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Abstract
Background: Autism spectrum disorder (ASD) is a very complex neurodevelopmental 
disorder, characterized by social difficulties and stereotypical or repetitive behavior. 
Some previous studies using low‐frequency repetitive transcranial magnetic stimula-
tion (rTMS) have proven of benefit in ASD children.
Methods: In this study, 32 children (26 males and six females) with low‐function 
autism were enrolled, 16 children (three females and 13 males; mean  ±  SD age: 
7.8 ± 2.1 years) received rTMS treatment twice every week, while the remaining 16 
children (three females and 13 males; mean ± SD age: 7.2 ± 1.6 years) served as wait-
list group. This study investigated the effects of rTMS on brain activity and behavio-
ral response in the autistic children.
Results: Peak alpha frequency (PAF) is an electroencephalographic measure of cogni-
tive preparedness and might be a neural marker of cognitive function for the autism. 
Coherence is one way to assess the brain functional connectivity of ASD children, 
which has proven abnormal in previous studies. The results showed significant in-
creases in the PAF at the frontal region, the left temporal region, the right temporal 
region and the occipital region and a significant increase of alpha coherence between 
the central region and the right temporal region. Autism Behavior Checklist (ABC) 
scores were also compared before and after receiving rTMS with positive effects 
shown on behavior.
Conclusion: These findings supported our hypothesis by demonstration of positive 
effects of combined rTMS neurotherapy in active treatment group as compared to 
the waitlist group, as the rTMS group showed significant improvements in behavioral 
and functional outcomes as compared to the waitlist group.
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1  | INTRODUC TION

Autism spectrum disorder ASD) is a very complex neurodevelop-
mental disorder characterized, according to the DSM‐5, by impair-
ments of social interaction and communication skills, and repetitive 
behavioral patterns.1,2 There are some other symptoms including the 
abnormal response to sensory stimuli, the difficulties in speech and 
language understanding and the lack of self‐care and social adapta-
tion. The estimated prevalence was approximately 1 in 45 in United 
States according to the Centers for Disease Control and Prevention's 
National Center for Health Statistics report.3 The etiology of au-
tism is very complex, and it is widely believed that the interaction 
between early environmental changes and genetic predisposition 
might be the cause of ASD.4

Several studies suggested that the impairment of GABAergic 
transmission might be the prime cause in the pathophysiology of 
autism,5 which acts as an inhibitory neurotransmitter in the ma-
ture brain for regulating neuronal excitability.6 In the early stages 
of brain development, abnormalities in GABAergic signaling might 
lead to aberrant information processing in ASD.7 Some studies 
have shown that some subtypes of autism are caused by the im-
balance between the excitation and inhibition, which reflects pri-
marily an inhibitory cortical deficit.8 Some studies showed  that 
the excitatory/inhibitory bias was   caused by the abnormalities of 
minicolumns, which is the basic physiological and anatomical unit 
of the cerebral cortex.9-11 A directed stream of inhibition is imposed 
around the minicolumnar core by the double‐bouquet cells. The au-
tistic children exhibit reduced size and increased number of cortical 
minicolumns, with a reduction and narrower width of the peripheral 
neuropil space. The physiological correlate of the described mini-
columnopathy is a loss of surround inhibition and an alteration of 
the excitation and inhibition balance.12,13 It is therefore unsurprising 
that autism is associated with inhibitory GABA neurotransmission 
abnormalities including reduced GABAA and GABAB subunit expres-
sion.14 The findings help explain the presence of seizures and sen-
sory abnormalities in ASD.15 The imbalance might also relate to the 
manifestation of ASD symptoms including impaired cognitive ability, 
hyperactivity, poor language ability, and physical coordination.

A noninvasive neuromodulation technique, transcranial mag-
netic stimulation (TMS), is now widely used in the study of neuro-
logical diseases by altering the excitability of neurons and induces 
the cortex functional reorganization. It is based on the electro-
magnetic induction theory that a changing magnetic field can pro-
duce an electric current. Low‐frequency rTMS (≤1 Hz) can increase 
the inhibition of stimulated cortical regions, and high‐frequency 
rTMS (≥5 Hz) can increase the excitability of stimulated cortical 
regions.16,17 rTMS is very safe if within safety guideline.18,19 Many 
studies have also shown the effectiveness of rTMS intervention 
in autistic patients. Researchers believe this is due to a bias in 
the excitation and inhibition ratio of the cerebral cortex.20 Lower 
frequencies stimulation may preferentially induce currents along 
longitudinally oriented elements, that is, along axons rather than 
across the same.21 Accordingly, the disposition of interneurons 

and their projections so as to embrace the core of the minicol-
umns would make them especially susceptible to low‐frequency 
rTMS stimulation. A few studies supported that low‐frequency re-
petitive TMS can increase inhibitory activation of stimulated cor-
tical regions.22 After receiving rTMS treatment to the dorsolateral 
prefrontal cortices DLPFC), autonomic balance was enhanced by 
facilitating frontal inhibition of limbic activity for the autistic 
children.23 Some ERP changes along with increased centro‐pari-
etal P100 and P300 to targets are indicative of more efficient 
processing of information post‐TMS treatment,24 and significant 
reductions in both repetitive behavior and irritability were also 
found according to clinical behavioral questionnaires as a result 
of rTMS for ASD.25 Why choose DLPFC? The frontal lobe plays an 
important role in social, cognitive, and emotional functions. Some 
studies have shown that DLPFC is necessary for the operation of 
verbal/auditory information and non‐verbal/spatial information 
in working memory.26-28 Dysfunction in the anterior cingulate 
cortex and dorsolateral prefrontal cortex in ASD was identified 
by proton magnetic resonance spectroscopy.29 A large number 
of studies within the medical literature attest to a correlation be-
tween the activity of parvalbumin cells, gamma oscillations, and 
social deficits. Modulation of gamma oscillations, especially over 
the dorsolateral prefrontal cortex DLPFC), has been associated 
with improvements in cognitive performance.30,31

Electroencephalography EEG) provides a resolution accurate 
to milliseconds to measure postsynaptic activity in the neocortex. 
Resting‐state EEG studies of ASD suggest a U‐shaped profile of 
electrophysiological power alterations, with excessive power in low‐
frequency and high‐frequency bands.32 Multiscale entropy appears 
to go through a different developmental trajectory in infants at high 
risk for autism HRA) than it does in typically developing controls.33 
Previous studies have shown that abnormalities in brain network 
connectivity were common in autistic children, which might lead to 
atypical interactions between brain regions that could lead to the 
social and cognitive impairment.34 For ASD, the ongoing changes of 
the pruning and synaptogenesis disturbed the normal brain develop-
ment, thus leading to the abnormal neural connectivity.35 Therefore, 
differences in EEG signals can be used to compare the children with 
autism with the typical developmental children.36 Peak alpha fre-
quency PAF) is an electroencephalographic measure of cognitive 
preparedness37 and might be a neural marker of cognitive function 
for the autism.38

The purpose of this study is to explore whether rTMS has pos-
itive effects on the brain activity and behavior of the autistic chil-
dren. We proposed that low‐frequency rTMS over DLPFC will 
result in more pronounced improvements of functional outcomes as 
compared with waitlist group of ASD children, as we hypothesized 
that rTMS over the dorsolateral prefrontal cortex DLPFC) could 
improve excitation and inhibition ratio. In this study, the EEG data 
were recorded for every subject before and after 18‐sessions rTMS 
treatment. Autism Behavior Checklist ABC)39 was used to evaluate 
changes in behaviors including sensory, social skills, use of body and 
object, communication and language.
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2  | MATERIAL S AND METHODS

2.1 | Subjects

We enrolled 32 children (26 males and six females) with ASD, 16 chil-
dren three females and 13 males; mean age: 7.8 years) received rTMS 
treatment twice every week, while the remaining 16 children matched 
with age and gender 3 females and 13 males; mean age: 7.2 years) 
were assigned to the waitlist group. All the children were all diagnosed 
with ASD by experienced psychiatrists in China based on the psych-
oeducational profile Third Edition) 40 and Diagnostic and Statistical 
Manual of Mental Disorders‐V criteria.2 A history of epilepsy, implants 
in the brain, and physical disability served as exclusionary criteria. We 
provided the informed consent to the parents of all participants and 
informed them the whole process before participation. The trial was 
conducted according to the Declaration of Helsinki and approved by 
the Beijing Normal University ethics committee.

2.2 | rTMS treatment procedures

rTMS equipment used in this study was a Magstim R2 stimula-
tor (Magstim Company Limited). The motor threshold (MT) was 
identified before rTMS treatment for every subject. The center 
of a 70  mm figure‐eight coil was placed on the motor cortex of 
the subject, and the motor evoked potential (MEP) was recorded 
on the muscle of contralateral hand. When the induced amplitude 
was more than 50 μV in at least 5 out of 10 stimuli, the MT was 
determined.

The participants received 18 times rTMS treatment with two 
times per week.23,25 During the first six times, the coil was placed 
over the left dorsolateral prefrontal cortex DLPFC), then the next six 
times it was placed over the right DLPFC, and the remaining six times 
it was placed on the bilateral DLPFC stimulation. Low‐frequency 
rTMS of 1 Hz and 90% MT was applied. There were 180 pulses each 
time with 18 trains with 10 pulses and an interval of 20 seconds.41 
The waitlist group received the same process but the figure‐eight 
coil was placed vertically on the scalp with no magnetic field pene-
trated through the skull.

2.3 | Behavioral evaluation

In this study, the scores of Autism Behavior Checklist (ABC) were 
recorded before and after the rTMS treatment. The ABC was filled 
out by their parents and serves to screen for a number of behaviors. 
There are 57 sub‐items in the ABC, each one being scored; gener-
ally, the higher scores represent more serious behavioral problems.

2.4 | EEG data collection and analysis

For participants, EEG data were recorded two times, one was before 
rTMS treatment and the other was after 18 sessions of rTMS treat-
ment. For the waitlist group, EEG data were also recorded two times. 
EEG data were collected 20 min before rTMS and 20 min after rTMS in 
a quiet room, and the participants were awake and relaxed with eyes‐
open state. We used 5 cm rule to find the DLPFC in each patient. We 
tried to use the navigation system to determine the location, but the 
autistic children did not cooperate and we could not complete. During 
the data‐recording process, 5 minutes resting‐state EEG data were re-
corded with a 128 HydroCel Sensor Net System (Electrical Geodesics, 
Inc), and the central vertex was set as the reference electrode. The 
impedances were controlled less than 50KΩ for all the channels, and 
the sampling rate was 1000 Hz. Sixty‐two electrodes were selected 
for faster and more accurate results, 14 EEG sites for frontal lobe, 15 
EEG sites for central lobe, 8 EEG sites for left temporal lobe, 8 EEG 
sites for right temporal lobe, and 17 EEG sites for occipital lobe.

Matlab R2016a and EEGlab V13.5.4b were used for off‐line data 
analysis. Data preprocessing was also done by removing 50 Hz power 
frequency and filtering between 0.5 and 45 Hz. Artifacts eye blink, 
eye movement, and muscular artifact) were rejected from analyses 
by computer selection and visual inspection. Data were segmented 
for continuous segments of 4  seconds 4000 data points: 4  sec-
onds × 1000 Hz). Figure 1.

2.5 | Peak alpha frequency

The data were divided into eight sections of the same length with 
50% overlap and scanned with a Hamming window. Spectral density 

F I G U R E  1   Schematic presentation of 
rTMS modified from.41 About 5 min, EEG 
data were recorded before and after 18 
sessions. Every participant received 18 
sessions twice a week (1 Hz, 180 pulses 
every time)
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was calculated by fast Fourier transform FFT). In this study, rela-
tive power was used to perform the analysis. EEG was divided into 
five frequency band including delta 1‐4  Hz), theta 4‐8  Hz), alpha 
8‐13  Hz), beta 13‐30  Hz), and gamma 30‐45  Hz). Relative power 
was the amount of EEG activity in one frequency band. The primary 
EEG measurement was the individual peak alpha frequency iPAF) for 
each of 62 electrode sites, which was defined as the alpha frequency 
where the maximum power occurs.42

2.6 | Coherence

Coherence provides a measure of the degree of synchronization be-
tween two signals, which means that the two signals with the same 
frequency have the consistent phase relationship over time, and we 
could also assume there is a high degree of the coordinated brain ac-
tivity between the underlying brain areas where those two signals 
come from.35 EEG coherence is one way to assess the brain functional 
connectivity, which has proven abnormal in previous studies for ASD 
children.43,44 In this study, we calculated the coherence of 62 chan-
nels at the alpha frequency band. First, one channel was selected and 
the correlation coefficient to other channels was obtained. Then, we 
obtained coherence estimation of the square of the input signal am-

plitude. The formula is Cxy=
|Pxy|

2

PxxPyy
. Its value was between 0 and 1, 

which showed the correlation degree of each channel.

3  | RESULTS

In the current study, we tried to find rTMS effects on the brain activity 
and behavior for ASD children. First, we calculated the iPAF for each 
of 62 electrode sites before and after rTMS treatment and paired t‐test 
statistical analysis and the correction for multiple contrasts were used.

There are significant increases in the iPAF from four brain 
regions after receiving rTMS treatment including Frontal (F2 
(t  =  −2.195, p  =  0.046), F8 (t  =  −2.527,  p=  0.024)), right Temporal 
(CP6 (t = −2.552, p= 0.023), TP8 (t = −2.506, p = 0.025)), Occipital (P6 
(t = −3.022, p = 0.009), P4 (t = −2.492, p= 0.026)), and left Temporal 
(FT7 (t = −2.261, p = 0.040), TP7 (t = −2.337, p = 0.035)) Table 1 and 

TA B L E  1   The significant iPAF change before and after rTMS

  Before After  

F2 9.4186 9.4858 ↑

F8 9.3629 9.4711 ↑

FT7 9.3613 9.4723 ↑

TP7 9.4032 9.5110 ↑

CP6 9.3823 9.4991 ↑

TP8 9.3950 9.4956 ↑

P4 9.4042 9.4638 ↑

P6 9.4136 9.5216 ↑

F I G U R E  2   Changes of iPAF after rTMS treatment. Significant increases were found in iPAF after rTMS treatment shown by red circles 
(*p < 0.05)
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Figure 2, and we found no significant differences for waitlist group 
who have not received rTMS treatment.

In order to measure the changes of brain functional connectivity 
before and after rTMS for the participants, we calculated the co-
herence for every two of 62 channels at alpha frequency band. The 
results showed a significant increase of coherence between Cz‐T8 
(P = 0.038) and CPz‐C4 (P = 0.023) after rTMS treatmentFigure 3, 
and no significant differences were found for waitlist group who 
have not received rTMS treatment. We also calculated the coher-
ence in other bands but found no significant differences.

Finally, we also compared ABC scores changes before and after 
rTMS to evaluate the behavioral changes of the participants. The 
details of ABC scores are shown in Table 2. There were significant 
changes of ABC scores including social relating behaviors and total 
scores for the participants Figure 4.

4  | DISCUSSION

The outcome of behavioral evaluations using ABC questionnaire 
showed improvements in autism symptoms similar to previous study 
results.24 Our results also showed there were significant increases in 
the iPAF from eight electrode sites after receiving rTMS treatment. 
The distributed brain areas include the left temporal region, the right 
temporal region, and the occipital region. There was evidence that PAF 
was associated with cognitive performance at the general level of intel-
ligence which was found to associate with a broad range of cognitive 
tasks45 and with nonverbal cognitive functioning in ASD.38 PAF is also 
an important indicator of brain maturation and brain network develop-
ment during childhood.46,47 For ASD children, the normal increase in 
PAF with age was not found 48 but rather abnormal signs of neuroma-
turation, brain structure, and functional development were found.49

We also found a significant increase of alpha coherence be-
tween the central lobe and the right temporal lobe which showed 
the improvements of cognitive arousal level and brain functional.50 

Coherence provides a measure of the degree of synchronization 
between two signals, and we could assume there is a high degree of 
the coordinated brain activity between the underlying brain areas. 
It is an effective algorithm to measure the functional connection of 
the brain. Some previous research showed that the atypical func-
tional connectivity has been found as a core feature in ASD.51,52 
The repetitive behaviors were found to correlated with functional 
connectivity in the posterior cingulate cortex, medial frontal cor-
tex, medial temporal lobes, and the superior frontal gyrus in ASD 
patients, the lower the degree of functional connection, the more 
severe the impairments.53 Overall, the results showed positive ef-
fects on EEG activity after receiving rTMS treatment for the autistic 
children.

It was feasible to select DLPFC as a site for rTMS stimulation be-
cause the dysfunction in the anterior cingulate cortex and dorsolateral 
prefrontal cortex and disruption in the ratio between cortical excitation 
and inhibition especially within the prefrontal cortex in individuals with 
autism were identified.54 An imbalance of excitation and inhibition ratio 
could adversely affect patterns of cortical activation. A course of 18 
neuromodulatory sessions of low‐frequency rTMS might restore the 
cortical excitation and inhibition ratio balance by selective activation 
of double‐bouquet cells at the periphery of cortical minicolumns, and it 
was shown that minicolumnar abnormalities in autism are most signifi-
cant within the prefrontal cortex, more specifically, the DLPFC.8

In a recent review on use of TMS in ASD,55 TMS could be particu-
larly informative in detecting abnormalities in excitation and inhibition 
ratio in ASD given theoretical studies regarding role of GABAergic in-
terneurons in autism etiology and specifically role of high excitation 
and inhibition ratio balance in autism. Previous studies have also 
shown that rTMS effects are mediated by fronto‐limbic connections, 
which is a complex structural network that is the center of anxiety and 
emotion regulation.56 Low‐frequency rTMS over the DLPFC could in-
crease the activation of inhibitory circuits and lower the ratio of corti-
cal excitation to inhibition leading to a better control of limbic function 
57,58 and corresponding behavioral changes.

F I G U R E  3   Changes of the coherence at alpha band for participants. *p < 0.05. (A) showed the coherence before receiving rTMS 
treatment; (B) showed the coherence after receiving rTMS treatment; (C) showed significant increase of coherence between Cz‐T8 and CPz‐
C4 after rTMS treatment
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But there are some limitations in this study. First, we used a wait-
list group as a control group rather than using a randomized clinical 
trial design with a sham rTMS. We considered this study as a prelimi-
nary pilot with a WTL group design and plan to consider progression 
to a randomized clinical trial design in the future. Second, the sample 
size is relatively small. We are going to continue our experiment and 
expand the sample size in the next stage.

In conclusion, the study showed that treatment with prefron-
tal low‐frequency rTMS improved brain functioning and behavioral 
symptoms in autism. rTMS might be a better alternative for patients 
with ASD who are not suitable for the psychopharmacological treat-
ments. This study provides support to the statement that rTMS can 

be regarded as perspective neuromodulatory treatments targeting 
symptoms of ASD. However, further research on the dose, type, and 
exact parameter setting is needed to investigate the potential of 
rTMS treatment and to explore underlying mechanisms.
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