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Abstract: Saponin is a biopesticide used to suppress the growth of the golden apple snail population.
This study aims to determine the stabilized conditions for saponin storage. The maceration process
was used for saponin extraction, and for saponin concentration, progressive freeze concentration
(PFC) was used. Afterwards, stability analysis was performed by storing the sample for 21 days in
two conditions: Room temperature (26 ◦C) and cold room (10 ◦C). The samples kept in a cold room
were sterilized samples that undergo thermal treatment by placing the sample in the water bath. The
non-sterilized samples were kept in room temperature condition for 21 days. The results showed that
saponin stored in the cold room (sterilized sample) has low degradation with higher concentration
than those stored at room temperature in stability analysis with the highest saponin concentration
(0.730 mg/mL) at a concentration temperature of −6 ◦C and concentration time of 15 min. The lowest
saponin concentration obtained by saponin stored at room temperature (non-sterilized sample) is
0.025 mg/mL at a concentration temperature of −6 ◦C and concentration time of 10 min. Thus, the
finding concluded that saponin is sensitive to temperature. Hence, the best storage condition to store
saponin after thermal treatment is to keep it in a cold room at 10 ◦C.

Keywords: biopesticides; progressive freeze concentration; saponin; stability analysis

1. Introduction

Oryza sativa is the scientific name for rice. It is widely consumed as a staple food by
over 2 billion people in Asia, which shows its crucial role in providing food security [1].
Therefore, there is a pressing need to boost the output of irrigated paddy fields to increase
rice production with a rising population. However, Malaysia’s warm and humid weather
attracts several pests that severely affect the harvest of paddy fields, resulting in a drop
in overall rice yields. About 800 species of herbivorous insects inhabit the ecosystem [2].
According to Matteson [3], insect and pest vitiation is crucial for minimal rice harvesting
in the tropical Asian region. Additionally, various types of infections caused by fungi,
bacteria, and viruses affect rice’s growth and yield.

For instance, one of the most famous virus outbreaks that have affected rice production
since 2001 is the southern rice black-streaked dwarf virus (SRBSDV), first discovered in
Yangxi County, Guangdong Province, China [4,5]. Nevertheless, the disease had spread
to northern Vietnam in 2009 in which about 103,784 acres of rice were destroyed, and the
next following year, more than 148,263 acres of rice were infected. Meanwhile, southern
China reported about 741,316 and 3,212,369 acres of rice were infected in 2009 and 2010,
respectively [6,7]. Since then, various methods have been used to control SRBSDV, but these
two countries reported about 1,729,737 and 1,235,526 acres of rice infected in 2011 and 2012,
respectively [8]. In a recent study, D. Wang et al. [9] proposed an antiviral agent known
as dufulin, proven effective against plant viruses. It would activate the systemic acquired
resistance (SAR) in a plant, reducing the tendency to be infected by any virus. Authors
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claimed that dufulin only targeted the virus and protected the plant from being infected by
the SRBSDV virus, and no adverse effects of dufulin were found on the plant [9].

In addition to virus’ infection, insect and pest vitiation is also a limitation that needs
to be overcome for agriculture purposes. Golden apple snail (Pomacea canaliculata) has
unexpectedly developed into a pest of rice. The snail was introduced intentionally into
Asia in 1980 without prior studies on economic benefits or its effect on the ecosystem [10]. It
is expected to be cultivated as a high-protein food source for local consumption and export
commodity for high-income countries. Still, many snail farming projects were abandoned
when the market response was inadequate. In many instances, the snails invaded Asian
rice systems with losses of millions of dollars [11]. Hand-picking, use of ducks [12] and
fish [13] as biological control agents, and appropriate water control, including occasional
field drainage and maintenance of low water levels, are effective in the management of snail
population [11]. However, these methods require many workforces and are helpful only in
countries where the labour costs are still low. Meanwhile, another approach commonly
practised is chemical spray due to simple handling [14].

Consumption of paddy that has been sprayed with chemical insecticides could end
up in health-related problems to humans. The continued use of the chemical causes
environmental pollution, public health effects, domestic animal poisonings, contaminated
products, destruction of beneficial natural predators and parasites, and pesticide resistance
in pests [15]. In a recent study, Chen et al. [16] introduced herbicides in microcapsules
to replace chemical insecticides. They designed and synthesized herbicide microcapsule
systems with high retention rates with the excellent sustained-release ability for the use in
paddy field. Many studies agreed that herbicides microcapsules have a controlled release
ability that could prevent herbicides from leaking (either via evaporation or degradation),
hence, could increase the efficiency of herbicidal and, at the same time, minimize the
toxicity [17–20].

On the other hand, another strategy was also introduced, which is the use of biopesti-
cides. Biopesticides offer a technically feasible and environmentally acceptable approach
for controlling agronomically essential insects, including snails. They also can enhance
plant productivity and improve plant physiology [21]. The most common benefits of
biopesticides are biodegradable, less toxicity, produce lower pesticide residue, and avoid
pollution problems associated with chemical pesticides [22].

Moreover, it was also reported that plant metabolites were acknowledged as protection
against snails [23,24]. More than 1500 species of plants had been evaluated for potential
molluscicidal activity, and most of them are the family of Theaceae, Meliaceae, Apocynaceae,
Euphorbiaceae, Leguminosae, Phytolaccaceae, Solanaceae, and Rutaceae [25]. Molluscicidal
activity is a poison and toxic effect that causes the slugs (snails) to secrete vast amounts of
mucus, resulting in death. The plant species that have the highest molluscicidal activity is
known as Theaceae family. One related study had developed the extracts from camellia (one
of the species from Theaceae family) as molluscicides. The main active compounds found in
camellia are saponins [26].

Saponins are natural tensoactive found in plants, in which two significant types are
triterpenoid and steroidal saponins [27,28]. Both types of saponin have the most similarities
in terms of their properties. Only that, they are different in terms of their structure where
triterpenoid saponins have pentacyclic molecules (synthesized from isoprene) and tend to
be acidic in pH (pH < 7), while steroidal sapnonin have tetracyclic molecules (synthesized
from acetyl coenzyme A) and tend to be neutral in pH (pH 7) [29].

During an earlier research on saponin, it was mainly used in the food industry as it
had been acknowledged as the antinutritional factor [30]. It was proven that saponin’s food
sources could provide health benefits upon consumption, particularly reducing choles-
terol [31] and anti-cancer properties [32]. Examples of saponin sources of food contributing
to health benefits are garlic [33] and soybeans [34]. Matsuura [33] claimed that the saponin
from garlic reduced cholesterol concentrations and levels. This finding was aligned with
Kim et al. [31], where saponin contents in food act as cholesterol reduction properties.
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Meanwhile, Kerwin [34] found that saponin from soybean or soy-based products has
high potential as a cancer prevention alternative. A similar result was found by Gurfinkel
and Rao [32], where they mentioned that saponin in food acts as an anti-cancer property.
However, saponin’s uses in the food industry were limited due to its bitter taste [35]. J.
Liu and Henkel [36] investigated the feasibility of saponin for the application of herbal
medicines. Their study mentioned that saponin was the key ingredient in traditional Chi-
nese medicine (TCM) remedies due to its chemical composition and treatment philosophy
of TCM. On the other hand, saponin was also valuable for other industrial purposes. Martin
and Briones [37] have proven that saponin was helpful for different applications. Their
study explained that the bark of Quillaja Saponaria tree (significant sources of triterpenoid
saponins) had been used as an emulsifier in the food industry and foaming agent, and in
the beverages industry as a wetting agent in photography application for about decades.

Since saponin has a high potential to be commercialized in many industrial applica-
tions, the saponin extraction process either develops new process strategies or evaluates
the existing technologies to increase the saponin extraction process’s performance. In
this study, the main focus is saponin extraction for biopesticides application. The use of
saponin as biopesticide causes the mortality of golden apple snails (Pomacea canaliculate)
at paddy fields [27]. Moreover, plants produce saponin as pathogenic agents since it pos-
sesses immune-stimulating activities, antimicrobial, anti-cancer, anti-fungal, antiviral, and
anti-inflammatory properties [38]. Examples of leaves that have saponin are monochorea
vaginalis, furcraea selloa var. marginata, furcraea gigantea, spent tea leaves, and tea factory
waste [38–40].

Although companies of crops and farmers are successfully adopting biopesticides,
there is still an issue that needs to be improved: Biopesticides shelf life [41]. Biopesticides
can improve plant physiology by destroying golden apple snails but cannot make them
stay long during storage. It is necessary to stabilize and store them with only minimal
alteration of their biological activity. To maintain ingredients of biopesticides to be active
and stable, methods to destroy unwanted bacteria and remove water from biopesticides
should be applied.

To do this, PFC is proposed to concentrate and preserve the saponin. Miyawaki
and Inakuma [42] recently reviewed the performance of PFC for various applications,
such as for the concentration of natural flavours, fruit juices, fermented alcoholic drinks,
coffee and tea extract. They claimed that the concentrate via PFC retains the originality
of compounds even after the concentration process. Hence, the interest in using PFC for
many concentration processes has been growing rapidly these few years. The sterilization
to kill the unwanted bacteria that accumulate on the biopesticides was done. The removal
of unwanted bacteria will enhance the shelf life of biopesticides. Therefore, this study aims
to determine the stabilized condition for saponin via PFC and sterilization. Afterwards,
the stability analysis was performed by storing the sample in two conditions: Room
temperature (26 ◦C) and cold room (10 ◦C). Lastly, a comparison between the stability of
sterilized and non-sterilized concentrated saponin was made to determine the best storage
condition to store saponin.

2. Results
2.1. Effect of Temperature and Concentration Time of Progressive Freeze Concentration towards
Saponin Concentration for the Initial PFC Sample

In this subsection, the measured saponin concentration for the initial PFC sample
was presented. The initial PFC sample is the sample obtained right after it undergoes
the PFC process. These samples were not experiencing any thermal treatment or kept for
21 days in a cold room or a room temperature room. Figure 1 is constructed based on the
saponin concentration observed for each sample at a different temperature of −2, −4, −6,
−8, and −10 ◦C. The highest saponin concentration (0.647 mg/mL) is at a temperature of
−6 ◦C, while the lowest saponin concentration is found at the highest temperature applied
(−2 ◦C) with a value of 0.507 mg/mL. On the other hand, Figure 2 illustrated that the
saponin concentration at a constant temperature (−6 ◦C) with the concentration time was
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manipulated at 10, 15, 20, 25, and 30 min for the initial PFC sample. It was observed that
the highest saponin concentration has shown at a time of 15 min, while the lowest saponin
concentration was measured at the highest concentration time (30 min) with a value of
0.563 mg/mL.
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2.2. Stability Analysis
2.2.1. Effect of Room Storage on the Stability of Non-Sterilized Sample

In this subsection, the measured saponin concentration for the non-sterilized sam-
ple was presented. The non-sterilized sample is the sample stored for 21 days at room
temperature, and these samples were not undergoing any thermal treatment. Figure 3
displayed that the highest saponin concentration (0.469 mg/mL) was observed at the
highest temperature (−2 ◦C). This finding is inversely related to the previous Section 2.1
that measured the initial PFC sample. Previously, the optimum temperature was shown at
−6 ◦C with the highest saponin concentration of 0.647 mg/mL. In this case, the highest
saponin concentration found for the non-sterilized samples were slightly lower than the
initial PFC samples. Meanwhile, Figure 4 demonstrated the trend of saponin concentration
versus concentration time. The trend showed that the saponin concentration was gradually
increased as the concentration time increases. The saponin concentration rises from 0.025
to 0.563 mg/mL as the concentration time increases from 10 to 30 min. This finding again
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showed inconsistent results with previous findings in Section 2.1, which measured the ini-
tial PFC sample. Previously, the most suitable concentration time for saponin concentration
was shown at 15 min, with the highest saponin concentration of 0.602 mg/mL. The highest
saponin concentration found in this case for non-sterilized sample was slightly lower than
the initial PFC sample.
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2.2.2. Effect of Cold Storage on the Stability of Sterilized Sample

In this subsection, the measured saponin concentration for a sterilized sample was
presented. The sterilized sample is obtained after being stored for 21 days in a cold room
at 10 ◦C. This sample undergoes thermal treatment where the sample was poured into
a 25 mL vial heated at 90 ◦C for 1 min in a water bath before storing them into the cold
room. Figure 5 expressed that the highest saponin content (0.632 mg/mL) was found at
−4 ◦C. The saponin concentration at different temperatures is higher than the saponin
concentration of initial PFC samples (without storing and unsterilized) and final PFC
samples (stored at room temperature and unsterilized). Meanwhile, the lowest saponin
concentration was found at a temperature of −8 ◦C with 0.599 mg/mL value. Nevertheless,
this value is still higher than the previous finding that measured the non-sterilized PFC
sample, where the highest saponin concentration (0.469 mg/mL) was found at −2 ◦C.
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The highest saponin concentration was found for a 15 min concentration time with
a value of 0.730 mg/mL, as shown in Figure 6. This finding is similar to the result found
in the previous Section 2.1, which measured the initial PFC sample. Previously, from
the finding with the initial PFC sample, the most suitable concentration time for saponin
concentration was found at 15 min, with the highest saponin concentration of 0.602 mg/mL.
Similarly, a similar concentration time was found but with a higher saponin concentration
(0.730 mg/mL). This finding aligned with the claim that applying thermal treatment as a
sterilization method could prevent the sample from degradation. Hence, this study would
choose the best operating condition for the PFC sample at a temperature of −4 ◦C and
concentration time of 15 min, which exhibits the highest saponin concentration with the
value of 0.632 and 0.730 mg/mL, respectively.
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3. Discussion
3.1. Effect of Temperature and Concentration Time of Progressive Freeze Concentration towards
Saponin Concentration for the Initial PFC Sample

Anuar et al. [43] mentioned that the operating temperature in PFC was an important
parameter as it is highly related to the freezing rate. Most of the time, the low operating
temperature corresponds to a high freezing rate. As mentioned in the previous Section 2.1,
the highest saponin concentration was found at a temperature of −6 ◦C. Hence, this finding
would suggest that −6 ◦C is the most optimal temperature for the saponin concentration
used in this study. In addition, the lowest saponin concentration was found at both the
highest (−2 ◦C) and lowest (−10 ◦C) temperatures applied with a value of 0.507 and
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0.525 mg/L, respectively. It was reported that the high temperature caused several saponin
structures to be destroyed [44]. A similar trend was also shown in other applications where
Yahya et al. [45] observed that the iodine value for olein increases as the PFC operating
temperature decreased from 29 to 24 ◦C. They claimed that as the more soluble solids
remain concentrated at a low operating temperature, the higher purity of ice solids would
be achieved.

Meanwhile, it was also claimed that at the lowest temperature, the saponin could
not dissolve the saponin in the solution fully [44]. A similar finding was reported by
Mazli et al. [46], where the highest oil and grease removal obtained by PFC was at a low
or moderate operating temperature. The performance of PFC in terms of oil and grease
removal gradually reduced as the PFC operating temperature decreased from −6 to −14 ◦C.
Hence, in this study, the operating temperature of −6 ◦C had been selected as the most
optimal temperature for saponin concentration of the initial PFC sample.

In terms of concentration time, as found earlier (refer to Section 2.1), this study
proposed that the most suitable concentration time for saponin was at 15 min. Prolonging
the concentration time would lead to a decrement in saponin concentration. The lowest
saponin concentration was measured at the highest concentration time (30 min) with a
value of 0.563 mg/mL. Liu et al. [44] claimed that the higher concentration time would
decrease the efficiency of the saponin extraction process and lead to an increased cost due
to the fact that more energy was consumed as the concentration time increases. Hence, this
study would conclude that the best operating condition for the initial PFC sample is −6 ◦C
and the concentration time of 15 min, which exhibit the highest saponin concentration with
the value of 0.647 and 0.602 mg/mL, respectively.

Nevertheless, contradicting with this finding, Anuar et al. [43] reported that for the
application of oil recovery, the maximum oil recovery obtained (92.56%) was found at the
longer PFC operating time (50 min). They claimed that the highest purity of solids could be
achieved by prolonging the duration of the PFC process. Azman et al. [47] showed a similar
finding, where the highest solute recovery (96%) was observed at the PFC operating time of
50 min. This statement was supported by Safiei et al. [48], where the higher concentration
efficiency would be obtained at a longer PFC operating time. In addition, Amran et al. [49]
mentioned that the higher efficiency received at the longer PFC operating time as a higher
solute concentration in the concentrate would be produced.

3.2. Effect of Room Storage on the Stability of Non-Sterilized Sample

As mentioned before in Section 2.2.1, the highest saponin concentration found for the
non-sterilized samples was slightly lower than the initial PFC samples. This might be due
to the sample degradation as they were kept at room temperature without undergoing
any thermal treatment (sterilization). Hence, the sample was suggested to be sterilized
to maintain the sample content and reduce sample degradation. People often mistook
sterilization, cleaning, and disinfection as the same thing [50]. However, all of them are
three different processes. By definition, sterilization is a process of killing or removing
all organisms. Meanwhile, cleaning is a process of reducing the number of organisms
present. The last one is disinfection, which removes most pathogenic organisms (organisms
that could cause disease). In this study, the sterilization method used is to remove all
the organisms that may cause the sample to be degraded. According to McKeen [51],
under sterilization conditions or sterility, all organisms and their germinative elements
(for example, eggs, spores, and endospores) are eliminated. This condition is absolute
where there is no such process known as partially sterile. The sterilization process can
be divided into chemical sterilization, radiation sterilization, and high temperature or
pressure sterilization. This study used high temperature sterilization, known as a thermal
treatment for the sterilization process.

As for the concentration time, the saponin concentration rises from 0.025 to 0.563 mg/mL
as the concentration time increases from 10 to 30 min. This finding supports the claim that
sample degradation happened when the samples were kept at room temperature without
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undergoing any thermal treatment (sterilization). Hence, the sample was suggested to be
sterilized to maintain the sample content and reduce sample degradation. As mentioned
previously, sterilization was able to remove all organisms, including their germinative
elements, could avoid the sample from degradation, as well as maintain the sample content
from any contamination that is caused by the surrounding [51]. Therefore, this study would
decide that the best operating condition for the PFC sample is at a temperature of −6 ◦C
and concentration time of 15 min, which exhibit the highest saponin concentration with
the value of 0.647 and 0.602 mg/mL, respectively, without storing at room temperature to
avoid any sample degradation.

3.3. Effect of Cold Storage on the Stability of Sterilized Sample

From Section 2.2.1, the saponin concentration at different temperatures is higher than
the saponin concentration of the initial PFC samples (without storing and unsterilized) and
final PFC samples (storing at room temperature and unsterilized). This finding is aligned
with the previous claim made in the previous Section 3.2, where the sample needs to be
sterilized to maintain the sample content and reduce the possibility of sample degradation.
This is actually to ensure that all organisms, including their germinative elements, were
being eliminated. Hence, no contamination would be affected by the sample [51].

In addition, the thermal treatment such as sterilization and keeping in the cold room
to avoid any sample degradation will prevent the degradation. This condition can be
denoted as double protection where the sample first needs to undergo thermal treatment
for sterilization purposes (to ensure no contamination occurred towards the sample). After
that, the sample was kept in the cold room for storage purposes (to ensure that the sample
could maintain its content and condition throughout the storage time). Hence, it was
proven that the best operating condition for the PFC sample is at a temperature of −4 ◦C
with a concentration time of 15 min, undergoes thermal treatment, and is stored in the
cold room. Both the selected temperature (−4 ◦C) and concentration time (15 min) were
due to the highest saponin concentration obtained at the respective conditions (0.632 and
0.730 mg/mL).

4. Materials and Methods
4.1. Materials and Reagents

Furcraea gigantea var. striata leaves were purchased from a nursery in Perak, Malaysia.
The feedstock pre-treatment was prepared by drying the feedstock at 50 ◦C [39] for 24 h
until the moisture content is ±10% before pounding them using pestle mortal into a more
refined state. Avantis Laboratory Supply supplied ethanol, phosphoric acid, acetonitrile,
sulfuric acid, and p-anisaldehyde.

4.2. Extraction by Maceration

Dried leaves and extraction solvent (distilled water) were stirred on a hot plate with a
magnetic bar for 3 h at 50 ◦C with leaves/solvent ratio of 3 g/400 mL (mass per volume).
The magnetic stirrer revolution per minute (rpm) was set at 100 rpm to distribute the heat
during the extraction. The top of the beaker was covered with aluminium foil with small
holes on them. Next, the leaves residues were filtered out using a sieve. Lastly, the filter
paper was used to further filter out the tiny leaves. This procedure was repeated another
nine times.

4.3. Concentration by the Progressive Freeze Concentration

The experiment was setup as shown in Figure 7. Four hundred millilitres of the
extract solution with distilled water as the solvent was placed in a cylindrical vessel
(13.5 cm × 17 cm). The refrigerated bath was set and controlled as the temperature of the
coolant (ethylene glycol + water). The extract solution was stirred by a stirrer (EURO-ST
40 D S002, IKA Works Asia Sdn Bhd, Rawang, Selangor, Malaysia) with three blades,
positioned at 5 cm from the vessel’s bottom. The stirring speed was set at 75 rpm, and the
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concentration process was carried out for 10 min. By this configuration, the vessel allowed
the formation of ice crystal only on the side of the wall.
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The concentrated solution was taken and measured at the end of the desired time.
The ice crystal was separated from the cooling surface of the vessel and allowed to melt
entirely at room temperature. Different operating conditions such as the influence of
varying coolant temperatures (−2, −4, −6, −8, and −10 ◦C) and concentration time (10,
15, 20, 25, and 30 min) took place on the process, the entire procedure was repeated from
the beginning. To study the effect of coolant temperature, the concentration time was
set to constant at 20 min, while to evaluate the impact of concentration time, the coolant
temperature was fixed at −6 ◦C.

4.4. Sterilization by Thermal Treatment

The concentrated solution from the PFC process was divided into two parts: Original
sample and sample of sterilization for the stability analysis. The stability analysis was
conducted for two sets of experiments (non-sterilized and sterilized samples), where each
set consists of five samples. Non-sterilized and sterilized samples were kept for 21 days at
room temperature (around 26 ◦C) and in the cold room (around 10 ◦C), respectively. The
samples kept in the cold room were the sterilized samples that undergo thermal treatment.

The original sample was poured into 25 mL vials and stored for 21 days at room
temperature. Meanwhile, the sample for sterilization was poured into 25 mL vials to
sterilize the sample and was kept for 21 days in a cold room (10 ◦C). The sample of
sterilization undergoes thermal treatment before being stored in the cold room. The
thermal treatment was performed using a laboratory water bath where the sample was
placed on a rack to avoid direct heating from the base of the water bath. The sample was
heated at 90 ◦C for 1 min before storing them in the cold room at 10 ◦C.

5. Conclusions

The findings from this study showed that the highest saponin concentration for
initial PFC, non-sterilized and sterilized samples was found at the temperature of −6, −2,
and −4 ◦C, with saponin concentration of 0.647, 0.469, and 0.632 mg/mL, respectively.
Meanwhile, the highest saponin concentration for the initial PFC and the sterilized sample
was found at the concentration time of 15 min with the value of 0.602 and 0.730 mg/mL,
respectively. Nevertheless, the highest saponin concentration found for the non-sterilized
sample was at 30 min with the value of 0.563 mg/mL. In terms of stability analysis, the
results showed that sterilized saponin stored in a cold room has a low degradation rate
since the highest saponin concentration (0.730 mg/mL) was found compared to non-
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sterilized saponin stored at room temperature (26 ◦C). Thus, the finding concluded that
saponin is sensitive to temperature. Hence, the best storage method to store saponin is
after undergoing thermal treatment and being kept in the cold room at 10 ◦C.
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