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The MYC transcription factor, encoded by the c-MYC proto-oncogene, is

activated by growth-promoting signals, and is a key regulator of biosyn-

thetic and metabolic pathways driving cell growth and proliferation. These

same processes are deregulated in MYC-driven tumors, where they become

critical for cancer cell proliferation and survival. As other oncogenic

insults, overexpressed MYC induces a series of cellular stresses (metabolic,

oxidative, replicative, etc.) collectively known as oncogenic stress, which

impact not only on tumor progression, but also on the response to therapy,

with profound, multifaceted consequences on clinical outcome. On one

hand, recent evidence uncovered a widespread role for MYC in therapy

resistance in multiple cancer types, with either standard chemotherapeutic

or targeted regimens. Reciprocally, oncogenic MYC imparts a series of

molecular and metabolic dependencies to cells, thus giving rise to cancer-

specific vulnerabilities that may be exploited to obtain synthetic-lethal

interactions with novel anticancer drugs. Here we will review the current

knowledge on the links between MYC and therapeutic responses, and will

discuss possible strategies to overcome resistance through new, targeted

interventions.

1. Introduction

The c-MYC proto-oncogene (hereafter MYC) was

identified over 40 years ago as the cellular homolog of

the avian retroviral oncogene v-myc [1,2]. Structurally,

MYC is part of a large class of transcription factors

that contain a basic-helix–loop–helix leucine-zipper

(bHLH-LZ) motif, mediating dimerization and DNA

binding [3]. MYC forms heterodimers with another

bHLH-LZ protein, MAX, allowing recognition of the

so-called Enhancer-box (E-box) consensus sequence

CACGTG and variants thereof, primarily to promote

or reinforce transcription [4–6]. Over three decades of

research unraveled MYC’s central role in cellular
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growth control, in normal physiology and develop-

ment. Virtually every cell-activating stimulus studied

so far induces expression of the MYC transcription

factor mRNA and protein product, which in turn

coordinates complex gene expression programs

involved in the many facets of cellular activation –
ribosome and mitochondrial biogenesis, biosynthetic

pathways, energy metabolism, cell growth, prolifera-

tion, and more [7–13]. This central position in the

cell’s regulatory circuitry endows MYC with high

oncogenic potential, as its deregulated expression

enforces the same cellular responses in an uncontrolled

manner. Indeed, whether resulting from direct

alterations of the locus (e.g., gene amplification,

translocation) or from the activation of upstream

signaling pathways (receptor tyrosine kinases, Ras,

Raf, Wnt, Notch, etc.), most tumor types show dereg-

ulated MYC expression, resulting in uncontrolled acti-

vation of MYC-driven programs. Altogether,

overexpression of MYC – or of its paralogues, MYCN

or MYCL – is a widespread event in most cancer

types [7–13], and contributes to multiple hallmarks of

the transformed phenotype [14,15], including cell-

intrinsic and systemic features, such as angiogenesis,

modulation of the tumor microenvironment, or

immune evasion [13,16].

While driving tumorigenesis, the overload of

biosynthetic and metabolic activities activated by

MYC elicits diverse forms of oncogenic stress,

which impact on cancer initiation, progression and

maintenance, as well as on the response to therapy.

On one hand, oncogenic stress elicits a series of

tumor-suppressive responses (such as apoptosis,

growth arrest, or senescence) [17,18] that are nor-

mally bypassed during tumor evolution, but whose

reactivation has emerged as a fundamental theme in

cancer therapy – including treatment with classical

chemotherapeutic agents (e.g., [19–21]). On the other

hand, besides the above safeguard responses, onco-

genic stress also elicits adaptive mechanisms that

favor tumor cell survival and expansion, thus creat-

ing new dependencies – sometimes dubbed as ‘non-

oncogene’ addiction – that may also be targeted

therapeutically [16,22].

Altogether, the fitness of MYC-overexpressing cells

depends on a fragile equilibrium between ambivalent

signals that not only elicit therapy resistance, but also

provide new therapeutic opportunities. Here, we

review the known links between MYC and either resis-

tance or sensitization to therapeutic intervention, and

draw future perspective to exploit these pharmaco-

genetic interactions toward improved cancer patient

outcomes.

2. Cancer therapy: a brief historical
perspective

The term cancer defines a large group of related, but

heterogenous disorders characterized by abnormal cel-

lular growth, which leads to invasion of surrounding

tissues and, eventually, spreading to distant organs

(metastasization). Among noncommunicable diseases,

cancer is a major cause of premature death surpassed

only by cardiovascular diseases (CVD). However, due

to the increasingly aging population and better man-

agement of CVD, cancer is predicted to become the

predominant cause of premature death by the end of

the century [23].

Initially, the only treatment available to cancer

patients was surgical resection of the tumor, with

radiotherapy and chemotherapy becoming available

during the course of the 20th century. Radiotherapy,

which started to be used to treat cancer shortly after

the discovery of X-rays in 1895, is currently in use to

treat superficial or localized neoplastic lesions, gener-

ally as part of multimodality treatments [24].

Chemotherapeutics are, in essence, drugs that kill

proliferating cells and their preferential targeting of

cancer cells is due to the latter undergoing unre-

strained proliferation, which is one of the defining

hallmarks of cancer [14]. The clinical use of

chemotherapeutics started during the 1940s [25,26],

resulting in positive results that created great expecta-

tions in the oncology field. However, cancer cells soon

proved to adapt to single agent therapies, with tempo-

rary remission shortly followed by disease relapse. To

overcome these limitations, chemotherapy progres-

sively evolved into a combination of anticancer agents

(polychemotherapy) given at variable dose intensities

in increasingly complex regimes, aimed at optimizing

the therapeutic response while reducing toxicity to the

patient.

Targeted therapy became the topic of intense studies

prompted by the discovery of oncogenes and tumor

suppressor genes in the 1970–1980s, the ever-increasing

understanding of the genetic determinants of cancer

and, in recent years, by the surge of genome-scale

sequencing and other -omics technologies [27]. As a

general principle, those molecular activities and signal-

ing pathways that are altered in cancer cells which are

required to sustain the main hallmarks of the trans-

formed phenotype [14,15] are obvious candidates for

pharmacological intervention. We can trace the first

concept of targeted therapy to the proposed removal

of gonads to treat invasive breast cancer, made by

Thomas Beatson at the end of the 19th century [28].

Over 40 years later, Charles Huggins formally made
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the connection between the shrinkage of sex hormone-

dependent breast and prostate cancer, with the

removal of gonads and adrenal glands, as the source

of these hormones [29]. Besides surgical removal of

hormone-producing glands, today’s endocrine therapy

of hormone-dependent cancers includes pharmacologi-

cal inhibition of hormone receptors or biosynthetic

pathways [30].

Not considering endocrine therapy, the first drug

specifically designed to inhibit an oncogenic pathway

to successfully reach the clinic was imatinib, an inhibi-

tor of the oncogenic tyrosine kinase BCR-ABL1 [31].

Others followed suit, such as gefitinib and vemu-

rafenib, which inhibit the oncogenic kinases produced

by mutations in EGFR and BRAF (V600E) respec-

tively [32,33]. Targeted therapy also took advantage of

synthetic-lethal interactions prompted by the loss of

specific tumor suppressor genes in cancer cells. For

example, the PARP inhibitor olaparib proved effective

against tumors characterized by loss of either BRCA1

or BRCA2 [34].

Even though cancer immunotherapy has only

recently risen to fame, the first trials to induce inflam-

mation to fight tumors date back to the end of the

19th century [35]. However, the origins of modern

immuno-oncology can be tracked to 1950s, with the

concept of cancer immunosurveillance [36,37]. Despite

pioneering treatments to induce bladder tumor regres-

sion with attenuated bacteria [38], it was only in 1997

that the first immunotherapeutic drug, the monoclonal

antibody rituximab, was approved to treat non-

Hodgkin’s lymphoma [39]. Rituximab acts by binding

CD20, a surface protein expressed in both mature and

immature B-cells, leading to their destruction by natu-

ral killer cells, and is currently used in combination

with chemotherapeutic agents for the treatment of

most lymphomas and leukemias of B-cell origin [40]

(see below).

Another monoclonal antibody, trastuzumab, was

introduced in 1998 to treat breast cancer with high

expression of the EGFR-family receptor HER2 [41].

Indeed, the prognosis of this aggressive breast cancer

subtype improved with trastuzumab, used either as sin-

gle therapy or in combination with chemotherapy

[42,43]. More recently, harnessing the patient’s

immune system against the tumor through so called

adoptive cell therapies (ACT) has been brought to the

fore, and applied to cancers of different origin [44].

ACT entails the in vitro expansion of tumor-specific

cytotoxic T-cells isolated from the tumor infiltrate

before injecting them back in the patient. Alterna-

tively, genetic engineering techniques have been

applied to express T-cell receptors against tumor

antigens, thus extending the application range of ACT

[45]. Finally, immune checkpoint inhibitors, such as

anti-PD-L1 or anti-CTLA4, are antibodies designed to

block surface receptor–ligand interactions that sup-

press the immune response against cancer cells [46].

3. Therapy failure: one problem many
faces

While continuous advances are being made in the clini-

cal management of cancer, the improvement of patient

survival – albeit with some notable exceptions – has

been limited in the last decades [47]. The main reason

hindering full cure is therapy resistance, or the

unremitting capacity of cancer cells to effectively cir-

cumvent any new weapon that is thrown at them.

Whereas treatment-resistant cancer cells may either

pre-exist or emerge during therapy, both scenarios are

based on largely overlapping molecular and biological

properties. In all cases, the main enabler of resistance

is intra-tumoral heterogeneity, a complex phenomenon

that depends on an ensemble of cell-intrinsic features,

ranging from genetic and epigenetic diversity [48] to

metabolic plasticity [49], and their interplay with cell-

extrinsic (i.e., environmental) variables [50]. Genetic

heterogeneity arises from the relative instability of can-

cer genomes, compounded by specific mutation pat-

terns derived from external factors (e.g., mutations

induced by alkylating agents in cancers pretreated with

temozolomide) [51]. Epigenetic heterogeneity is the by-

product of a wide range of alterations, such as DNA

and histone methylation [52], resulting in phenotypi-

cally plastic and/or reversible differentiation programs

(e.g., stem-like properties, epithelial-to-mesenchymal

transition, etc.) [53].

For a practical categorization of resistance mecha-

nisms, we will hereby distinguish those that directly

impact drug-target interactions (on-target) from off-

target mechanisms; the latter may act upstream or

downstream of the target (pre- and post-target, respec-

tively) or may bypass its function altogether.

3.1. On-target resistance

The effectiveness of a drug can be blunted by alter-

ations in either the levels or the structure of its target.

For example, shortly after the clinical introduction of

the targeted drug imatinib, mutations in its receptor

BCR-ABL1 that hamper binding of the drug, were

identified in relapsed chronic myeloid leukemia (CML)

patients [54,55]. Similar mechanisms are implicated in

resistance to other targeted therapies, such as EGFR

kinase inhibitors [56].
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3.2. Off-target resistance and bypass

mechanisms

Targeted therapies exploit the addiction to mitogenic

signaling gained through specific gain-of-function

mutations. However, their effects can be lost due to

the selection of clones where redundant pathways are

activated, a mechanism known as ‘bypass resistance’.

An example of bypass resistance is the activation of

PI3K signaling by amplification of the MET oncogene

in lung cancer resistant to EGFR inhibitor [57]. Recip-

rocally, activation of the EGFR pathway in MET-

addicted cancer cells confers resistance to MET inhibi-

tors [58]. Similarly, resistance to inhibitors of BRAF

V600E could be achieved either by alterations that

bypass RAF-dependent activation of the MAPK path-

way [59], or by activation of alternative signaling path-

way, such as PI3K [60].

Another off-target mechanism lies in the acquisition

of cellular phenotypes associated with resistance.

In particular, reports linking the epithelial-to-

mesenchymal transition (EMT) to chemoresistance

have been steadily appearing since the 1990s [61].

Along this line, the potential for metastasization as the

main pathologic feature of EMT has been put into

question, in favor of inducing chemoresistance [62,63].

Energy metabolism in cancer cells is highly plastic,

allowing to adapt to variable external conditions [49].

Resistance to different classes of drugs have been cau-

sally linked to altered activity or expression of meta-

bolic enzymes such as glycolytic, glutaminolytic or

mitochondrial ones [64,65]. Moreover, proficiency in

the coupled mitochondrial processes of oxidative phos-

phorylation (OxPhos) and tricarboxylic acid (TCA)

cycle is an absolute requirement for the intrinsically

therapy-resistant cancer stem cell phenotype in leuke-

mia [66].

Finally, alterations in the tumor microenvironment

might also provide cancer cells with the means to

escape treatment. For example, secretion of the MET

ligand hepatocyte growth factor by tumor stromal

fibroblasts confers resistance to BRAF V600E inhibi-

tors and correlates with poor prognosis in melanoma

[67]. In an analogous manner, the efficacy of cytotoxic

T-cell based cancer immunotherapy can be reduced by

immunosuppressive myeloid tumor infiltrates [68].

3.3. Pretarget resistance

Physical barriers that prevent a drug from reaching its

intended target constitute pretarget mechanisms of

resistance. Cancer burden has been inversely correlated

with curability, owing not only to the increased

probability to select for resistant cells [69], but also to

inadequate blood flow creating a spatial gradient for

chemotherapeutics, thus hindering their efficacy [70].

Effective drug exposure might also be precluded when

cancer cells colonize ‘sanctuary sites’ in the body, the

prototypical example being the central nervous system,

where the presence of the blood–brain barrier prevents

an effective exposure to systemically delivered drugs

[71]. Alternatively, reduced drug concentration in neo-

plastic cells might follow from inactivating mutations

in drug carriers or increased expression of proteins

involved in drug efflux. The ATP-binding cassette

(ABC) family of membrane transporters are physiolog-

ically responsible for pumping out xenobiotics and

endogenous metabolites, to prevent intracellular accu-

mulation of these toxic moieties [72]. Neoplastic cells

coopt this system by overexpressing ABCB1, also

known as P-glycoprotein, a promiscuous surface trans-

porter that endows them with resistance to multiple,

chemically distinct drugs [73,74], a phenotype known

as multidrug resistance.

3.4. Post-target resistance

Cancer cells may mitigate and repair the damage

caused by therapeutic agents, ultimately resulting in

drug resistance and treatment failure. For example, the

damage induced by genotoxic drugs and radiotherapy

can be mitigated by enhanced mechanisms of DNA

repair or scavenging of reactive oxygen species (ROS)

[75,76]. Refractoriness to cell death is another form of

multidrug resistance, obtained by losing regulators and

effectors of apoptosis and other forms of regulated cell

death. For instance, loss of p53 or perturbed expres-

sion of BCL2-family proteins, resulting in an impaired

apoptotic response, are widely associated with resis-

tance to different chemotherapeutics [77,78].

4. MYC and therapy resistance

4.1. Clinical evidence

The MYC oncogene and its product not only exert a

central role in cancer initiation and progression, but

are also generally recognized as negative prognostic

factors in diverse malignancies [79–81]. Here, we selec-

tively focus on the available clinical data linking onco-

genic MYC to therapy resistance in diverse cancer

types (summarized in Table 1).

A tumor type that was extensively studied in this

regard is diffuse large B-cell lymphoma (DLBCL), the

most common form of lymphoid malignancy in adults

3831Molecular Oncology 16 (2022) 3828–3854 � 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

G. Donati and B. Amati MYC and cancer therapy



[82]. Currently, the front-line therapy for DLBCL is

R-CHOP, a combination of the monoclonal antibody

rituximab with four chemotherapeutic drugs (cy-

clophosphamide, doxorubicin and vincristine, and the

glucocorticoid prednisone), which achieves cure in ca.

60% of patients. For relapsed and refractory DLBCL

the success rates of salvage therapies are quite low

[83]. MYC translocations and/or MYC protein overex-

pression are relatively frequent events in DLBCL

(around 10% and 30% of cases, respectively) and,

most importantly, have been linked to reduced patient

survival [84–88]. DLCBL cases presenting high co-

expression of MYC and the anti-apoptotic BCL2 pro-

tein show inferior prognosis [87–90], which gets even

worse in the subgroup historically known as ‘double

hit lymphomas’ (DHL), a small subset (around 5% of

total DLBCL) featuring concurrent chromosomal

translocations targeting both MYC and BCL2

[89,91,92].

The association between MYC and disease aggres-

siveness was documented in other B-cell malignancies,

including the progression of follicular lymphoma,

mucosa-associated lymphoid tissue lymphoma, and

chronic lymphocytic leukemia (CLL) from their indo-

lent forms to more aggressive, treatment-refractory

phases [93,94]. In particular, recent multi-omic studies

in CLL identified MYC activity as one of the main

features associated with morbidity, either within the

chronic phase [95] or during the evolution to high-

grade lymphoma [96] (a process known as Richter

transformation).

Mantle cell lymphoma (MCL) is a largely incurable

B-cell malignancy [97] that heavily relies on B-cell

receptor (BCR) signaling for survival and propagation

[98]. Targeting Bruton’s tyrosine kinase, an essential

mediator of BCR signaling, with the covalent inhibitor

ibrutinib proved effective to treat relapsed and refrac-

tory MCL [99]. However, resistance to ibrutinib

monotherapy inevitably emerges, with resistant MCL

also showing poor response to salvage chemotherapies

[100]. Comparing mRNA profiles from clinical speci-

mens of ibrutinib-resistant and sensitive MCL led to

the identification of several resistance-associated signa-

tures, with a MYC-driven transcriptional program

being the most significantly enriched [101]. Most note-

worthy here, other enriched signatures included

OxPhos and mTOR [101], which were also linked to

disease aggressiveness and Richter transformation in

CLL [95,96]. The connections between MYC and

either of these features, as well as their therapeutic

implications, will be examined more in detail below.

A number of observations also linked MYC to ther-

apy resistance in solid tumors. In HER2-positive

breast cancers, for example, amplification of the MYC

locus identified a subgroup of patients with particu-

larly poor prognosis when treated with adjuvant

Table 1. MYC and therapy resistance in the clinic. The table provides the list of malignancies in which MYC alterations were documented

to impact the response to the indicated therapies. IHC, immunohistochemistry; qNPA, quantitative nuclease protection assay; RNA-seq,

RNA sequencing; RT-PCR, real-time PCR.

Malignancy Drug therapy MYC alteration References

Diffuse large B-cell lymphoma R-CHOP immunochemotherapy MYC translocation [84–87]

MYC expression (IHC or qNPA; meta-analysis) [88]

MYC/BCL2 co-translocation and co-expression

(IHC)

[87,89]

MYC/BCL2 co-expression (IHC) [90]

MYC/BCL2 co-expression (IHC or qNPA; meta-

analysis)

[88]

Mantle cell lymphoma (MCL) Ibrutinib targeted therapy MYC gene signature (RNA-Seq) [101]

HER2-positive breast cancer Adjuvant chemotherapy (not specified) MYC amplification [102]

ER-positive breast cancer Adjuvant tamoxifen endocrine therapy MYC gene signature (gene expression

microarray)

[103]

Endocrine therapy (not specified) MYC amplification [104]

Triple negative breast cancer Neoadjuvant chemotherapy (not specified) MYC gene signature (gene expression

microarray)

[111]

MYC/MCL1 co-amplification [110]

Colon cancer Adjuvant 5-fluoruracil chemotherapy MYC expression (RT-PCR) [112]

Anti-EGFR targeted therapy +

FOLFIRI chemotherapy

MYC expression (IHC) [113]

Melanoma Anti-BRAF targeted therapy MYC expression (IHC) and gene signature (gene

expression microarray)

[114]
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chemotherapy [102]. Likewise, high expression of the

MYC protein or a MYC-dependent gene signature

predicted poor prognosis in patients suffering from

estrogen receptor-positive breast cancer treated with

adjuvant hormonal therapy [103]. Accordingly, com-

pared to before treatment, tumoral tissue from patients

who relapsed after endocrine therapy showed MYC

amplification, [104]. MYC activity and/or expression

are also upregulated in triple-negative breast cancers

(TNBC) [105–107], a subtype characterized by lack of

estrogen, progesterone and HER2 receptors, and asso-

ciated with higher risk of recurrence and death

[108,109]. In a subset of TNBC cases, MYC was co-

amplified with MCL1 (an anti-apoptotic member of

the BCL2-family), an occurrence further enriched in

residual disease after neoadjuvant therapy, suggesting

a role in chemoresistance [110]. Finally, another study

confirmed that a MYC-driven gene signature corre-

lated with TNBC status, and was even a better predic-

tor of disease outcome in breast cancer patients [111].

In colon cancer, high expression of the MYC tran-

script significantly correlated with tumor recurrence in

patients who underwent adjuvant 5-fluorouracil (5FU)

chemotherapy, an association attributed to the MYC-

dependent activation of the ABC-family transporter

ABCB5 [112]. High MYC protein expression in pri-

mary colon cancer was also predictive of an inferior

response to anti-EGFR monoclonal antibodies plus

FOLFIRI (a polychemotherapy regimen based on

5FU and irinotecan) [113]. The same study found

MYC more expressed in metastases resected during

the course of therapy or during the resistance phase,

as compared to na€ıve primary tumors [113]. High

MYC expression in BRAF-mutant melanomas that

progressed after BRAF inhibitor therapy was identified

as the common denominator between diverse resis-

tance pathways (ERK, PI3K, etc.) [114]. Most impor-

tantly, while MYC overexpression induced resistance

to BRAF inhibitors in melanoma cells in vitro, it also

sensitized the cells to inhibitors of glucose metabolism,

glutaminolysis and other metabolic processes, pointing

to actionable MYC-induced metabolic dependencies

[114]. The concept of synthetic-lethal interactions

between oncogenic MYC and pharmacological inhibi-

tion of distinct pathways will be discussed below (see

Section 4.3).

Albeit conclusive clinical evidence linking MYC

activity to immunotherapy response is still lacking, a

strong body of preclinical studies unraveled a promi-

nent role of oncogenic MYC in evading immune

surveillance, in particular by promoting the expression

of surface receptors and cytokines (e.g., PD-L1 and

CCL9, respectively) that establish immune tolerance in

the tumor microenvironment [16]. Indeed, de-

activating the oncogene in various MYC-driven mouse

tumor models prompted systemic tumor regression

with – among other effects – marked reactivation of

anti-tumoral immune responses [115–117]. Likewise,

suppressing MYC via epigenetic therapy reverted

immune evasion in a mouse lung cancer model [118].

Finally, a retrospective analysis of several clinical stud-

ies suggested that elevated MYC expression might be

associated with resistance to immune checkpoint inhi-

bitor therapy in metastatic urothelial carcinoma and

possibly other cancer types, including TNBC [119].

While the significance of these associations remains to

be confirmed, the same study reported that MYC-

induced anti-PD-L1 resistance could be overcome with

a combinatorial immuno-therapeutic regimen in a pre-

clinical model of TNBC. Altogether, these observa-

tions warrant further studies on the mechanisms

linking MYC to immunotherapy resistance, and on the

best means to counteract them therapeutically.

4.2. All roads lead to Rome: strategies to target

MYC in cancer

Inactivating MYC is sufficient to induce cancer regres-

sion in diverse models of MYC-driven cancer lym-

phoma, skin papilloma, and osteosarcoma, a

phenomenon known as ‘oncogene addiction’

[16,22,120–124]. Thus, targeting MYC activity seems

to be a promising strategy to treat MYC-driven, and

possibly other types of cancer [117,125,126]. However,

as for other transcription factors, several characteris-

tics of the MYC protein, such as the lack of a catalytic

cleft and nuclear localization, limit effective targeting

by either small molecules or antibodies. The fact that

no targeted therapy against MYC has been approved

for clinical use so far, made this oncogene a prime

example of attractive, yet ‘undruggable’ target [127].

Hereafter, we summarize the different strategies that

have been tested to solve the challenge posed by

MYC, with a focus on those that already led to clini-

cal studies; for a more systematic coverage, we refer

the reader to dedicated reviews on the subject [128–
131].

A first attempt to down-regulate MYC expression

for therapeutic means stemmed from the identification

of a guanine-rich region that could organize itself in a

higher-order DNA structure known as G-quadruplex

(G4) within the human MYC promoter. Stabilization

of the G4 structure with small molecules led to tran-

scriptional silencing of the MYC gene [132]. In subse-

quent years, two molecules targeting the MYC G4

structure were tested in the clinic: quarfloxin/CX-3543
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and APTO-253. The former, while initially selected for

its binding to the MYC G4, was later shown to dis-

rupt the binding of nucleolin to nucleolar G4s, thus

inhibiting ribosomal RNA (rRNA) transcription [133].

Its clinical development ceased after completion of a

phase II study in neuroendocrine tumor patients in

2011 (https://ClinicalTrials.gov/show/NCT00780663).

The G4 stabilizer APTO-253 showed the ability to

repress MYC in acute myeloid leukemia (AML) cells

[134] and was tested in a phase I clinical trial in

patients with relapsed AML (https://ClinicalTrials.

gov/show/NCT02267863). However, the study was

terminated and further drug development abandoned

(https://www.aptose.com/news-media/press-releases/

detail/220/aptose-provides-update-on-apto-253-program).

Despite these setbacks, the development of G4 stabiliz-

ers designed to repress MYC and other clinically rele-

vant targets remains the focus of continued efforts

[130,135].

Another strategy employed to directly suppress

MYC activity is to hamper dimerization with its obli-

gate partner MAX or the subsequent binding to E-box

consensus elements in genomic DNA, both of which

are essential for the transcriptional and transforming

activities of MYC [5,6,136]. The search and identifica-

tion of molecules able to interfere with these processes

have been the scope of intense efforts in numerous lab-

oratories [128–131]. Of note here, several of these

molecules displayed reasonable in vivo efficacy and tol-

erability profiles in preclinical studies [137–142]. In

most instances, however, the range of off-target effects

and mechanisms of action of these molecules remain

to be addressed.

Years before any other MYC:MAX inhibitor, a 90-

residue peptide spanning the bHLH-LZ dimerization

domain of MYC with targeted amino acid substitutions,

termed Omomyc, was shown to bind MYC, sequester it

away from MAX, and suppress cell proliferation [143].

In murine models, transgenic expression of Omomyc

prevented MYC-driven skin tumorigenesis and induced

regression of Ras-driven lung and pancreatic adenocar-

cinomas [117,125,126,144]. Finally, the Omomyc peptide

was shown to be cell-permeable, distribute widely in the

body and exert an effective anti-tumoral activity against

Ras-induced lung cancer upon intranasal administration

in mice [145]. Based on its efficacy in these preclinical

studies, Omomyc is currently being tested in a phase I/

II hybrid clinical trial to assess safety and efficacy in

patients with solid tumors (https://ClinicalTrials.gov/

show/NCT04808362).

Besides the aforementioned efforts to target MYC

directly, multiple laboratories pursued alternative

strategies to suppress MYC activity, in particular by

targeting factors regulating MYC degradation. The

Aurora A kinase (AURKA), known for regulating a

mitotic cell cycle checkpoint [146], was later shown to

be able to bind to MYC and prevent its ubiquitination

and degradation [147]. Concurrently, the expression of

AURKA and of the paralog AURKB – also involved

in the control of mitosis [148] – is positively regulated

by oncogenic MYC [149], thus establishing a positive

feedback among these oncogenes. Indeed, in a murine

model, pharmacological inhibition of Aurora kinases

proved highly effective against MYC-driven lymphoma

[149]. In line with these findings, the specific AURKA

inhibitor MLN8237 (alisertib) facilitated degradation

of either MYC or its paralog MYCN by the FBXW7-

associated ubiquitin-ligase complex SCFFBXW7, and in-

duced tumor regression in preclinical studies [147,150].

Among AURKA inhibitors, alisertib was the most

extensively tested in the clinic, and yielded promising

results in monotherapy, despite toxicity-related con-

cerns [151]. However, it later failed to show improve-

ments over other single-agent therapies in a phase III

trial on relapsed/refractory T-cell lymphoma [152].

Finally, given the role of AURKA in the mitotic

checkpoint, it is worth reminding that oncogenic MYC

also sensitizes cells to mitotic disruptors [153] and

thus, alisertib may exert its synthetic-lethal interaction

with MYC by the same mechanisms described below

for this class of drugs.

Other potential targets involved in the control of

MYC stability are the peptidylprolyl cis/trans iso-

merase PIN1 and the protein phosphatase PP2A.

PIN1 induces a conformational change in pS62/pT58

MYC that allows the binding by PP2A, which in turn

dephosphorylates pS62 to facilitate MYC degradation

by the SCFFBXW7 complex [154]. PIN1 is involved in

the development of various cancers and has thus

attracted attention as a possible target for cancer ther-

apy, with several PIN1 inhibitors described and tested

in preclinical studies [155]. While the clinical properties

of these inhibitors remain to be assessed, it was

reported that All-trans retinoic acid, a drug used to

treat promyelocytic leukemia expressing the PML-

RARa fusion protein, directly binds and inhibits

PIN1, which may extend its use to other cancer types

[156]. PP2A has a very broad range of substrates, with

specificity given by the subunit composition of the

holoenzyme, and generally act as a tumor suppressor

[157,158]: for this reason a more sensible approaches

for cancer treatment could be either to use pharmaco-

logical activators of specific PP2A isoforms [159–161],
or to target its cellular inhibitors. The latter is best

exemplified by CIP2A, an endogenous inhibitor of

PP2A able to stabilize MYC and often found
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overexpressed in cancer [162]. While no modulator of

PP2A activity has been tested in the clinic as yet, the

clinically approved drugs bortezomib and erlotinib, a

proteasome and an EGFR inhibitor respectively,

showed off-target inhibitory activity on CIP2A [158].

Polo-like kinase-1 (PLK1) phosphorylates FBXW7,

promoting its auto-ubiquination and degradation, thus

stabilizing both MYC and MYCN [163,164]. Further-

more, inhibition of PLK1 with BI6727 (volasertib) syn-

ergized with the BCL2 inhibitor ABT199 (venetoclax)

to kill MYC/BCL2 double-hit lymphoma cell lines

[164]. The clinical development of volasertib was dis-

continued in 2018 due to failure of reaching the pri-

mary endpoint in a phase III study in AML patients

[165], but should resume following a licensing agree-

ment with a new developer (https://www.nfcr.org/blog/

ricardo-garcia-the-power-of-repurposing/).

A different approach tested to indirectly target

MYC was to block the interaction between acetylated

histones and the bromodomain protein BRD4. BRD4

and the other three members of the bromodomain and

extraterminal domain (BET) family recognize acety-

lated histones and facilitate transcription by recruiting

the positive transcription elongation factor b (P-TEFb)

to target loci, which include MYC itself [166]. More-

over, both BRD4 and P-TEFb, including its catalytic

subunit CDK9 (see below), associate with MYC and

contribute to its transcriptional activity [167–169].
JQ1, a small molecule inhibitor of BET proteins, sup-

pressed MYC expression in preclinical models of mul-

tiple myeloma (MM) and AML, effectively halting

cancer growth in vitro and in vivo [170,171], although

these and other studies indicated that BRD4 inhibition

has multiple consequences beyond MYC inhibition

[172–174].
Derivatives of JQ1 and other BET inhibitors tested in

phase I/II clinical trials on both hematological and solid

tumors patients have shown promising results in terms

of efficacy, but also raised concerns regarding their

safety due to frequent thrombocytopenia and other

adverse events [175]. Currently, there is an ongoing

phase III trial with the BET inhibitor CPI-0610

(pelabresib), reported to inhibit MYC [176], in combina-

tion with the JAK inhibitor ruxolitinib to treat myelofi-

brosis (https://ClinicalTrials.gov/show/NCT04603495).

4.3. Synthetic lethality: exploiting oncogenic

pathways for their own demise

Like its physiological counterpart, oncogenic MYC

promotes energy production and anabolic pathways,

but does so unceasingly, regardless of external growth

signals, to sustain cancer hyperproliferation [11–13].

Therefore, the associated metabolic reprogramming

creates multiple dependencies that can be therapeuti-

cally exploited [177,178]. Moreover, due to their

altered biology, cancer cells are exposed to a variety of

endogenous stresses, such as DNA damage/replication,

mitotic, metabolic, oxidative and proteotoxic stress.

These so called ‘stress phenotypes’ (all of which have

all also been connected to oncogenic MYC; e.g., [179–
182]) are proposed to be an integral part of neoplastic

characteristics, and interfering with pathways required

to mitigate their effects represents a valid therapeutic

strategy [22]. How the aforementioned MYC-

dependent processes may be exploited therapeutically

is schematically illustrated in Fig. 1 and will be dis-

cussed in the next two sections.

The identification of druggable targets for a

synthetic-lethal interaction with oncogenic MYC

(MYC-SL) has been pursued either in a hypothesis-

based manner, based on the knowledge of pathophysi-

ological changes induced by the oncogene, or by large-

scale screens using either custom-built RNA interfer-

ence (RNAi) or drug libraries [183,184]. As an exam-

ple of the latter approach, an RNAi library targeting

‘druggable’ gene products was used to screen for

MYC-SL interactions in non-transformed fibroblasts

modified to over-express MYC [185], identifying 40

MYC-SL potential targets. Among the candidates

from this screen, the chromatin regulator CECR2 was

recently shown to play a role in promoting breast can-

cer metastasization [186]. In another study, based on

the known induction of intrinsic apoptosis by onco-

genic MYC, the authors tested which anti-apoptotic

BCL2-family protein would be required for survival of

MYC-driven lymphomas, uncovering a critical role for

MCL1, independently of the cell’s p53 status [187].

MCL1 is an attractive therapeutic target, being fre-

quently overexpressed and associated with poor prog-

nosis in cancer, with several MCL1 inhibitors

currently in phase I/II clinical studies [188]. Besides

the intrinsic apoptotic pathway, controlled by BCL2-

family proteins and triggered by permeabilization of

the outer mitochondrial membrane and consequent

release of cytochrome c, apoptosis can be induced

through the extrinsic pathway, activated by death

receptors of the TNF superfamily [189]. In another

study, ligands for several death receptors were tested

in MYC-overexpressing cells, leading to the identifica-

tion of the DR5 ligand, TRAIL, as a critical MYC-SL

interactor [190].

The PIM family is constituted of three homologous

serine/threonine kinases that are frequently over-

expressed in diverse human cancers [191]. In murine

tumor models, PIM kinases are weak oncogenes by
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themselves, but can exert strong cooperation with

other oncogenes, in particular with MYC and MYCN

in lymphomagenesis and prostate carcinogenesis [192–
195]. The basis of this oncogenic cooperation has been

ascribed to phosphorylation of several substrates,

including (a) MYC itself, thus increasing its stability

[196], (b) histones at a subset of MYC target genes,

facilitating MYC-dependent transcription [197], and

(c) the BCL2-family protein BAD, hampering its pro-

apoptotic activity [198,199]. Furthermore, the three

PIM-family kinases proved redundant for the coopera-

tion with oncogenic MYC [200]. Several small mole-

cule inhibitors of PIM kinases are currently in clinical

development [191,201] and some of them showed

Fig. 1. Tackling oncogenic MYC. The MYC transcription factor regulates diverse cellular processes (inner circle) that promote cell growth

and proliferation, and are hijacked in cancer cells to fuel tumor aggressiveness and/or therapy resistance. However, the same processes

may become a dependency in MYC-driven cancer, and may thus be exploited for pharmacological intervention (outer circle): drug classes

that impact these processes are indicated with their relevant molecular targets.
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synthetic lethality with MYC and synergy with anti-

CD20 immunotherapy in preclinical models of MYC-

driven TNBC and DLBCL, respectively [202,203].

Replication stress and genomic instability are part

of the cancer-associated phenotypes [15] and are found

in MYC-driven cancer [181,182]. Since the ATR-

CHK1 branch of the DNA damage response mitigates

genome instability in cancer cells [204], inhibiting this

signaling axis has the potential for a MYC-SL. Indeed,

CHK1 inhibitors proved effective in killing murine

MYC-driven lymphoma [205]. Similarly, an RNAi

screening identified CHK1 depletion as synthetic lethal

with MYCN overexpression in neuroblastoma cells

[206]. Both ATR and CHK1 inhibitors have reached

the clinical trial stage, with encouraging results espe-

cially for ATR inhibitors [207]. Two phase II studies,

in particular, proved the effectiveness of combining the

ATR inhibitor berzosertib with chemotherapeutics to

treat platinum-resistant high-grade serous ovarian can-

cer and lung small cell neuroendocrine cancers

[208,209], two aggressive forms of neoplasia bearing

frequent amplification of MYC family members [210–
212].

The WRN gene, which encodes for a protein with

helicase and exonuclease activity involved in genomic

integrity, is mutated in Werner syndrome, a form of

progeria whose features include early onset cancer

[213]. While WRN is commonly regarded as a tumor

suppressor, its pharmacological inhibition was pro-

posed to achieve synthetic-lethal effects in neoplastic

cells characterized by high replication stress [214,215],

which may render it effective also against MYC-

overexpressing cancer. This assumption is supported

by preclinical evidences showing that the WRN locus

is a direct target of MYC [216], and that its deficiency

hampers MYC-driven lymphomagenesis in mice [217].

Targeting mitotic processes is also a sensible choice

to pursue synthetic lethality with MYC, since this

oncogene has been associated with chromosomal insta-

bility [218–220]. Indeed, MYC overexpression, while

activating the expression of mitotic spindle genes

[221,222], also facilitates cell death when these genes

are selectively depleted by mRNA knockdown [223] or

when cells are treated with mitosis disruptors (e.g.,

AURKA inhibitors) [153]. The MYC-dependent sensi-

tization to mitotic perturbations was also confirmed by

an unbiased RNAi screen, which found that depleting

SUMO-activating enzyme subunits 1 or 2 (SAE1/2),

both required for protein SUMOylation [224], was

synthetical lethal with MYC [225]. In this context,

SAE2 depletion modulated the expression of a group

of mitotic spindle genes, which switched from being

MYC-induced to MYC-repressed, thus causing

chromosomal abnormalities and growth-arrest in

MYC-overexpressing cells [225].

Members of the Cyclin-dependent kinase (CDK)

family control progression through the different phases

of the cell cycle: CDK1, in particular, is essential for

entry and progression through the mitotic phase [226].

Pharmacological inhibition of CDK1 led to selective

killing of cells expressing oncogenic levels of MYC

and reduced in vivo growth of MYC-driven lym-

phomas [227]. The specificity of the synthetic-lethal

interaction between MYC and CDK1 was validated

using a temperature-sensitive CDK1 mutant cell line

[227], as well as through pharmacological inhibition in

cells lacking other CDKs [228]. CDK2 controls entry

and progression through the S phase [226]. Its pharma-

cological inhibition revealed a noncanonical role in

preventing MYC-driven senescence [229] and mediat-

ing the cooperation between MYC and RAS oncoge-

nes [230].

Apart from the cell cycle-regulatory CDKs, other

members of this kinase family control RNA transcrip-

tion [231,232]. CDK7 and CDK9 in particular, the cat-

alytic subunits of the TFIIH and P-TEFb

complexes, phosphorylate distinct serine residues in

the RNA polymerase II C-terminal domain, favoring

the orderly succession of transcriptional initiation and

pause-release, respectively [233]. An RNAi screen

among known drug targets pointed to CDK9 as a crit-

ical activity for survival of MYC-overexpressing/p53-

deleted murine hepatocellular carcinoma cells [234].

Moreover, the authors found that enforcing MYC

expression in human hepatocellular carcinoma-derived

cells increased the sensitivity to PHA-767491 [234], a

CDK9-inhibitory tool compound [235]. Similarly, the

CDK9 inhibitor AZ5576 efficiently targeted DLBCL

cells expressing high MYC level in vitro and in vivo,

and its effects were potentiated by enforcing MYC

expression [236]. Based on these results, AZ5576 has

been tested in a phase I clinical study on patients with

relapsed or refractory hematological malignancies

(https://ClinicalTrials.gov/show/NCT03263637).

CDK7 might also be an attractive target in MYC-

driven tumors: indeed, the covalent CDK7 inhibitor

THZ1 [237] disproportionally repressed super-enhancer

regulated genes, including MYC, MYCN and MYCL

in diverse cancer-derived cell lines [238,239]. Due to

the high homology between CDK-family kinases,

small-molecule inhibitors often target multiple mem-

bers. For example, THZ1 also inhibits the transcrip-

tional regulators CDK12 and CDK13, and combined

inhibition of CDK7/12/13 was required to suppress

MYC expression in ovarian cancers harboring MYC

amplification [210]. Hence, while conveying the risk of
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increased toxicities, multi-target inhibitors might also

have improved clinical potential. Along the same line,

an in vivo efficacy and tolerability screen for clinically

suitable CDK inhibitors pointed out to dinaciclib, a

composite CDK1/2/5/9 inhibitor, as an effective anti-

cancer agent [240]. In preclinical studies, dinaciclib

showed strong antitumoral activity against breast can-

cer and B-cell lymphoma expressing high levels of

MYC [111,241]. Finally, in contrast with the afore-

mentioned synthetic-lethal interactions, it is notewor-

thy here that elevated MYC activity may also induce

resistance to inhibitors of CDK4 and CDK6 [242,243].

Hence, while the list of clinically relevant CDK inhibi-

tors is steadily growing [244], whether MYC expres-

sion and/or activity may be used to predict the

response of cancer cells to these molecules remains an

important open question that needs to be systemati-

cally addressed.

To sustain increased rates of DNA replication and

RNA transcription, oncogenic MYC promotes nucleo-

tide biosynthesis [13,245]. Phosphoribosyl-

pyrophosphate synthetase 2 (PRPS2) catalyzes the first

step of de novo nucleotide biosynthesis [246]. PRPS2

expression was promoted by MYC at the transcrip-

tional, as well as at the translational levels and, most

importantly, was rate-limiting for MYC-driven lym-

phomagenesis [247]. Other enzymes in the same path-

way were also induced by MYC and one of these,

ADSL, was identified through an in vivo RNAi screen

as a critical MYC effector in lymphoma [248]. Another

metabolic process whose components are often up-

regulated in cancer is the serine-glycine-one carbon

(SGOC) pathway, which controls purine and dTMP

biosynthesis [249]. Most relevant here, up-regulation of

the SGOC pathway correlated with MYCN amplifica-

tion in neuroblastoma, and MYCN sensitized neurob-

lastoma cells to pharmacological inhibition of one of

its components, phosphoglycerate dehydrogenase [250].

Cytidine triphosphate (CTP) is the least abundant

among the four nucleotides [246]. Pharmacological

inhibition of CTP synthase induces selective replication

stress in MYC-overexpressing cancer cells and syner-

gizes with ATR inhibitors to kill them [251]. Cell lines

derived from relapsed small-cell lung cancer presented

higher MYC mRNA levels and/or more frequent

amplification of MYC-family genes than those derived

from treatment-na€ıve patients, showed higher expres-

sion of genes involved in purine synthesis, and

were particularly sensitive to the immunosuppressant

mizoribine [252], which inhibits inosine monophos-

phate dehydrogenase, the rate-limiting enzyme of gua-

nine biosynthesis [253]. Interestingly, the consequent

depletion of guanine hampered the activity of cellular

GTPases required for RNA polymerase I recruitment

onto ribosomal DNA [252]. This was most likely

responsible for the observed MYC-SL effect of

mizoribine, since rRNA transcription is rate limiting

for ribosome biogenesis [254]. Indeed, activation of

genes involved in ribosome biogenesis and protein syn-

thesis are among the most conserved activities of

MYC, consistent with its central role in cell growth

and proliferation [255], and murine MYC-driven lym-

phomas proved to be highly sensitive to the impair-

ment in protein synthesis consequent to reduced

ribosome biogenesis, either by knocking out a riboso-

mal protein [256] or by pharmacological inhibition of

RNA Polymerase I – and thus of rRNA synthesis

[257]. Similarly, direct inhibition of protein translation

by knockdown or pharmacological inhibition of the

eIF4F complex was synthetic-lethal with oncogenic

MYC in murine models of lymphoma and myeloma

[258,259].

mTOR kinase activity is regulated by nutrient levels

and mitogenic cues converging on the PI3K/AKT

pathway [260], and downstream targets of mTOR

(e.g., S6K1, 4E-BPs, etc.) promote ribosome biogenesis

and cap-dependent protein translation [261]. Onco-

genic MYC promotes mTOR activation by increasing

essential amino acid import [262], while mTOR signal-

ing positively regulates MYC protein translation and

stability [263–266], thus creating a positive interplay

among these crucial regulators of cell growth. In line

with these findings, pharmacological inhibition of

mTOR/PI3K exerted anti-cancer effects and decreased

MYC levels in preclinical models of breast cancer,

MM and AML [267–269], and suppressed the expres-

sion of MYC targets in CLL cells [95]. In a transgenic

model of MYC-driven lymphoma, tumor initiation

and maintenance were hampered by the mTOR inhibi-

tor everolimus, albeit without suppressing MYC level

and activity [270]. In apparent contrast, increased

MYC expression was reported to confer resistance to

everolimus [271]. The rapalogs (i.e., mTOR allosteric

inhibitors) everolimus and temsirolimus are the only

mTOR inhibitors clinically approved so far for the

treatment of several solid tumors, but showed rather

limited efficacy both as monotherapy and in combina-

tion [272]. The limitations of rapalogs as therapeutic

agents and the structural similarities between mTOR

and PI3K pushed the development of dual PI3K/

mTOR inhibitors, several of which reached the clinical

research stage [272]. One of these drugs, BEZ235 (dac-

tolisib), showed efficacy on preclinical models of

MYC-driven lymphoma, mediated by inhibition of the

DNA damage response kinase ATM along with

mTOR [273]. Nonetheless, as with everolimus, others
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reported that MYC overexpression might be linked to

resistance to dual PI3K/mTOR inhibitors [274,275].

Whether this class of drugs would be an effective treat-

ment for MYC-driven cancer remains to be systemati-

cally addressed.

Therapeutically relevant MYC-SL interactors have

also been identified among enzymes and regulators of

energy metabolism. For example, an RNAi screen

focused on the human kinome showed that depletion

of ARK5 led to cell death in the presence of high

MYC activity. This was due to simultaneous high rates

of protein synthesis and reduced OxPhos activity, thus

leading to disruption of energy homeostasis [276]. In a

model of MYC-driven liver cancer, upregulation of

lactate dehydrogenase A (LDHA) and LDHA-

dependent aerobic glycolysis was associated with the

acquisition of a fully transformed phenotype [277].

Reciprocally, pharmacological inhibition of LDHA or

nicotinamide phosphoribosyl-transferase, both required

for proficient aerobic glycolysis, led to selective toxicity

toward MYC-overexpressing pancreatic cancer and

glioblastoma cells [278,279].

Reliance on glutamine to fuel the mitochondrial TCA

cycle is one of the best characterized metabolic alterations

in cancer cells [280]. Oncogenic MYC promotes glu-

tamine uptake and glutaminolysis, creating an addiction

to glutamine and sensitizing cancer cells to glutaminolysis

inhibitors [281,282]. In MYCN amplified neuroblastoma,

glutamine deprivation induces the expression of pro-

apoptotic BCL2-family proteins and subsequent cell

death, dependent upon the transcription factor ATF4

[283], the main effector of the Integrated Stress Response

(ISR) [284,285]. A more detailed discussion on the role of

the ISR in the selective killing of MYC-overexpressing

will be provided below.

4.4. The case of OxPhos inhibitors to treat MYC-

driven cancer

Following from the profiling of genes up-regulated in

MYC-driven lymphomagenesis [221], our laboratory

undertook an in vivo RNAi screen aimed at the identi-

fication of critical MYC effectors [248]. Among other

candidates, this pointed to the mitochondrial ribosome

as an essential mediator in lymphoma maintenance.

Tigecycline is a clinically approved antibiotic that inhi-

bits not only bacterial translation [286], but also mito-

chondrial translation, with consequent impairment of

OxPhos activity [287]. Hence, we hypothesized that

this drug could be used to exploit the MYC-induced

dependency upon mitochondrial translation. Indeed,

we and others showed that tigecycline was synthetic-

lethal with MYC overexpression in cultured B-cells,

and killed MYC-driven B-cell lymphomas [248,288].

Following up from these results, we showed that tige-

cycline and venetoclax acted synergistically against

tumor xenografts derived from MYC/BCL2 double-hit

lymphoma [289]. Hence, targeting the mitochondrial

ribosome – and ultimately OxPhos activity – provided

relevant therapeutic leverage against aggressive MYC-

associated lymphoma.

Promoting mitochondrial biogenesis is an important

contribution of MYC to normal cell physiology [290],

which would be fitting with the dependency for mitochon-

drial translation induced by oncogenic MYC. In fact,

oncogenic MYC increases the reliance upon mitochon-

drial metabolism in B-cell lymphoma, as assessed in a cel-

lular model of conditional MYC repression [291]. The

potential relevance of mitochondrial activities as thera-

peutic targets in MYC-driven lymphoma was delineated

further by transcriptome analysis across six patient-

derived DLBCL datasets, which revealed a close correla-

tion between MYC- and OxPhos-associated gene expres-

sion signatures [292]. In a previous study, transcriptional

profiling led to the identification of a DLBCL subgroup

characterized by high expression of OxPhos-related genes

[293]. DLBCL cell lines from this group were character-

ized by higher levels of TCA cycle activity and of the

antioxidant glutathione, and accordingly by increased

sensitivity to inhibitors of either fatty acid oxidation or

glutathione biosynthesis [294]. In summary, an OxPhos

gene signature is strongly correlated with oncogenic

MYC activity and may point to therapeutically actionable

processes in DLBCL.

Following from the above premises, we used IACS-

010759, a pharmacological inhibitor of electron trans-

port chain (ETC) complex I [295], to show that onco-

genic MYC sensitizes B-cells to direct OxPhos

inhibition. While IACS-010759 was merely cytostatic

in nontransformed B-cells, it exerted a strong cytotoxic

effect following ectopic activation of MYC in the same

cells [292]. Mechanistically, MYC overexpression and

IACS-010759 treatment independently enhanced ROS

production, causing lethal levels of oxidative stress and

depletion of cellular glutathione [296], associated with

activation of ISR signaling and intrinsic apoptosis

[292]. In this context, the anti-tumoral effects of

IACS-010759 could be reinforced by further exacerba-

tion of oxidative stress, either by inhibiting NADPH

biosynthesis through the pentose phosphate pathway,

or by treating with pharmacological doses of ascorbate

(vitamin C) [296]. Moreover, IACS-010759 synergized

not only with venetoclax to kill MYC/BCL2 DHL

tumor cells in vivo and in vitro, as previously shown

with tigecycline [289], but also with the MCL1 inhibi-

tor S63845 against BCL2-negative lymphoma cell lines
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[292]. Finally, IACS-010759 also suppressed prolifera-

tion in Richter-transformed CLL cells, which show

high expression of OxPhos and MYC target genes

[96]: it is tempting to speculate that venetoclax, S63845

or other BH3-mimetic compounds may provide coop-

erative activity also in this context.

Taking a reverse approach, other authors identified

increased OxPhos activity as a marker of venetoclax resis-

tance in MM cells, and unraveled a similar synergy

between IACS-010759 and venetoclax [297]. Besides vene-

toclax, it was suggested that MM resistance to protea-

some inhibition, a mainstay of MM therapy [298], might

also be linked to increased OxPhos activity and glu-

tathione levels [299]. Interestingly, advanced forms of

MM expressed high levels of MYC and ETC subunits,

and were suppressed by tigecycline in vitro and in vivo

[300], pointing to mitochondrial inhibition as a possible

strategy to overcome therapy resistance in MM. As

already mentioned, ibrutinib resistance in MCL was also

linked to increased expression of MYC and OxPhos gene

signatures and, once again, these ibrutinib-resistant cells

were sensitive to OxPhos inhibition with IACS-010759

[101]. Finally, independent studies showed that mainte-

nance of the leukemic stem cell compartment in CML

required both MYC [301] and Oxphos activity, and was

compromised by tigecycline treatment [302]: we surmise

that MYC may also contribute to tigecycline sensitivity in

CML stem cells.

We already mentioned the co-amplification of genes

encoding MCL1 an MYC in residual TNBC after

chemotherapy [110]. It was subsequently shown that

the two oncogenes collaborated to induce a chemore-

sistant stem-like phenotype by promoting mitochon-

drial respiration, and that this phenotype depended

upon HIF1a stabilization by mitochondrial ROS [303].

It remains to be addressed whether inhibiting OxPhos

may suppress chemoresistance in this setting.

Finally, mutations of the tumor suppressor FBXW7,

which among others drives MYC degradation, have

been associated with resistance to various chemothera-

peutic agents [304]. Proteome analysis of FBXW7

knockout cells revealed increased levels of known tar-

gets, including MYC and mitochondrial components

[305]. While resistant to chemotherapeutic drugs, these

cells were sensitive to tigecycline, an effect that could

be reversed by depletion of MYC [305].

Taken together, the aforementioned studies suggest

that high MYC activity not only contributes to ther-

apy resistance, but concomitantly sensitizes cancer cells

to OxPhos inhibitors. Targeting this MYC-OxPhos

axis emerges as a promising therapeutic concept

against aggressive, refractory, and recurrent MYC-

associated malignancies.

4.5. The integrated stress response: a new

player in the bypass of therapy resistance

Among the aforementioned studies, several involved

ISR signaling in drug-mediated killing of cancer cells

[306] and this was verified with OxPhos inhibitors,

including IACS-010759 in MYC-overexpressing lym-

phoma [292] and MM [297], as well as Tigecycline in

FBXW7-knockout cells [305]. Moreover, other drugs

that killed FBXW7-null cells, albeit with diverse pri-

mary mechanisms of action, were all shown to induce

ISR signaling [305]. These observations are in apparent

contrast with the known function of the ISR as one of

those adaptive mechanisms induced by oncogenic

stress that favor cancer cell survival and expansion, as

shown in diverse tumor models [307–310], including

MYC-driven lymphoma [311,312]. This apparent para-

dox may be readily rationalized, however, based on

the well-documented dual role of the ISR in cell sur-

vival and death [284,285]. Mechanistically, ISR signal-

ing is engaged upon phosphorylation of the translation

factor eIF2⍺ by any of four different kinases that are

selectively activated by diverse stress stimuli, includ-

ing oxidative stress, endoplasmic reticulum- and

mitochondrion-induced unfolded protein responses

(UPR), RNA-associated stresses, and others

[284,285,306,313]. Most noteworthy here, oncogenic

MYC can activate the ISR/UPR through several of

those stresses [310–312,314,315]. While repressing gen-

eral translation, phospho-eIF2⍺ promotes the transla-

tion of a subset of transcripts with short upstream

open reading frames, including the mRNAs encoding

ATF4 and other transcription factors (e.g., CHOP,

ATF5). Together, these factors drive gene expression

programs associated with protein homeostasis, autop-

hagy, stress-resistance, and cell survival. Under condi-

tions of severe, unresolved stress, such as those

induced by IACS-010759 treatment [292], the ISR may

also promote apoptosis by inducing the expression of

pro-apoptotic BCL2-family proteins [284,285,306,313].

Altogether, while fulfilling a cytoprotective action

when activated at moderate levels – as observed with

oncogenic MYC – ISR signaling can be exacerbated

by a large repertoire of targeted drugs, and thus to

exert potent cell-killing activity, which can overcome

resistance to classical therapeutic regimens [305].

5. Conclusions

Over four decades of intense research activity have led

to an advanced understanding of the physiological and

pathological functions of MYC, uncovering it as a

key pan-cancer inducer of malignant phenotypes.

3840 Molecular Oncology 16 (2022) 3828–3854 � 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

MYC and cancer therapy G. Donati and B. Amati



Compelling clinical evidence associating MYC with

resistance to multiple drug classes further points to

this oncogene as a prime therapeutic target in oncol-

ogy. While no MYC-inhibitory drug has yet been

approved for clinical use, recent progress in this area

warrants advanced assessment of promising candi-

dates. In a complementary approach, cell-intrinsic and

systemic dependencies elicited by oncogenic MYC pro-

vide new opportunities to exploit synthetic lethality

toward the development of novel targeted interven-

tions. Altogether, we are witnessing the emergence of

diverse rationally designed strategies (Fig. 1), which

shall significantly expand our toolbox to tackle onco-

genic MYC and improve cancer patient outcomes.
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