus (the seizure onset area) in
human patients with MTLE, as ascertained by simultaneous
depth electrode EEG and in vivo brain microdialysis (56–59).
In addition, during seizure activity, a six-fold increase in the
extracellular hippocampal glutamate above the basal (chronic)
level was observed, followed by a slow decline to basal levels
over a period of several minutes (60). Furthermore, many
animal studies have suggested a causational relationship between
increased brain glutamate signaling and epilepsy (39, 61, 62).
Therefore, it is possible that an excessive amount of extracellular
glutamate in the seizure onset area of the brain acts as a central
metabolic cause of the neuronal loss and spontaneous seizures
associated with MTLE (39, 61, 62).

Because GS is thought to be critical for glutamate metabolism
following uptake into astrocytes, deficiency in this enzyme has
been postulated as a possible basis for the increased glutamate
observed in the extracellular fluid of the epileptogenic areas of the

brain (26, 62). Moreover, isotopic tracer (C13) studies suggest that
a slowing of the glutamate-glutamine cycle metabolism in the
epileptogenic hippocampus is responsible for the accumulation
and reduced clearance of glutamate in MTLE (63). Given
the essentiality of GS in the glutamate-glutamine cycle, we
and others sought to quantify activity of astroglial GS in the
epileptogenic hippocampus in human patients with MTLE (26,
32). Intriguingly, the protein content and functional activity
of GS was reduced by ∼40% in subfields of the epileptogenic
hippocampal formation in patients with MTLE and concomitant
mesial temporal sclerosis (26, 32). Similarly, GS deficiency in the
amygdala occurs in some patients with neocortical epilepsies (64)
and in the tumor tissue of patients with malignant gliomas and
secondary epilepsy (65).

Furthermore, several other studies support the idea that GS
deficiency is a causative or contributing factor in some types
of epilepsies besides MTLE. In the first three known cases of
congenital, homozygous mutations in the GS gene, the patients
had severe brain malformations and epileptic seizures (22, 66).
Two of the patients died shortly after birth (22). Similarly, the
high morbidity and mortality rates that accompany genetic GS
deficiencies in humans are also observed in transgenic mouse
models. For example, animals with prenatal excisions of the
GS gene in all cell types do not survive past early embryonic
development (67), and mice with selective gene deletions in
GFAP-positive astrocytes survive until postnatal day 3 (68).
However, mice with selective deletions in the neocortex and
hippocampus are born without any apparent malformations but
develop neurodegeneration and spontaneous seizures that seem
to increase in frequency with age (34).

A common approach to assess the effect of GS deficiencies in
specific brain regions involves the use of methionine sulfoximine
(MSO). MSO impedes the ability of GS to catalyze the conversion
of glutamate and ammonia to glutamine by irreversibly binding
to the catalytic sites of GS (69). In one study, a continuous
infusion of MSO into the right hippocampal formation of
normal adult Sprague-Dawley rats was compared to a continuous
infusion of normal saline into the same region of a separate
group of rats. The animals were monitored by continuous video-
intracranial electroencephalogram (EEG) recordings for several
weeks and the brains were analyzed for GS activity. MSO
resulted in a reduction of GS activity in the infused hippocampal
formation of ∼80% (28), and the animals displayed repetitive
seizures that began several hours after the onset of infusion. The
initial repetitive seizures, which lasted between 24 and 48 h, were
followed by a quiet period of variable length before spontaneous,
recurrent seizures commenced (70). The MSO-treated animals
sometimes exhibited glial proliferation and patterned neuron loss
in the infused hippocampal formation, similar to that of human
MTLE (28, 33).

Another study analyzed whether the neuroanatomical site of
GS inhibition is an important determinant for the epileptogenic
process and for the epileptic phenotype. MSO was infused
unilaterally into different limbic regions of adult rats, including
the angular bundle, the deep entorhinal cortex, area CA1, the
molecular layer of the subiculum, the hilus of the dentate gyrus,
the lateral ventricle, and the central nucleus of the amygdala
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(71, 72). Recurrent seizures were observed in all animals infused
with MSO into the brain tissue, and the seizures increased in
severity (Racine grade) over a period of several weeks with
variations in the seizure frequency and severity patterns between
brain regions. Moreover, animals infused with MSO into the
central nucleus of the amygdala displayed recurrent seizures
with depressive-like behaviors, as observed by a reduction
of sucrose consumption in the sucrose preference test (72).
Collectively, these studies suggest that the neuroanatomical site
of GS inhibition affects the epileptogenic process as well as the
overall phenotype of the disease.

GLUTAMINE SYNTHETASE AND EPILEPSY
NETWORKS

The prevalent idea that the neuroanatomical and
electrophysiological substrates of focal epilepsies occur
only in a circumscribed brain region, the seizure focus, has
been questioned more recently (73–77). Many clinical and EEG
studies have suggested that large-scale, aberrant “brain networks”
play key roles in seizure initiation and propagation, and that
aberrant network activity may be present even during the time
between seizures (76–85).

Albright et al. analyzed changes in neuronal networks
during epileptogenesis in the intrahippocampal MSO-infusion
model of MLTE (86). Intracranial EEG recordings and c-Fos
immunohistochemistry were used to record seizure-associated
neuronal activation at different stages during epileptogenesis. It
was found that low-grade seizures during the earliest stages of
epileptogenesis activated neurons in the entorhinal-hippocampal
territory, the basolateral amygdala, the piriform cortex, the
midline thalamus, and the anterior olfactory area. However,
during later stages of epileptogenesis, when the seizures were
more severe, neuronal activation was evident in extensive areas
of the brain, such as the neocortex, the bed nucleus of the stria
terminalis, the mediodorsal thalamus, and the central nucleus of
the amygdala. These areas were activated in addition to the areas
activated during early epileptogenesis.

In another study, whole brain diffusion tensor imaging (DTI)
was used to assess any structural changes during early and
late epileptogenesis in the hippocampal MSO-infusion model
of MTLE (33). There were significant changes in fractional
anisotropy (FA) in multiple brain regions in MSO-infused vs.
phosphate buffered saline (PBS)-infused control animals. The
changes in FA were markedly different in early epileptogenesis

compared to late epileptogenesis, suggesting that inhibition of GS
in one hippocampal formation results in structural changes that
affect multiple brain regions and change over a period of several
weeks (33, 71, 86).

CONCLUSION

An increasing number of studies in humans and animal models
have linked astroglial GS dysfunction to the pathogenesis
of focal epilepsies, particularly MTLE. Even very small and
circumscribed deficiencies in GS affecting a subfield of the
hippocampal formation or a nucleus of the amygdala can lead
to epileptic seizures and comorbid, depressive-like features in
laboratory animals. Moreover, such small deficiencies result
in widespread and progressive changes in neuronal network
activation and in the structure of the brain.While the mechanism
by which GS dysfunction causes epilepsy remains unclear, several
scenarios are possible such as reduced clearance of extracellular
brain glutamate and ammonia, glutamine deficiency, and
perturbed glutamatergic and GABAergic neurotransmission.
Further studies are needed to determine the causes of astroglial
GS deficiency so that more effective treatments can be developed
to prevent such deficiencies and combat the development and
progression of GS-associated epilepsies.
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