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1. Summary
Vaccination is generally considered to be the most effective method of prevent-

ing infectious diseases. All vaccinations work by presenting a foreign antigen to

the immune system in order to evoke an immune response. The active agent of

a vaccine may be intact but inactivated (‘attenuated’) forms of the causative

pathogens (bacteria or viruses), or purified components of the pathogen that

have been found to be highly immunogenic. The increased understanding of

antigen recognition at molecular level has resulted in the development of

rationally designed peptide vaccines. The concept of peptide vaccines is

based on identification and chemical synthesis of B-cell and T-cell epitopes

which are immunodominant and can induce specific immune responses. The

accelerating growth of bioinformatics techniques and applications along with

the substantial amount of experimental data has given rise to a new field,

called immunoinformatics. Immunoinformatics is a branch of bioinformatics

dealing with in silico analysis and modelling of immunological data and pro-

blems. Different sequence- and structure-based immunoinformatics methods

are reviewed in the paper.
2. Introduction
The word ‘vaccination’ was used for first time by Edward Jenner in 1796 to

describe the injection of smallpox vaccine [1]. Louis Pasteur developed the con-

cept through his innovative work in microbiology. Now, vaccination is the

administration of antigenic agents applied to stimulate the immune system of

an individual and to develop adaptive immunity to a disease. Vaccines can

ameliorate, or often even prevent, the effects of infection. Vaccination is gener-

ally considered to be the most effective method of preventing infectious

diseases [2], and the efficacy of vaccination has been extensively studied and

verified [3–5]. The administration of some vaccines is conducted after the

patient has already been infected by the pathogen. Vaccination conducted

after exposure to smallpox, within the first 3 days, is reported to attenuate

the disease considerably, and administration up to a week after exposure is

able to provide some protection from disease, or may ease its severity [6].

Also, a multi-stage tuberculosis vaccine has recently been developed to

confer protection after the exposure to the pathogen [7]. There are numerous

vaccine examples, including experimental ones against AIDS, cancer and Alz-

heimer’s disease. The core mechanism behind all the vaccinations is the

ability of the vaccine to initiate an immune response in a quicker fashion

than the pathogen itself.

The purpose of every vaccination is to present a particular antigen or set of

antigens to the immune system in order to evoke a relevant immune response.

The main active component of a vaccine may be inactive, but still intact (attenu-

ated bacteria or viruses), or purified components of the pathogen that are

known to induce immune reaction.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsob.120139&domain=pdf&date_stamp=2013-01-09
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3. Types of vaccines
3.1. Inactivated vaccines
This type of vaccine consists of virus particles grown in cell

culture and inactivated by applying high temperature or

chemicals such as formaldehyde. The viral particles are

unable to replicate because they are destroyed, but the

capsid proteins of the virus have remained intact enough to

be recognized and used by the immune system in order to

induce a response. If properly produced, the vaccine is not

a threat; however, if the inactivation is not performed success-

fully, active infectious particles can be administered together

with the vaccine. Additional booster shots are often needed

in order to secure the immune response, because the properly

produced vaccine cannot reproduce inside the host.

3.2. Live attenuated vaccines
The attenuated vaccines contain live virus particles with

low levels of virulence. They have retained their ability to

slowly reproduce, and thus they remain a continuous

source of antigen for a certain period after the first vacci-

nation, reducing the need of booster shots to keep the

antigen levels sufficiently high. Such vaccines are produced

by passing virus in cell cultures, in animals or at suboptimal

temperatures, allowing selection of less virulent strains or by

mutagenesis, or targeted deletions in genes required for

virulence [8–10].

3.3. Subunit vaccines
Subunit vaccines use only the antigenic components that best

stimulate the immune system, instead of dealing with the

entire micro-organism. The fact that the subunit vaccine con-

tent is mainly represented by the essential antigens reduces

the chances of adverse reactions to the vaccine. A subunit

vaccine introduces an antigen to the immune system without

involving any viral particles. The number of antigens in sub-

unit vaccine can range from 1 to 20 or more. Of course, the

identification of the most promising antigens to stimulate

the immune system is often a time-consuming process, and

can be very difficult. Subunit vaccines are often known for

causing weaker antibody responses in comparison with the

other vaccine classes. One of the most successful subunit vac-

cines is the hepatitis B vaccine containing the surface antigen

HbsAg [11,12].

3.4. Virus-like particles
Virus-like particle (VLP) vaccines are comprised only of viral

proteins that take part in the assembly of the virus structure.

They have the ability to self-assemble into virus resembling

the particles from which they were derived without the pres-

ence of the viral nucleic acid, which makes them simply non-

pathogenic [13,14]. By contrast with the subunit vaccines,

VLPs usually have higher immunogenicity owing to their

multi-valent and highly repetitive structure. VLPs have

been produced from a broad range of viruses that belong

to Retroviridae, Flaviviridae and Parvoviridae families.

Vaccines against viruses such as human papillomavirus and

hepatitis B are VLP-based vaccines that are currently in
clinical use [15]. Additionally, a pre-clinical vaccine against

chikungunya virus was developed based on the same

approach [16]. VLPs are typically produced in a variety of

cell cultures, such as mammalian cell lines, insect cell lines,

and plant and yeast cells [17].

3.5. Toxoid vaccines
The toxoid vaccines are typical solution for bacteria that

secrete harmful metabolites or toxins. It is common to use

them when the main reason for discomfort or sickness is a

bacterial toxin. Such toxoid vaccines are produced by treating

the toxins with formalin, thus inactivating them, and still

retaining their structure for further recognition by the

immune system. Examples of toxoid vaccines are the vaccines

against diphtheria and tetanus.

3.6. DNA vaccines
DNA vaccination is a very new approach for induction of

humoral and cellular immune responses to protein antigens

by administering genetically engineered DNA. The majority

of DNA vaccines are still in the experimental stage, and

have been tested in numerous viral, bacterial and parasitic

models of disease, and also in a few tumour models. DNA

vaccines represent an innovative approach for immunization,

bringing a number of advantages over conventional vaccines

and giving the possibility of inducing a broader variety of

immune response types [18–25]. The risks of DNA vaccines

are limited [22]. Several groups demonstrated that cancer vac-

cines can be effective for the induction of specific immunity

against cancer-associated antigens without negative side

effects like integration of plasmid DNA into the host genomes

or induction of pathogenic anti-DNA antibodies [23–25].

3.7. Peptide vaccines
The improved knowledge of antigen recognition at molecular

level has contributed to the development of rationally

designed peptide vaccines. The general idea behind the pep-

tide vaccines is based on the chemical approach to synthesize

the identified B-cell and T-cell epitopes that are immunodo-

minant and can induce specific immune responses. B-cell

epitope of a target molecule can be conjugated with a T-cell

epitope to make it immunogenic. The first epitope-based

vaccine was created in 1985 by Jackob et al. [26]. They intro-

duced recombinant DNA and express epitopes against

cholera in Escherichia coli. Epitope-based vaccines can be con-

structed for T and B lymphocytes [27,28]. The T-cell epitopes

are typically peptide fragments, whereas the B-cell epitopes

can be proteins, lipids, nucleic acids or carbohydrates [27–

31]. Peptides have become desirable vaccine candidates

owing to their comparatively easy production and construc-

tion, chemical stability, and absence of infectious potential.

The peptide vaccines against various cancers have been

developed, and entered phase I and phase II of clinical

trials, with satisfactory clinical outcome. The peptide vacci-

nation is commonly being studied for application in both

ameliorating and prophylactic immunotherapy [32]. Yet

there is more to be improved in order to eliminate obstacles,

such as the need for a better adjuvant and carrier or the low

immunogenicity. Nonetheless, current efforts are showing
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4. T-cell epitopes
The epitope is recognizable by the immune system part of the

antigen, and in particular by antibodies, B cells or T cells. The

epitopes may belong to both foreign and self proteins, and

they can be categorized as conformational or linear, depend-

ing on their structure and integration with the paratope [33].

T-cell epitopes are presented on the surface of an antigen-

presenting cell (APC), where they are bound to major

histocompatibility (MHC) molecules in order to induce

immune response [34]. MHC class I molecules usually pre-

sent peptides between 8 and 11 amino acids in length,

whereas the peptides binding to MHC class II may have

length from 12 to 25 amino acids [35]. MHC class II proteins

bind oligopeptide fragments derived through the proteolysis

of pathogen antigens, and present them at the cell surface for

recognition by CD4þ T cells (figure 1). If sufficient quantities

of the epitope are presented, the T cell may trigger an adap-

tive immune response specific for the pathogen. Class II

MHCs are expressed on specialized cell types, including pro-

fessional APCs such as B cells, macrophages and dendritic

cells, whereas class I MHCs are found on every nucleated

cell of the body [36].

The recognition of epitopes by T cells and the induction of

immune response have a key role for the individual’s

immune system. Even the slightest deviation from the

normal functioning can have a grave impact on the organism.

In case of autoimmune disease, the T cells recognize the cells’

native peptides as foreign, and attack and eventually destroy

the organism’s own tissues.

Some viruses, such as human immunodeficiency virus

(HIV), hepatitis C, and avian and swine influenza, manage

to avoid recognition by the T cell relying on various

mutations that effectively alter the amino acid sequences of

the proteins encoded by the viral genes [37,38].

Knowledge about the peptide’s epitopes has a key role for

manufacturing epitope-based vaccines, which, injected into

the recipient, can induce immune response. One of the key

issues in T-cell epitope prediction is the prediction of MHC

binding, as it is considered a prerequisite for T cell recognition.

All T-cell epitopes are good MHC binders, but not all good

MHC binders are T-cell epitopes.

MHCs are among the most polymorphic proteins in higher

vertebrates, with more than 6000 class I and class II MHC

molecules listed in IMGT/HLA [39]. Determining the peptide-

binding preferences exhibited by this extensive set of alleles

is beyond the present capacity of experimental techniques,

necessitating the development of bioinformatics prediction

methodologies. The most successful prediction methods for

T-cell epitopes developed to date have been data-driven. T-cell

epitope prediction typically involves defining the peptide-

binding specificity of specific class I or class II MHC alleles

and then predicting epitopes in silico. Using peptide sequence

data, experimentally determined affinity data have been used

in the construction of many T-cell epitope prediction algor-

ithms. Such methods include motif-based systems, support

vector machines (SVMs) [40,41], hidden Markov models

(HMMs) [42–44], quantitative structure–activity relationship

(QSAR) analysis [45,46], and structure-based approaches [47].
5. Immunoinformatics
The accelerating growth of bioinformatics techniques and

applications along with the substantial amount of experimen-

tal data has made a significant impact on the immunology

research. This has led to a rapid growth in the field of compu-

tation immunology, and a number of immunology-focused

resources and software, which help in understanding the

properties of the whole immune system, have become available

[48]. This has given rise to a new field, called immunoinfor-

matics. Immunoinformatics can be described as a branch of

bioinformatics concerned with in silico analysis and modelling

of immunological data and problems.

Immunoinformatics research stresses mostly on the

design and study of algorithms for mapping potential

B- and T-cell epitopes, which speeds up the time and

lowers the cost needed for laboratory analysis of pathogen

gene products. Using such tools and information, an immu-

nologist can analyse the sequence areas with potential

binding sites, which in turn leads to the development of

new vaccines. The methodology of analysing the pathogen

genome to identify potential antigenic proteins is known

as ‘reverse vaccinology’ [49]. This is mainly beneficial because

conventional methods need to dedicate time to pathogen culti-

vation and subsequent protein extraction. Although pathogens

grow quickly, extraction of their proteins and then testing of

those proteins on a large scale is expensive and time-consuming.

Immunoinformatics is capable of reducing time and saving

resources for the development of relevant vaccines by revealing

virulence genes and surface-associated proteins.

Normally, the investigation of the binding affinityof antigenic

peptides to the MHC molecules is the main goal when predicting

epitopes. The experimental techniques are found to be difficult

and time-consuming, and therefore several in silico method-

ologies are being created and constantly improved to identify

epitopes. The list of approaches includes matrix-driven methods,

QSAR analysis, identification of structural binding motifs,

protein threading, homology modelling, docking techniques,

and design of several machine-learning algorithms and tools. In

the past, computational techniques could only identify sequence

characteristics, but new improved algorithms and tools are being

designed to increase the predictive performance [49]. The

methods used for development of prediction models can be

divided into structure-based methods that derive information

from the three-dimensional structure of the proteins, and

sequence-based methods that analyse the amino acid sequence.

5.1. Sequence-based methods

5.1.1. Motif search-based approach

The combination of preferred amino acids at some of the pep-

tide anchor binding positions is called a motif. The motif

search is the most outdated, yet the most widely used

method for prediction of epitopes [50–53]. The peptide

amino acid sequence is searched for motifs by using a motif

library [54]. The MHC-binding motifs for a given peptide

can be identified by comparison of known binders and

non-binders [55]. The motif search approach was used to

identify epitopes that bind HLA-DR allele among the pro-

teins expressed by Plasmodium falciparum [56]. EPIPREDICT

is another motif-based tool, used for the identification of

MHC class II-binding epitopes from proteins involved in the
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Figure 1. Antigen-processing pathways in the cell. Left: intracellular pathway. Protein is cleaved into oligopeptides in the proteasome, the peptides enter the
endoplasmic reticulum (ER) via TAP protein and bind to MHC class I, and the complex peptide – MHC protein is presented on the cell surface. Right: extracellular pathway.
Protein is endocytozed, cleaved into oligopeptides in the endosome, bound to MHC class II protein and presented on the cell surface. In the ER, MHC class II molecules
are adjoined to a specific peptide, known as invariant chain (Ii). It blocks the binding cleft of the MHC molecule, thereby preventing the binding of endogenous peptides.
In the endosome, the Ii is initially cleaved to CLIP peptide, and is then replaced by an exogenous peptide. The process is facilitated by the HLA-DM molecule.
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human gluten intolerance [57]. D’Amaro et al. [58] developed

the computer program MOTIF, which yields collection of all

the known affinity motifs to HLA-A*0201. The program ident-

ifies 27 binders when validated against an external test set, and

the subsequent experiments confirm that 18 of these peptides

exhibit binding affinity with overall accuracy of 61 per cent.

Another tool is EPIMER, created at Brown University and

used for prediction of HIV-related epitopes [59,60].

One of the widely used epitope prediction tools is SYF-

PEITHI, which is also based on the motif search approach
[54,61]. Similar to the EPIMER approach, SYFPEITHI is used to

score the peptides and evaluate their immunogenicity. Numer-

ous experimental in vivo and in vitro assays have been

conducted to validate the in silico predictions [62–70].

The accuracy of the motif-based algorithms is about 60–70

per cent, mostly because not all of the binding peptides have

recognizable motifs [71]. In many cases, the correlation

between the predicted and the experimentally determined affi-

nities is very weak. A study conducted by Andersen et al. [72]

compares the affinities predicted by SYFPEITHI and BIMAS
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binders with the experimentally determined ones from a set of

oncogenes and viral proteins. The authors show a large

number of wrongly identified false positives, while some of

the actual epitopes are predicted as non-binders.
alsocietypublishing.org
Open
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5.1.2. Prediction by artificial neural network

The artificial neural networks (ANNs) provide a convenient

method for finding relationships and describing nonlinear

data [73]. ANN methods are frequently used by the bioinfor-

matics researchers for solving asthma-related problems [74],

to investigate cardiac diseases [75] and drug solubility [76],

and for epitope prediction and analysis of MHC haplotypes

[77]. When applying for epitope prediction, the peptide

length can be highly variable. The sequences included in the

training set are usually aligned by assigning a specific anchor

position. This is a trivial task when constructing models for

MHC I prediction, where the difference in the peptide length

is negligible, while it becomes a challenging quest for MHC

II, where the length variability is considerably larger.

Nielsen et al. [78] described an improved neural network

model to predict T-cell class I epitopes. The NETCTL server

[79] (http://www.cbs.dtu.dk/services/NetCTL/) uses a

method to integrate the prediction of peptide MHC class I bind-

ing, proteasomal C-terminal cleavage and transporter associated

with antigen processing (TAP) transport efficiency. It has

updated from version 1.0 to 1.2 to improve the accuracy of

MHC class I peptide-binding affinity and proteasomal cleavage

prediction. NETMHC server v. 3.2 [80] (http://www.cbs.dtu.

dk/services/NetMHC) is based on ANN and weight matrices.

It has been trained on data from 55 MHC peptides (43 human

and 12 non-human) and position-specific scoring matrices for

a further 67 HLA alleles. MHC class I molecule motifs are well

defined, but the prediction of MHC class II binding peptides is

considered harder to achieve, mainly because of the variable

length of reported binding peptides, the undetermined core

region for each peptide and the number of primary anchor

amino acids.
5.1.3. Prediction by support vector machine

The SVM is a computer science concept for a set of supervised

learning methods used for data analysis and pattern recog-

nition, developed by Vapnik [81] and commonly used for

image and data classification and regression analysis [82].

SVMs belong to the group of the kernel-based approaches

[83]. Classically, the SVM takes a set of data and predicts,

for each given input, to what type of input class it belongs;

therefore, SVM is described as a non-probabilistic binary

linear classifier. The SVM model can be represented as two

sets of points in space, distributed in a way that the two sub-

sets falling into separate categories are divided by a clear gap

that is as wide as possible. The model categorizes the novel

data points depending on which side of the gap they fall on.

Another formal description of the SVM method is that it

defines a hyperplane or set of hyperplanes in a high- or infi-

nite-dimensional space, which can be used for classification,

regression or other purposes. The optimal separation can be

achieved by deriving the hyperplane that is positioned at

the largest distance from the nearest points belonging to

any of the modelled classes. The larger the distance, the

more reliable is the model [84].
Nanni [85] demonstrated the use of SVM and SV data

description to predict T-cell epitopes. In the case of

TAPPRED, Bhasin & Raghava [86], analysed nine features

of amino acids to find the correlation between binding affi-

nity and physico-chemical properties. They developed an

SVM-based method to predict the TAP binding affinity of

peptides, and found cascade SVM to be more reliable. Cas-

cade SVM has two layers of SVMs, and its performance is

better than the other available algorithms. It is experimentally

determined that the immunoproteasome plays a role in the

generation of the MHC class I ligand. Often the compu-

tational approach is preferred over experimental analysis

for studying and predicting the cleavage specificities of pro-

teasomes. Therefore, a web application called PCLEAVAGE

[87] has been developed to predict cleavage sites in antigenic

proteins. It uses SVM [88], parallel exemplar-based learning

[89] and Waikato Environment for Knowledge Analysis [90].

Sweredoski & Baldi [91] presented COBEPRO, which is

a two-step system for the prediction of continuous B-cell epi-

topes. In the first step, COBEPRO assigns a fragment epitopic

propensity score to protein sequence fragments using an

SVM. In the second step, it calculates an epitopic propensity

score for each residue based on the SVM scores of the peptide

fragment in the antigenic sequence. It is incorporated into

the SCARTCH prediction suite. However, COBEPRO is not

able to find the difference between antigen and non-antigen,

and in order to increase the efficacy it should be used with

high-throughput technologies.

5.1.4. Hidden Markov models

HMMs were initially described in the second half of the 1960s by

Baum et al. [92]. HMMs were first applied for speech recognition

in the mid-1970s [93,94]. In the second half of the 1980s, HMMs

found their application in the analysis of biological sequences

[95], and in particular of DNA sequences. Since then, they

have become ubiquitous in the field of bioinformatics [96].

HMM-based approaches are widely used in bioinforma-

tics and proteomics for the prediction of protein sequences

with helical secondary structure [97], transmembrane regions

[98,99] and protein homology analysis [100]. HMM is also

used for sequence alignment [101], and protein family identifi-

cation by Pfam and SMART [102]. For the purposes of

genomics, HMM is used for studying gene splicing [103],

phylogenetic tree analysis [104] and gene identification in

procariotes [105].

Zhang et al. [106] developed PREDTAP for the prediction

of peptide binding to hTAP. They used a three-layer back

propagation network with the sigmoid activation function.

The inputs were the binary strings, representing nonamer

peptide. In addition, they used second-order HMM. The

results were both sensitive and specific. Mamitsuka [44]

derived HMM-based, high-accuracy models for prediction

of peptide-binding affinity to HLA-A*0201 and DR1 proteins.

By using Mamitsuka’s approach, Udaka et al. [107] derived

models for other MHC class I proteins. Brusic et al. [108]

also used HMM for binding affinity prediction towards the

HLA-A2 family members. The analysis included only the

amino acids involved in a direct interaction with the protein.

HMM was derived for each allele of the family, and peptides

also binding to the other alleles were used as a training

set. The test sets comprised peptides binding to the

corresponding allele.

http://www.cbs.dtu.dk/services/NetCTL/
http://www.cbs.dtu.dk/services/NetCTL/
http://www.cbs.dtu.dk/services/NetMHC
http://www.cbs.dtu.dk/services/NetMHC
http://www.cbs.dtu.dk/services/NetMHC
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Schonbach et al. [109] compare the predictions done by

HMM, ANN and quantitative matrices (QMs). Over 500

amino acid sequences of HIV-1 and -2 are scanned for pep-

tides with affinity to A*0201 and B*3501. The ANN model

showed high performance for the A*0201 allele, and the

HMM was more successful in predicting B*3501 binders.

Subsequent experiments showed that 26 per cent of the epi-

topes were successfully identified by the models based on

QMs and ANN.

5.1.5. Prediction by quantitative matrices-driven methods

QMs resemble an extended motif with assigned coefficients for

each amino acid at each position in the peptide [110]. In prin-

ciple, matrix-based epitope prediction can be divided into four

steps: first, all possible peptide frames are extracted from a

given protein sequence. Second, the corresponding position-

and amino acid-specific matrix values are assigned to each

residue of a given peptide frame. Next, the side chain values

of each peptide are added or multiplied, resulting in the pep-

tide ‘score’. Last, peptides are selected based on their peptide

score. Thus, instead of simply counting anchor residues,

matrix-based algorithms take into account the relative impor-

tance of every amino acid residue in a peptide sequence, as

charged by their effect on binding. QMs provide a linear

model with easy-to-implement capabilities. Another advan-

tage of using this approach is that it covers a wider range of

peptides with binding potential and it gives a quantitative

score to each peptide. Their predictive accuracies are also con-

siderable. The capacity to predict HLA class II ligands using

QM-based algorithms was first demonstrated for DRB1*0401

molecules [111,112]. These algorithms ranked naturally pro-

cessed peptides and T-cell epitopes in the top 2–4 per cent

of all possible peptide frames of given antigens, even if they

owned only one or two anchor residues. More important,

however, a correlation between the peptide score and the bind-

ing affinity was demonstrated [111], which therefore supports

the underlying approximation that a given residue contributes

to binding independently of its neighbouring amino acid resi-

dues. Later on, many more QM-based algorithms were

established, including algorithms for DRB1*0101, DRB1*1501,

DRB1*1101, DRB1*0701 and DRB1*0801 molecules. The pre-

dictive power of some of these algorithms was validated by

a computer simulating the screening of M13 peptide display

libraries. QM-based algorithms were used instead of purified

HLA-class II molecules to enrich for large class II-binding pep-

tide repertoires [113].

QMs are also applied for the prediction of cleavage sites

and are implemented in MAPPP [114]. Similar algorithms

are applied for the prediction of linear epitopes of the B

lymphocytes. Alix [115] calculates the molecular properties

for the 20 common amino acids (side chain flexibility, hydro-

philic affinity and accessible surface) and uses these

properties for the prediction of potential epitope regions in

the proteins that would possibly bind to the B cells.

BIMAS is a T-cell epitope prediction server that implements

algorithms based on QM [116]. BIMAS was used for the identi-

fication of various potential epitopes [64,70,117,118]. QM was

derived from experimental data from the dissociation half-

time of the MHC–peptide complexes. The model predicting

binding to HLA-A*0201 allele is based on the author’s data,

and the models for the other alleles are based on the literature

data. Servers such as BIMAS and SYFPEITHI are shown to
perform well in the prediction of known epitopes, but are accu-

rate enough when screening proteins in search for unknown

and novel epitopes [69].

Another QM-based model is EpiMatrix, developed at

Brown University [59]. It has been used for the identification

of HIV-1 antigens [59,119]. Other similar approaches are

implemented in ClustiMer and Conservatrix. ClustiMer

identifies promiscuous (for a given HLA superfamily) pep-

tides, and Conservatrix determines unchanged (conserved)

regions in the proteins of the mutant pathogens of the same

species [120].

Another category of QMs is the position-specific matrices,

where the frequency at which the given amino acid appears

at a certain position is calculated for binding and non-binding

to MHC peptides [121]. Nielsen et al. [78] derive QM for

MHC class I and II epitopes accounting for the changes in

the Gibbs energy.

Virtual matrix (VM) is another type of QM, created

by Sturniolo et al. [122]. VM models the interactions bet-

ween each amino acid and the pockets of the binding

groove. The advantage comes from the applicability of the

VM to different alleles that share similar structural character-

istics of the binding groove, whereas the QMs are strictly

specific to the given allele. TEPITOPE is VM-based and pre-

dicts peptides that are HLA-DR binders. TEPITOPE is used

for identification of epitopes in the tumour antigen MAGE-3

[123,124]. Another tool using VM is ProPred, created by

Singh & Ragava [125], where the profiles of the MHC

protein pockets created by Sturniolo served as a foundation

for the models.

MHCPred is a sequence-based server using the additive

method [126] for developing QMs. The additive method

derives QMs using multiple linear regression by partial

least-squares (PLS) method. MHCPred was used to design

superbinders [127] and to identify the first T-cell epitope binding

to HLA-Cw*0102, and originating from HIV proteome [128].

EpiJen is a multi-step algorithm for T-cell epitope predic-

tion. It models the four steps of antigen processing—cleavage

in the proteasome, binding to TAP protein, binding to MHC

protein and recognition by T cells [129]. For each step, a QM

was developed and arranged in a consecutive mode to select

only those peptides that will be generated by the proteasome,

transported by TAP, bound in MHC and recognized by T

cells. In the final set are collected the peptides most probably

acting as T-cell epitopes.

VaxiJen predicts immunogenicity of whole proteins. It

includes five models derived by PLS-based discriminant

analysis, which covers the bacterial, viral, tumour, parasite

and fungal kingdoms [130]. The models show accuracy

between 70 and 97 per cent.

EpiTOP is a server for MHC class II-binding prediction

based on proteochemometrics [131]. Proteochemometrics is

a QSAR method specially designed to deal with ligands bind-

ing to a set of similar proteins [132]. The structures of the

target proteins are described by proper descriptors and

enter the X matrix of QSAR. The affinity of a peptide to a par-

ticular MHC protein is considered as a function of the

structures of both binding peptide and target protein.

EpiTOP is among the top three best-working servers for

MHC class II-binding prediction [131].

The main drawback of the quantitative models is that they

are strongly dependent on the type, number and quality of

the data that comprise the training set of peptides. The
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inclusion of novel data often alters the values upon which

the QM is based. Brusic et al. [133] suggest as a prerequisite

a threshold value for the derivation of a reliable model to

be 150 peptides and the ideal size of training set should

reach 600 peptides. However, in reality, most of the alleles

are represented by scarce data rarely exceeding more than

50 peptides. This limits the range of applicability for this

approach to the alleles that are sufficiently well studied.
hing.org
Open

Biol3:120139
5.2. Structure-based methods
The structure-based methods do not solely rely on binding

data and sequence information, but rather use the structural

information, and use computational methods developed in

the field of structural biology for prediction of potentially

good binders.

For the MHC molecule to recognize antigenic pepti-

des, geometric and electrostatic complementarities between

the receptor and ligand are essential for the formation of a

stable complex. Many computational studies that attempt to

unravel the rules governing peptide binding to MHC use

the sequences of MHC-binding peptides. By aligning the

sequences known to bind to a given MHC molecule, resi-

dues favouring the binding could be identified along the

peptide. The synthesis of this knowledge together with

that obtained from crystallographic studies has led to

better understanding of the basic principles that guide

peptide–MHC recognition [134,135].
5.2.1. Docking of peptides and screening of peptide libraries

Over recent years, many techniques and methods, such as

combinatorial peptide library screening and ligand docking,

commonly used in the drug design field, have found their

application for the purposes of bioinformatics. Davenport

et al. [136] generated MHC class II models by evaluating

the contribution of a given amino acid to the overall peptide

affinity. They took into account how frequently the amino

acid is present at a certain position. New peptides exhibiting

affinity towards DRB1*0101 were found based on relation-

ships derived from peptide libraries [137]. Screening of

peptide libraries was also applied for studying other MHC

alleles. Stryhn et al. [138] analysed the peptide specificities

of MHC class I binders by using peptide libraries. Stevens

et al. [139] used peptide libraries to determine the preferred

peptide length for murine MHC alleles. By using the pos-

itional screening of combinatorial peptide libraries, Udaka

et al. [140,141] characterize the peptides binding to H-Kb

Db and Ld alleles. The different amino acids were screened

for how frequently they appear at the different positions of

the peptides from the training set, and QMs were generated

in order to predict the affinity of the peptides from the test

set. The accuracy of the predictions reached 80 per cent.

Similar studies were conducted by Sung et al. [142] and

Nino-Vasquez et al. [143].

Computer-simulated ligand docking is a quick and

powerful technique for investigating intermolecular inter-

actions. In general, the purpose of docking simulation is

twofold: to find the most probable translational, rotational

and conformational juxtaposition of a given ligand–receptor

pair and to evaluate the relative binding affinity of the ligand

towards its receptor.
Docking is mostly known for its wide application in

computer-aided drug design [144]. However, this approach

found its application for designing novel peptides exhibiting

binding affinity towards MHC. Initially, the docking studies

were mainly used for investigation of peptides that bind

MHC class I molecules [145,146]. Zeng et al. [147] used resi-

dues with different properties (polar, hydrophobic,

charged, etc.) by docking them to different positions of the

binding groove of the receptor, thus evaluating the most

acceptable residues’ properties for each position of the poten-

tial epitope. Another study [148] uses a genetic algorithm in

order to derive QM for A2 and A24 alleles, and peptides with

high binding affinity are designed. The peptide structures were

modelled and docked to the binding groove. The binding

energy was calculated as a sum of the electrostatic and hydro-

phobic components. After the experimental determination of

the peptides’ binding affinity, good correlation is observed

between the predicted and the experimentally derived values.

Docking is also used for studying peptides binding MHC

class II alleles for identification of anchor positions and

positions that are solvent-exposed [149]. The interaction

between the T-cell receptor and the MHC–ligand complex

were also studied via docking [150,151]. Tong et al. [152]

develop a novel docking approach that consists of three

steps: (i) anchor residue docking; (ii) positioning of the peptide

backbone in the binding groove; and (iii) adjustment of the

overall positioning of the peptide backbone and the side

chains. This approach showed improved accuracy in compari-

son with the other methods. Liu et al. [67] take into account the

flexibility of the MHC proteins during the docking simulation.

However, despite the high predictive accuracy, these methods

are not feasible for online predictions since the time required

for the simulation is unreasonably long. Furthermore, the

accuracy of the predictions is highly dependent on the quality

of the structural information available for the receptor and the

correctly modelled backbone of the ligand.

EpiDOCK is a structure-based server for MHC-binding

prediction of peptides using docking score-based QMs (DS-

QMs) [153]. It predicts binding to 12 HLA-DR, 6 HLA-DQ

and 5 HLA-DP proteins.

5.2.2. Application of threading algorithms

Knowledge-based threading algorithms are used to discrimi-

nate the binding and non-binding peptides for particular

MHC molecules without relying on previous data. The

algorithm usually takes into account the contributions of

individual amino acids along the peptide that prompt them

to fit into the binding groove of MHC molecule using know-

ledge-based contact potential [154]. Often, the accurate

prediction of peptide structure in the MHC-binding groove

is hindered owing to the limited availability of suitable pep-

tide backbone templates. Still, the applicability of the

threading algorithm can be extended to a larger number of

MHC alleles for the prediction of T-cell epitope by using mol-

ecular modelling methods on the peptide–MHC complex.

Although the treading is not capable of exact modelling of

peptide in the MHC groove, it can verify the probability of

a peptide sequence to adopt a particular fold in the MHC

groove using binding energy score [155–157].

Adrian et al. [155] studied the MHC complex–peptide

interactions, and reveal the significant role played by the pep-

tide’s backbone for the overall binder’s selection. They also
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stress the significance of exact knowledge about the ligand’s

conformation and its impact on the ability to produce more

accurate prediction models. They use threading to predict

the peptides’ conformations by remodelling them over the

existing backbone known from an X-ray study of MHC com-

plexes. The scores used to evaluate the overall binding

affinity are additively calculated by summing the individual

binding energy score of each amino acid residue at each

position [158]. The lower values correspond to higher affinity

[156,157].

The drawback of this method is that despite the high level

of overlapping between the referent and the tested peptides,

some residue side chains tend to be oriented in different

directions, and thus worsen the predictability. Additional

modelling, however, may improve the predictive accuracy

of the model [157].

5.2.3. Binding energy and molecular dynamics

The epitopes can be identified by calculating the change in

the free Gibbs energy during the formation of the complex

between the ligand and the receptor, which is defined as

the difference between the energy of the free and the bound

peptide [159,160]. The epitopes can be found by direct com-

parison of the free energies of two peptides by using

scoring functions or molecular dynamics (MD) simulations

[161]. MD is used for studying the binding of synthetic pep-

tides [162], MHC peptide–protein complexes [163,164], the

role of the water molecules involved in the formation of

the peptide–protein complex [165], the interactions between

A2 peptides and the receptor’s binding groove [161,166],

the dissociation of the MHC–peptide complexes [167], and

the interactions between the T-cell receptor and the

peptide–MHC protein complex [168]. Rognan et al. [163]

simulated the binding of six peptides to B*2705 protein and

showed the importance of the secondary anchor residues.

Lim et al. [169] simulated the interaction between the peptide

and HLA-A*0201 protein by using the available X-ray struc-

ture. The peptides predicted to have high binding affinity

were validated experimentally. In another study, MD is

used to identify the contribution of each residue at a given

position and the results are used to form a QM for epitope

prediction [147]. Analogous MD simulations are performed

in order to determine anchor residues for the HLA-A*0217

allele [170]. MD simulations are used for studying peptides

binding to DRB1 [171]. Davies et al. [172] built epitope predic-

tion models for MHC class II proteins by using simulated

annealing, a common optimization method where the pep-

tide conformation is obtained by rapid increase of the

temperature and subsequent recalculation of the protein coor-

dinates by gradually decreasing the temperature at each step.

The energy of the resulting complex is derived and used for

binding affinity predictions.

Another approach is to derive the binding energy as a

difference between the energy of the solvated complex and

the energies of the solvated binding partners—peptide and

protein receptor. Only the electrostatic and hydrophobic

terms are taken into account [173].

Different scoring functions can be used for the evaluation

of the interactions between the peptide and the MHC protein.

The advantage of this approach is that it delivers more accu-

rate information about which types of interactions govern the

stability of the complex [174,175]. Sezerman et al. [159]
generate free energy maps describing the binding sites

along the binding groove of the MHC class I proteins by

using the electrostatic energy, solvation energy and the con-

formational entropy terms of the amino acid side chains.

Froloff et al. [176] calculate the binding energy for eight pep-

tide MHC class I protein complexes based on polar and non-

polar interactions. Schapira et al. [173] calculate the binding

energy based on three terms—entropic, electrostatic and

hydrophobic potentials—and use it for predicting the for-

mation of small protein complexes.

The free energy calculation approach was also applied on

peptides binding to HLA-A*0201 [177]. They used an energy

evaluation function where the free-binding energy consists of

five terms: hydrogen bond energy between the peptide and

the receptor, interaction energy between the hydrophobic

atoms, entropic loss upon binding, decrease of the binding

energy upon interaction between polar and non-polar

atoms, and the transition energy required for the transport

of an atom between environments with different dielectric

constants. For another experiment, Rognan and co-workers

[174] used the Fresno method for prediction of the free-

binding energy. The training set includes five known binders

interacting with HLA-A*0201; there is X-ray data and com-

plex affinity data available for the complexes. Based on the

free complex energy, a model is derived to predict the affinity

of 26 more binders to the HLA-A*0204 allele that shares sig-

nificant structure similarities with HLA-A*0201. The study

shows, however, that the predictive accuracy is much

higher when there is structural information available about

the receptor. This approach was used for estimation of the

binding energy of peptides binding to A*0201 and B*2705

by using the available X-ray structures [174]. Later on, the

Fresno approach is applied to build the peptide MHC–protein

complexes via homology modelling and to calculate the bind-

ing energy [175]. The main drawback of this method is the

amount of time and computational power that it takes to

produce results, which makes it inapplicable for online access.
6. Conclusion
Immunoinformatics can effectively leverage computational

techniques to deliver effective and utilitarian advantage in the

search of new vaccines. It is considered to contribute to vaccine

design as the computational chemistry contributes to drug

design. Immunoinformatics-based vaccine design is able to

achieve effective, cost-efficient development of vaccines or

vaccine components.
7. Acknowledgements
The authors thank their colleagues from the Faculty of Phar-

macy, the Medical University of Sofia—Ivan Dimitrov,

Mariyana Atanasova and Panaiot Garnev—for their contri-

butions in the developing of EpiTOP, AllerTOP and

EpiDOCK. I.D. thanks her former colleagues from the

Jenner Institute, Oxford University—Darren R. Flower,

Pigping Guan, Channa Hattotuwagama and Martin

Blythe—for their contributions in the developing of

MHCPred, EpiJen and VaxiJen. Part of this work was sup-

ported by the National Research Fund of the Bulgarian

Ministry of Education and Science (grant no. 02-1/2009).



9
References
rsob.royalsocietypublishing.org
Open

Biol3:120139
1. Lombard M, Pastoret PP, Moulin AM. 2007 A brief
history of vaccines and vaccination. Rev. Sci. Tech.
26, 29 – 48.

2. Hellstrom KE, Hellstrom I. 2003 Novel approaches to
therapeutic cancer vaccines. Expert Rev. Vaccines 2,
517 – 532. (doi:10.1586/14760584.2.4.517)

3. Fiore AE, Bridges CB, Cox NJ. 2009 Seasonal
influenza vaccines. Curr. Top. Microbiol. Immunol.
333, 43 – 82. (doi:10.1007/978-3-540-92165-3_3)

4. Liesegang TJ. 2009 Varicella zoster virus vaccines:
effective, but concerns linger. Can. J. Ophthalmol.
44, 379 – 384. (doi:10.3129/i09-126)

5. Chang Y, Brewer NT, Rinas AC, Schmitt K, Smith JS.
2009 Evaluating the impact of human
papillomavirus vaccines. Vaccine 27, 4355 – 4362.
(doi:10.1016/j.vaccine.2009.03.008)

6. Mortimer PP. 2003 Can postexposure vaccination
against smallpox succeed? Clin. Infect. Dis. 36,
622 – 629. (doi:10.1086/374054)

7. Rupprecht CE et al. 2010 Use of a reduced (4-dose)
vaccine schedule for postexposure prophylaxis to
prevent human rabies: recommendations of the
advisory committee on immunization practices.
MMWR Recomm. Rep. 59, 1 – 9.

8. Newman MJ, Livingston B, McKinney DM, Chesnut
RW, Sette A. 2002 T-lymphocyte epitope
identification and their use in vaccine development
for HIV-1. Front. Biosci. 7, d1503 – d1515. (doi:10.
2741/newman)

9. Payette PJ, Davis HL. 2001 History of vaccines and
positioning of current trends. Curr. Drug Targets
Infect. Disord. 1, 241 – 247. (doi:10.2174/
1568005014606017)

10. Smith SG. 1999 The polyepitope approach to DNA
vaccination. Curr. Opin. Mol. Ther. 1, 10 – 15.

11. Szmuness W, Stevens CE, Harley EJ, Zang EA, Taylor
PE, Alter HJ. 1981 The immune response of healthy
adults to a reduced dose of hepatitis B vaccine.
J. Med. Virol. 8, 123 – 129.

12. Szmuness W, Stevens CE, Oleszko WR, Goodman A.
1981 Passive – active immunisation against hepatitis
B: immunogenicity studies in adult Americans.
Lancet 1, 575 – 577. (doi:10.1016/S0140-
6736(81)92030-4)

13. Adolph KW, Butler PJG. 1976 Assembly of a
spherical plant-virus. Phil. Trans. R. Soc. Lond. B
276, 113 – 122. (doi:10.1098/rstb.1976.0102)

14. Chromy LR, Pipas JM, Garcea RL. 2003 Chaperone-
mediated in vitro assembly of Polyomavirus capsids.
Proc. Natl Acad. Sci. USA 100, 10 477 – 10 482.
(doi:10.1073/pnas.1832245100)

15. Bayer ME, Blumberg BS, Werner B. 1968 Particles
associated with Australia antigen in the sera of
patients with leukaemia, Down’s Syndrome and
hepatitis. Nature 218, 1057 – 1059. (doi:10.1038/
2181057a0)

16. Akahata W et al. 2010 A virus-like particle vaccine
for epidemic Chikungunya virus protects nonhuman
primates against infection. Nat. Med. 16, 334 – 338.
(doi:10.1038/nm.2105)
17. Santi L, Huang Z, Mason H. 2006 Virus-like particles
production in green plants. Methods 40, 66 – 76.
(doi:10.1016/j.ymeth.2006.05.020)

18. Gurunathan S, Klinman DM, Seder RA. 2000 DNA
vaccines: immunology, application, and
optimization. Annu. Rev. Immunol. 18, 927 – 974.
(doi:10.1146/annurev.immunol.18.1.927)

19. Liu MA. 2003 DNA vaccines: a review. J. Intern. Med.
253, 402 – 410. (doi:10.1046/j.1365-2796.2003.
01140.x)

20. Darji A, Guzmán CA, Gerstel B, Wachholz P, Timmis
KN, Wehland J, Chakraborty T, Weiss S. 1997 Oral
somatic transgene vaccination using attenuated
S. typhimurium. Cell 91, 765 – 775. (doi:10.1016/
S0092-8674(00)80465-1)

21. Paglia P, Medina E, Arioli I, Guzman CA, Colombo
MP. 1998 Gene transfer in dendritic cells, induced
by oral DNA vaccination with Salmonella
typhimurium, results in protective immunity against
a murine fibrosarcoma. Blood 92, 3172 – 3176.

22. Klinman DM, Takeno M, Ichino M, Gu M,
Yamshchikov G, Mor G, Conover J. 1997 DNA
vaccines: safety and efficacy issues. Springer Semin.
Immunopathol. 19, 245 – 256. (doi:10.1007/
BF00870272)

23. Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M,
Cheever MA, Knutson KL, Schiffman K. 2002
Generation of T-cell immunity to the HER-2/neu
protein after active immunization with HER-2/neu
peptide-based vaccines. J. Clin. Oncol. 20,
2624 – 2632. (doi:10.1200/JCO.2002.06.171)

24. Ledwith BJ et al. 2000 Plasmid DNA vaccines: assay
for integration into host genomic DNA. Dev. Biol.
104, 33 – 43.

25. Manam S et al. 2000 Plasmid DNA vaccines: tissue
distribution and effects of DNA sequence, adjuvants
and delivery method on integration into host DNA.
Intervirology 43, 273 – 281. (doi:10.1159/
000053994)

26. Jacob CO, Leitner M, Zamir A, Salomon D, Arnon R.
1985 Priming immunization against cholera toxin
and E. coli heat-labile toxin by cholera toxin short
peptide-beta-galactosidase hybrid synthesized in
E. coli. EMBO J. 4, 3339 – 3343.

27. Dermime S, Gilham DE, Shaw DM, Davidson EJ,
Meziane el K, Armstrong A, Hawkins RE, Stern PL.
2004 Vaccine and antibody-directed T cell tumour
immunotherapy. Biochim. Biophys. Acta 1704,
11 – 35.

28. Meloen RH, Langeveld JP, Schaaper WM,
Slootstra JW. 2001 Synthetic peptide vaccines:
unexpected fulfillment of discarded hope?
Biologicals 29, 233 – 236. (doi:10.1006/biol.
2001.0298)

29. Sundaram R, Beebe M, Kaumaya PT. 2004 Structural
and immunogenicity analysis of chimeric B-cell
epitope constructs derived from the gp46 and gp21
subunits of the envelope glycoproteins of HTLV-1.
J. Pept. Res. 63, 132 – 140. (doi:10.1111/j.1399-
3011.2003.00113.x)
30. Mahler M, Bluthner M, Pollard KM. 2003 Advances
in B-cell epitope analysis of autoantigens in
connective tissue diseases. Clin. Immunol. 107,
65 – 79. (doi:10.1016/S1521-6616(03)00037-8)

31. Lehner T, Walker P, Smerdon R, Childerstone A,
Bergmeier LA, Haron J. 1990 Identification of T- and
B-cell epitopes in synthetic peptides derived from a
Streptococcus mutans protein and characterization of
their antigenicity and immunogenicity. Arch. Oral
Biol. 35, S39 – S45. (doi:10.1016/0003-
9969(90)90129-X)

32. Naz RK, Dabir P. 2007 Peptide vaccines against
cancer, infectious diseases, and conception. Front.
Biosci. 12, 1833 – 1844. (doi:10.2741/2191)

33. Huang J, Honda W. 2006 CED: a conformational
epitope database. BMC Immunol. 7, 7. (doi:10.1186/
1471-2172-7-7)

34. Madden DR. 1995 The three-dimensional structure
of peptide – MHC complexes. Annu. Rev. Immunol.
13, 587 – 622. (doi:10.1146/annurev.iy.13.040195.
003103)

35. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban
RG, Strominger JL, Wiley DC. 1996 Crystallographic
analysis of endogenous peptides associated with
HLA-DR1 suggests a common, polyproline II-like
conformation for bound peptides. Proc. Natl Acad.
Sci. USA 93, 734 – 738. (doi:10.1073/pnas.93.2.734)

36. Janeway CA. 2001 Immunobiology: the immune
system in health and disease. New York, NY:
Churchill Livingstone.

37. Letvin NL, Walker BD. 2001 HIV versus the
immune system: another apparent victory for the
virus. J. Clin. Invest. 107, 273 – 275. (doi:10.1172/
JCI12174)

38. Sirskyj D, Diaz-Mitoma F, Golshani A, Kumar A,
Azizi A. 2011 Innovative bioinformatic approaches
for developing peptide-based vaccines against
hypervariable viruses. Immunol. Cell Biol. 89,
81 – 89. (doi:10.1038/icb.2010.65)

39. Robinson J, Mistry K, McWilliam H, Lopez R,
Parham P, Marsh SGE. 2011 The IMGT/HLA
database. Nucleic Acids Res. 39, D1171 – 1176.
(doi:10.1093/nar/gkq998)

40. Liu W, Meng XS, Xu QQ, Flower DR, Li T. 2006
Quantitative prediction of mouse class I MHC
peptide binding affinity using support vector
machine regression (SVR) models. BMC Bioinform.
7, 182. (doi:10.1186/1471-2105-7-182)

41. Wan J, Liu W, Xu QQ, Ren Y, Flower DR, Li T. 2006
SVRMHC prediction server for MHC-binding
peptides. BMC Bioinform. 7, 463. (doi:10.1186/
1471-2105-7-463)

42. Zhang C, Bickis MG, Wu FX, Kusalik AJ. 2006
Optimally-connected hidden Markov models for
predicting MHC-binding peptides. J. Bioinform.
Comput. Biol. 4, 959 – 980. (doi:10.1142/
S0219720006002314)

43. Noguchi H, Kato R, Hanai T, Matsubara Y, Honda H,
Brusic V, Kobayashi T. 2002 Hidden Markov model-
based prediction of antigenic peptides that interact

http://dx.doi.org/10.1586/14760584.2.4.517
http://dx.doi.org/10.1007/978-3-540-92165-3_3
http://dx.doi.org/10.3129/i09-126
http://dx.doi.org/10.1016/j.vaccine.2009.03.008
http://dx.doi.org/10.1086/374054
http://dx.doi.org/10.2741/newman
http://dx.doi.org/10.2741/newman
http://dx.doi.org/10.2174/1568005014606017
http://dx.doi.org/10.2174/1568005014606017
http://dx.doi.org/10.1016/S0140-6736(81)92030-4
http://dx.doi.org/10.1016/S0140-6736(81)92030-4
http://dx.doi.org/10.1098/rstb.1976.0102
http://dx.doi.org/10.1073/pnas.1832245100
http://dx.doi.org/10.1038/2181057a0
http://dx.doi.org/10.1038/2181057a0
http://dx.doi.org/10.1038/nm.2105
http://dx.doi.org/10.1016/j.ymeth.2006.05.020
http://dx.doi.org/10.1146/annurev.immunol.18.1.927
http://dx.doi.org/10.1046/j.1365-2796.2003.01140.x
http://dx.doi.org/10.1046/j.1365-2796.2003.01140.x
http://dx.doi.org/10.1016/S0092-8674(00)80465-1
http://dx.doi.org/10.1016/S0092-8674(00)80465-1
http://dx.doi.org/10.1007/BF00870272
http://dx.doi.org/10.1007/BF00870272
http://dx.doi.org/10.1200/JCO.2002.06.171
http://dx.doi.org/10.1159/000053994
http://dx.doi.org/10.1159/000053994
http://dx.doi.org/10.1006/biol.2001.0298
http://dx.doi.org/10.1006/biol.2001.0298
http://dx.doi.org/10.1111/j.1399-3011.2003.00113.x
http://dx.doi.org/10.1111/j.1399-3011.2003.00113.x
http://dx.doi.org/10.1016/S1521-6616(03)00037-8
http://dx.doi.org/10.1016/0003-9969(90)90129-X
http://dx.doi.org/10.1016/0003-9969(90)90129-X
http://dx.doi.org/10.2741/2191
http://dx.doi.org/10.1186/1471-2172-7-7
http://dx.doi.org/10.1186/1471-2172-7-7
http://dx.doi.org/10.1146/annurev.iy.13.040195.003103
http://dx.doi.org/10.1146/annurev.iy.13.040195.003103
http://dx.doi.org/10.1073/pnas.93.2.734
http://dx.doi.org/10.1172/JCI12174
http://dx.doi.org/10.1172/JCI12174
http://dx.doi.org/10.1038/icb.2010.65
http://dx.doi.org/10.1093/nar/gkq998
http://dx.doi.org/10.1186/1471-2105-7-182
http://dx.doi.org/10.1186/1471-2105-7-463
http://dx.doi.org/10.1186/1471-2105-7-463
http://dx.doi.org/10.1142/S0219720006002314
http://dx.doi.org/10.1142/S0219720006002314


rsob.royalsocietypublishing.org
Open

Biol3:120139

10
with MHC class II molecules. J. Biosci. Bioeng. 94,
264 – 270.

44. Mamitsuka H. 1998 Predicting peptides that bind to
MHC molecules using supervised learning of hidden
Markov models. Proteins 33, 460 – 474. (doi:10.
1002/(SICI)1097-0134(19981201)33:4,460::AID-
PROT2.3.0.CO;2-M)

45. Doytchinova IA, Flower DR. 2003 The HLA-A2-
supermotif: a QSAR definition. Org. Biomol. Chem.
1, 2648 – 2654. (doi:10.1039/b300707c)

46. Doytchinova IA, Walshe V, Borrow P, Flower DR.
2005 Towards the chemometric dissection of
peptide – HLA-A*0201 binding affinity: comparison
of local and global QSAR models. J. Comput. Aid.
Mol. Des. 19, 203 – 212. (doi:10.1007/s10822-005-
3993-x)

47. Wan SZ, Coveney PV, Flower DR. 2005 Molecular
basis of peptide recognition by the TCR: affinity
differences calculated using large scale computing.
J. Immunol. 175, 1715 – 1723.

48. Brusic V, Petrovsky N. 2005 Immunoinformatics and
its relevance to understanding human immune
disease. Expert Rev. Clin. Immunol. 1, 145 – 157.
(doi:10.1586/1744666X.1.1.145)

49. Tomar N, De RK. 2010 Immunoinformatics:
an integrated scenario. Immunology 113,
153 – 168. (doi:10.1111/j.1365-2567.2010.03330.x)

50. Sette A, Buus S, Appella E, Smith JA, Chesnut R,
Miles C, Colon SM, Grey HM. 1989 Prediction of
major histocompatibility complex binding regions of
protein antigens by sequence pattern analysis. Proc.
Natl Acad. Sci. USA 86, 3296 – 3300. (doi:10.1073/
pnas.86.9.3296)

51. Pamer EG, Harty JT, Bevan MJ. 1991 Precise
prediction of a dominant class I MHC-restricted
epitope of Listeria monocytogenes. Nature 353,
852 – 855. (doi:10.1038/353852a0)

52. Suhrbier A, Schmidt C, Fernan A. 1993 Prediction of
an HLA B8-restricted influenza epitope by motif.
Immunology 79, 171 – 173.

53. Joyce S, Nathenson SG. 1994 Methods to study
peptides associated with MHC class I molecules.
Curr. Opin. Immunol. 6, 24 – 31. (doi:10.1016/0952-
7915(94)90029-9)

54. Rammensee H, Bachmann J, Emmerich NP, Bachor
OA, Stevanovic S. 1999 SYFPEITHI: database for MHC
ligands and peptide motifs. Immunogenetics 50,
213 – 219. (doi:10.1007/s002510050595)

55. Altuvia Y, Berzofsky JA, Rosenfeld R, Margalit H.
1994 Sequence features that correlate with MHC
restriction. Mol. Immunol. 31, 1 – 19. (doi:10.1016/
0161-5890(94)90133-3)

56. Doolan DL et al. 1997 Degenerate cytotoxic T cell
epitopes from P. falciparum restricted by multiple
HLA-A and HLA-B supertype alleles. Immunity 7,
97 – 112. (doi:10.1016/S1074-7613(00)80513-0)

57. Jung G, Fleckenstein B, von der Mulbe F, Wessels J,
Niethammer D, Wiesmuller KH. 2001 From
combinatorial libraries to MHC ligand motifs, T-cell
superagonists and antagonists. Biologicals 29, 179 –
181. (doi:10.1006/biol.2001.0299)

58. D’Amaro J, Houbiers JG, Drijfhout JW, Brandt RM,
Schipper R, Bavinck JN, Melief CJ, Kast WM. 1995 A
computer program for predicting possible cytotoxic
T lymphocyte epitopes based on HLA class I
peptide-binding motifs. Hum. Immunol. 43, 13 – 18.
(doi:10.1016/0198-8859(94)00153-H)

59. Meister GE, Roberts CG, Berzofsky JA, De Groot AS.
1995 Two novel T cell epitope prediction algorithms
based on MHC-binding motifs: comparison of
predicted and published epitopes from
Mycobacterium tuberculosis and HIV protein
sequences. Vaccine 13, 581 – 591. (doi:10.1016/
0264-410X(94)00014-E)

60. De Groot AS, Bosma A, Chinai N, Frost J, Jesdale
BM, Gonzalez MA, Martin W, Saint-Aubin C. 2001
From genome to vaccine: in silico predictions, ex
vivo verification. Vaccine 19, 4385 – 4395. (doi:10.
1016/S0264-410X(01)00145-1)

61. Dick TP, Stevanovic S, Keilholz W, Ruppert T,
Koszinowski U, Schild H, Rammensee HG. 1998 The
making of the dominant MHC class I ligand
SYFPEITHI. Eur. J. Immunol. 28, 2478 – 2486.
(doi:10.1002/(SICI)1521-4141(199808)28:
08,2478::AID-IMMU2478.3.0.CO;2-U)

62. Amicosante M et al. 2002 Computer-based design
of an HLA-haplotype and HIV-clade independent
cytotoxic T-lymphocyte assay for monitoring
HIV-specific immunity. Mol. Med. 8, 798 – 807.

63. Dong HL, Sui YF, Ye J, Li ZS, Qu P, Zhang XM,
Chen GS, Lu SY. 2003 Prediction synthesis and
identification of HLA-A2-restricted cytotoxic T
lymphocyte epitopes of the tumor antigen MAGE-n.
Zhonghua Yi Xue Za Zhi 83, 1080 – 1083.

64. Hansson L, Rabbani H, Fagerberg J, Osterborg A,
Mellstedt H. 2003 T-cell epitopes within the
complementarity-determining and framework
regions of the tumor-derived immunoglobulin
heavy chain in multiple myeloma. Blood 101,
4930 – 4936. (doi:10.1182/blood-2002-04-1250)

65. Wagner C et al. 2003 Identification of an HLA-A*02
restricted immunogenic peptide derived from the
cancer testis antigen HOM-MEL-40/SSX2. Cancer
Immun. 3, 18.

66. Zehbe I, Mytilineos J, Wikstrom I, Henriksen R, Edler
L, Tommasino M. 2003 Association between human
papillomavirus 16 E6 variants and human leukocyte
antigen class I polymorphism in cervical cancer of
Swedish women. Hum. Immunol. 64, 538 – 542.
(doi:10.1016/S0198-8859(03)00033-8)

67. Liu Z, Dominy BN, Shakhnovich EI. 2004 Structural
mining: self-consistent design on flexible protein –
peptide docking and transferable binding affinity
potential. J. Am. Chem. Soc. 126, 8515 – 8528.
(doi:10.1021/ja032018q)

68. Neumann F, Wagner C, Kubuschok B, Stevanovic S,
Rammensee HG, Pfreundschuh M. 2004
Identification of an antigenic peptide derived from
the cancer-testis antigen NY-ESO-1 binding to a
broad range of HLA-DR subtypes. Cancer Immunol.
Immunother. 53, 589 – 599. (doi:10.1007/s00262-
003-0492-6)

69. Pelte C, Cherepnev G, Wang Y, Schoenemann C,
Volk HD, Kern F. 2004 Random screening of proteins
for HLA-A*0201-binding nine-amino acid peptides
is not sufficient for identifying CD8 T cell epitopes
recognized in the context of HLA-A*0201.
J. Immunol. 172, 6783 – 6789.

70. Ullenhag GJ, Fagerberg J, Strigard K, Frodin JE,
Mellstedt H. 2004 Functional HLA-DR T cell
epitopes of CEA identified in patients with
colorectal carcinoma immunized with the
recombinant protein CEA. Cancer Immunol.
Immunother. 53, 331 – 337. (doi:10.1007/s00262-
003-0441-4)

71. Nussbaum AK, Kuttler C, Tenzer S, Schild H. 2003
Using the World Wide Web for predicting CTL
epitopes. Curr. Opin. Immunol. 15, 69 – 74.
(doi:10.1016/S0952791502000043)

72. Andersen MH, Tan L, Sondergaard I, Zeuthen J,
Elliott T, Haurum JS. 2000 Poor correspondence
between predicted and experimental binding of
peptides to class I MHC molecules. Tissue Antigens
55, 519 – 531. (doi:10.1034/j.1399-0039.2000.
550603.x)

73. Beale R, Jackson T. 1990 Neural computing: an
introduction. Bristol, UK: Adam Hilger.

74. Tomita Y, Tomida S, Hasegawa Y, Suzuki Y,
Shirakawa T, Kobayashi T, Honda H. 2004
Artificial neural network approach for selection
of susceptible single nucleotide polymorphisms
and construction of prediction model on
childhood allergic asthma. BMC Bioinform. 5, 120.
(doi:10.1186/1471-2105-5-120)

75. Stefaniak B, Cholewinski W, Tarkowska A. 2004
Prediction of left ventricular ejection fraction in
patients with coronary artery disease based on an
analysis of perfusion patterns at rest. Assessment by
an artificial neural network. Nucl. Med. Rev. Cent.
East. Eur. 7, 7 – 12.

76. Jouyban A, Majidi MR, Jalilzadeh H, Asadpour-
Zeynali K. 2004 Modeling drug solubility in
water-cosolvent mixtures using an artificial neural
network. Farmaco 59, 505 – 512. (doi:10.1016/j.
farmac.2004.02.005)

77. Bellgard MI, Tay GK, Hiew HL, Witt CS, Ketheesan N,
Christiansen FT, Dawkins RL. 1998 MHC haplotype
analysis by artificial neural networks. Hum.
Immunol. 59, 56 – 62. (doi:10.1016/S0198-
8859(97)00231-0)

78. Nielsen M, Lundegaard C, Worning P, Hvid CS,
Lamberth K, Buus S, Brunak S, Lund O. 2004
Improved prediction of MHC class I and class II
epitopes using a novel Gibbs sampling approach.
Bioinformatics 20, 1388 – 1397. (doi:10.1093/
bioinformatics/bth100)

79. Larsen MV, Lundegaard C, Lamberth K, Buus S,
Brunak S, Lund O, Nielsen M. 2005 An integrative
approach to CTL epitope prediction. A combined
algorithm integrating MHC-I binding, TAP transport
efficiency, and proteasomal cleavage predictions.
Eur. J. Immunol. 35, 2295 – 2303. (doi:10.1002/eji.
200425811)

80. Lundegaard C, Lamberth K, Harndahl M, Buus S,
Lund O, Nielsen M. 2008 NetMHC-3.0: accurate web
accessible predictions of human, mouse and
monkey MHC class I affinities for peptides of
length 8 – 11. Nucleic Acids Res. 36(Suppl. 2),
W509 – W512. (doi:10.1093/nar/gkn202)

http://dx.doi.org/10.1002/(SICI)1097-0134(19981201)33:4%3C460::AID-PROT2%3E3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1097-0134(19981201)33:4%3C460::AID-PROT2%3E3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1097-0134(19981201)33:4%3C460::AID-PROT2%3E3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1097-0134(19981201)33:4%3C460::AID-PROT2%3E3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1097-0134(19981201)33:4%3C460::AID-PROT2%3E3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1097-0134(19981201)33:4%3C460::AID-PROT2%3E3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1097-0134(19981201)33:4%3C460::AID-PROT2%3E3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1097-0134(19981201)33:4%3C460::AID-PROT2%3E3.0.CO;2-M
http://dx.doi.org/10.1039/b300707c
http://dx.doi.org/10.1007/s10822-005-3993-x
http://dx.doi.org/10.1007/s10822-005-3993-x
http://dx.doi.org/10.1586/1744666X.1.1.145
http://dx.doi.org/10.1111/j.1365-2567.2010.03330.x
http://dx.doi.org/10.1073/pnas.86.9.3296
http://dx.doi.org/10.1073/pnas.86.9.3296
http://dx.doi.org/10.1038/353852a0
http://dx.doi.org/10.1016/0952-7915(94)90029-9
http://dx.doi.org/10.1016/0952-7915(94)90029-9
http://dx.doi.org/10.1007/s002510050595
http://dx.doi.org/10.1016/0161-5890(94)90133-3
http://dx.doi.org/10.1016/0161-5890(94)90133-3
http://dx.doi.org/10.1016/S1074-7613(00)80513-0
http://dx.doi.org/10.1006/biol.2001.0299
http://dx.doi.org/10.1016/0198-8859(94)00153-H
http://dx.doi.org/10.1016/0264-410X(94)00014-E
http://dx.doi.org/10.1016/0264-410X(94)00014-E
http://dx.doi.org/10.1016/S0264-410X(01)00145-1
http://dx.doi.org/10.1016/S0264-410X(01)00145-1
http://dx.doi.org/10.1002/(SICI)1521-4141(199808)28:08%3C2478::AID-IMMU2478%3E3.0.CO;2-U
http://dx.doi.org/10.1002/(SICI)1521-4141(199808)28:08%3C2478::AID-IMMU2478%3E3.0.CO;2-U
http://dx.doi.org/10.1002/(SICI)1521-4141(199808)28:08%3C2478::AID-IMMU2478%3E3.0.CO;2-U
http://dx.doi.org/10.1002/(SICI)1521-4141(199808)28:08%3C2478::AID-IMMU2478%3E3.0.CO;2-U
http://dx.doi.org/10.1002/(SICI)1521-4141(199808)28:08%3C2478::AID-IMMU2478%3E3.0.CO;2-U
http://dx.doi.org/10.1002/(SICI)1521-4141(199808)28:08%3C2478::AID-IMMU2478%3E3.0.CO;2-U
http://dx.doi.org/10.1002/(SICI)1521-4141(199808)28:08%3C2478::AID-IMMU2478%3E3.0.CO;2-U
http://dx.doi.org/10.1182/blood-2002-04-1250
http://dx.doi.org/10.1016/S0198-8859(03)00033-8
http://dx.doi.org/10.1021/ja032018q
http://dx.doi.org/10.1007/s00262-003-0492-6
http://dx.doi.org/10.1007/s00262-003-0492-6
http://dx.doi.org/10.1007/s00262-003-0441-4
http://dx.doi.org/10.1007/s00262-003-0441-4
http://dx.doi.org/10.1016/S0952791502000043
http://dx.doi.org/10.1034/j.1399-0039.2000.550603.x
http://dx.doi.org/10.1034/j.1399-0039.2000.550603.x
http://dx.doi.org/10.1186/1471-2105-5-120
http://dx.doi.org/10.1016/j.farmac.2004.02.005
http://dx.doi.org/10.1016/j.farmac.2004.02.005
http://dx.doi.org/10.1016/S0198-8859(97)00231-0
http://dx.doi.org/10.1016/S0198-8859(97)00231-0
http://dx.doi.org/10.1093/bioinformatics/bth100
http://dx.doi.org/10.1093/bioinformatics/bth100
http://dx.doi.org/10.1002/eji.200425811
http://dx.doi.org/10.1002/eji.200425811
http://dx.doi.org/10.1093/nar/gkn202


rsob.royalsocietypublishing.org
Open

Biol3:120139

11
81. Vapnik V. 1998 Statistical learning theory. New York,
NY: Wiley-Interscience.

82. Ding CH, Dubchak I. 2001 Multi-class protein fold
recognition using support vector machines and
neural networks. Bioinformatics 17, 349 – 358.
(doi:10.1093/bioinformatics/17.4.349)

83. Scholkopf S, Burges CJC, Smola AJ. 1999 Advances
in kernel methods: support vector learning.
Cambridge, MA: MIT Press.

84. Perner P. 2011 Machine learning and data mining
in pattern recognition. In Proc. 7th Int. Conf.
MLDM 2011, New York, NY, 30 August –
3 September. Lecture Notes in Computer Science,
vol. 6871. New York, NY: Springer.

85. Nanni L. 2006 Machine learning algorithms for
T-cell epitopes prediction. Neurocomputing 69,
866 – 868. (doi:10.1016/j.neucom.2005.08.005)

86. Bhasin M, Raghava GPS. 2004 Analysis and
prediction of affinity of TAP binding peptides
using cascade SVM. Protein Sci. 13, 596 – 607.
(doi:10.1110/ps.03373104)

87. Bhasin M, Raghava GPS. 2005 Pcleavage: an SVM
based method for prediction of constitutive
proteasome and immunoproteasome cleavage sites
in antigenic sequences. Nucleic Acids Res. 33(Suppl.
2), W202 – W207. (doi:10.1093/nar/gki587)

88. Joachims T. 1999 Marking large-scale support vector
machine learning practical, pp. 169 – 84. Cambridge,
MA: MIT Press.

89. Cost S, Salzberg S. 1993 A weighted nearest
neighbor algorithm for learning with symbolic
features. Mach. Learn. 10, 57 – 78. (doi:10.1007/
BF00993481)

90. Witten IH, Frank E. 1999 Data mining: practical
machine learning tools and techniques with Java
implementations, 2nd edn. San Francisco, CA:
Morgan Kaufman.

91. Sweredoski MJ, Baldi P. 2009 COBEpro: a novel
system for predicting continuous B-cell epitopes.
Protein Eng. Des. Sel. 22, 113 – 20. (doi:10.1093/
protein/gzn075)

92. Baum L, Petrie T, Soules G, Weiss N. 1970
A maximization technique occuring in the
statistical analysis of probablistic functions of
markov chains. Ann. Math. Stat. 41, 164 – 171.
(doi:10.1214/aoms/1177697196)

93. Rabiner LR. 1989 A tutorial on hidden Markov models
and selected applications in speech recognition. Proc.
IEEE 77, 257 – 286. (doi:10.1109/5.18626)

94. Huang X, Jack M, Ariki Y. 1990 Hidden Markov
models for speech recognition. Edinburgh, UK:
Edinburgh University Press.

95. Bishop M, Thompson E. 1986 Maximum likelihood
alignment of DNA sequences. J. Mol. Biol. 190,
159 – 165. (doi:10.1016/0022-2836(86)90289-5)

96. Durbin R, Eddy SR, Krogh A, Mitchison G. 1999
Biological sequence analysis: probabilistic models of
proteins and nucleic acids. Cambridge, UK:
Cambridge University Press.

97. Delorenzi M, Speed T. 2002 An HMM model for
coiled-coil domains and a comparison with PSSM-
based predictions. Bioinformatics 18, 617 – 625.
(doi:10.1093/bioinformatics/18.4.617)
98. Martelli PL, Fariselli P, Krogh A, Casadio R. 2002 A
sequence-profile-based HMM for predicting and
discriminating beta barrel membrane proteins.
Bioinformatics 18(Suppl. 1), S46 – S53. (doi:10.
1093/bioinformatics/18.suppl_1.S46)

99. Liu Q, Zhu YS, Wang BH, Li YX. 2003 A HMM-based
method to predict the transmembrane regions of
beta-barrel membrane proteins. Comput. Biol. Chem.
27, 69 – 76. (doi:10.1016/S0097-8485(02)00051-7)

100. Qian B, Goldstein RA. 2004 Performance of an
iterated T-HMM for homology detection.
Bioinformatics 20, 2175 – 2180. (doi:10.1093/
bioinformatics/bth181)

101. Krogh A, Brown M, Mian IS, Sjolander K, Haussler D.
1994 Hidden Markov models in computational
biology. Applications to protein modeling. J. Mol.
Biol. 235, 1501 – 1531. (doi:10.1006/jmbi.
1994.1104)

102. Bateman A, Haft DH. 2002 HMM-based databases in
InterPro. Brief Bioinform. 3, 236 – 245. (doi:10.1093/
bib/3.3.236)

103. Cawley SL, Pachter L. 2003 HMM sampling and
applications to gene finding and alternative
splicing. Bioinformatics 19(Suppl. 2), ii36 – ii41.
(doi:10.1093/bioinformatics/btg1057)

104. Jojic V, Jojic N, Meek C, Geiger D, Siepel A, Haussler
D, Heckerman D. 2004 Efficient approximations for
learning phylogenetic HMM models from data.
Bioinformatics 20(Suppl. 1), i161 – i168. (doi:10.
1093/bioinformatics/bth917)

105. Azad RK, Borodovsky M. 2004 Probabilistic methods
of identifying genes in prokaryotic genomes:
connections to the HMM theory. Brief Bioinform. 5,
118 – 130. (doi:10.1093/bib/5.2.118)

106. Zhang GL, Petrovsky N, Kwoh CK, August JT, Brusic
V. 2006 PredTAP: a system for prediction of peptide
binding to the human transporter associated with
antigen processing. Immunome Res. 2, 3. (doi:10.
1186/1745-7580-2-3)

107. Udaka K, Mamitsuka H, Nakaseko Y, Abe N. 2002
Prediction of MHC class I binding peptides by a
query learning algorithm based on hidden Markov
models. J. Biol. Phys. 28, 183 – 194. (doi:10.1023/
A:1019931731519)

108. Brusic V, Petrovsky N, Zhang G, Bajic VB. 2002
Prediction of promiscuous peptides that bind HLA
class I molecules. Immunol. Cell Biol. 80, 280 – 285.
(doi:10.1046/j.1440-1711.2002.01088.x)

109. Schonbach C, Koh JL, Sheng X, Wong L, Brusic V.
2000 FIMM, a database of functional molecular
immunology. Nucleic Acids Res. 28, 222 – 224.
(doi:10.1093/nar/28.1.222)

110. Gulukota K, Sidney J, Sette A, DeLisi C. 1997
Two complementary methods for predicting
peptides binding major histocompatibility
complex molecules. J. Mol. Biol. 267, 1258 – 1267.
(doi:10.1006/jmbi.1997.0937)

111. Hammer J, Bono E, Gallazzi F, Belunis C, Nagy Z,
Sinigaglia F. 1994 Precise prediction of major
histocompatibility complex class II – peptide
interaction based on peptide side chain scanning.
J. Exp. Med. 180, 2353 – 2358. (doi:10.1084/jem.
180.6.2353)
112. Marshall KW, Liu AF, Canales J, Perahia B, Jorgensen
B, Gantzos RD, Aguilar B, Devaux B, Rothbard JB.
1994 Role of the polymorphic residues in HLA-DR
molecules in allele-specific binding of peptide
ligands. J. Immunol. 152, 4946 – 4957.

113. Dixon FJ. 1995 Advances in immunology, vol. 66.
New York, NY: Academic press.

114. Hakenberg J, Nussbaum AK, Schild H, Rammensee
HG, Kuttler C, Holzhutter HG, Kloetzel PM,
Kaufmann SH, Mollenkopf HJ. 2003 MAPPP: MHC
class I antigenic peptide processing prediction. Appl.
Bioinform. 2, 155 – 158.

115. Alix AJ. 1999 Predictive estimation of protein linear
epitopes by using the program PEOPLE. Vaccine 18,
311 – 314. (doi:10.1016/S0264-410X(99)00329-1)

116. Parker KC, Bednarek MA, Coligan JE. 1994 Scheme for
ranking potential HLA-A2 binding peptides based on
independent binding of individual peptide side-
chains. J. Immunol. 152, 163 – 175.

117. Vonderheide RH, Hahn WC, Schultze JL, Nadler LM.
1999 The telomerase catalytic subunit is a widely
expressed tumor-associated antigen recognized by
cytotoxic T lymphocytes. Immunity 10, 673 – 679.
(doi:10.1016/S1074-7613(00)80066-7)

118. Lu J, Celis E. 2000 Use of two predictive algorithms
of the world wide web for the identification of
tumor-reactive T-cell epitopes. Cancer Res. 60,
5223 – 5227.

119. Schafer JR, Jesdale BM, George JA, Kouttab NM, De
Groot AS. 1998 Prediction of well-conserved HIV-1
ligands using a matrix-based algorithm, EpiMatrix.
Vaccine 16, 1880 – 1884. (doi:10.1016/S0264-
410X(98)00173-X)

120. Sbai H, Mehta A, DeGroot AS. 2001 Use of T cell
epitopes for vaccine development. Curr. Drug
Targets Infect. Disord. 1, 303 – 313. (doi:10.2174/
1568005014605955)

121. Reche PA, Glutting JP, Reinherz EL. 2002 Prediction
of MHC class I binding peptides using profile motifs.
Hum. Immunol. 63, 701 – 709. (doi:10.1016/S0198-
8859(02)00432-9)

122. Sturniolo T et al. 1999 Generation of tissue-specific
and promiscuous HLA ligand databases using DNA
microarrays and virtual HLA class II matrices. Nat.
Biotechnol. 17, 555 – 561. (doi:10.1038/9858)

123. Manici S et al. 1999 Melanoma cells present a
MAGE-3 epitope to CD4þ cytotoxic T cells in
association with histocompatibility leukocyte
antigen DR11. J. Exp. Med. 189, 871 – 876.
(doi:10.1084/jem.189.5.871)

124. Cochlovius B, Stassar M, Christ O, Raddrizzani L,
Hammer J, Mytilineos I, Zoller M. 2000 In vitro and
in vivo induction of a Th cell response toward
peptides of the melanoma-associated glycoprotein
100 protein selected by the TEPITOPE program.
J. Immunol. 165, 4731 – 4741.

125. Singh H, Raghava GP. 2001 ProPred: prediction of HLA-
DR binding sites. Bioinformatics 17, 1236 – 1237.
(doi:10.1093/bioinformatics/17.12.1236)

126. Guan P, Doytchinova IA, Zygouri C, Flower DR. 2003
MHCPred: a server for quantitative prediction of
peptide – MHC binding. Nucleic Acids Res. 31,
3621 – 3624. (doi:10.1093/nar/gkg510)

http://dx.doi.org/10.1093/bioinformatics/17.4.349
http://dx.doi.org/10.1016/j.neucom.2005.08.005
http://dx.doi.org/10.1110/ps.03373104
http://dx.doi.org/10.1093/nar/gki587
http://dx.doi.org/10.1007/BF00993481
http://dx.doi.org/10.1007/BF00993481
http://dx.doi.org/10.1093/protein/gzn075
http://dx.doi.org/10.1093/protein/gzn075
http://dx.doi.org/10.1214/aoms/1177697196
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1016/0022-2836(86)90289-5
http://dx.doi.org/10.1093/bioinformatics/18.4.617
http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.S46
http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.S46
http://dx.doi.org/10.1016/S0097-8485(02)00051-7
http://dx.doi.org/10.1093/bioinformatics/bth181
http://dx.doi.org/10.1093/bioinformatics/bth181
http://dx.doi.org/10.1006/jmbi.1994.1104
http://dx.doi.org/10.1006/jmbi.1994.1104
http://dx.doi.org/10.1093/bib/3.3.236
http://dx.doi.org/10.1093/bib/3.3.236
http://dx.doi.org/10.1093/bioinformatics/btg1057
http://dx.doi.org/10.1093/bioinformatics/bth917
http://dx.doi.org/10.1093/bioinformatics/bth917
http://dx.doi.org/10.1093/bib/5.2.118
http://dx.doi.org/10.1186/1745-7580-2-3
http://dx.doi.org/10.1186/1745-7580-2-3
http://dx.doi.org/10.1023/A:1019931731519
http://dx.doi.org/10.1023/A:1019931731519
http://dx.doi.org/10.1046/j.1440-1711.2002.01088.x
http://dx.doi.org/10.1093/nar/28.1.222
http://dx.doi.org/10.1006/jmbi.1997.0937
http://dx.doi.org/10.1084/jem.180.6.2353
http://dx.doi.org/10.1084/jem.180.6.2353
http://dx.doi.org/10.1016/S0264-410X(99)00329-1
http://dx.doi.org/10.1016/S1074-7613(00)80066-7
http://dx.doi.org/10.1016/S0264-410X(98)00173-X
http://dx.doi.org/10.1016/S0264-410X(98)00173-X
http://dx.doi.org/10.2174/1568005014605955
http://dx.doi.org/10.2174/1568005014605955
http://dx.doi.org/10.1016/S0198-8859(02)00432-9
http://dx.doi.org/10.1016/S0198-8859(02)00432-9
http://dx.doi.org/10.1038/9858
http://dx.doi.org/10.1084/jem.189.5.871
http://dx.doi.org/10.1093/bioinformatics/17.12.1236
http://dx.doi.org/10.1093/nar/gkg510


rsob.royalsocietypublishing.org
Open

Biol3:120139

12
127. Doytchinova IA, Walshe VA, Jones NA, Gloster SE,
Borrow P, Flower DR. 2004 Coupling in silico and
in vitro analysis of peptide – MHC binding: a
bioinformatic approach enabling prediction of
superbinding peptides and anchorless epitopes.
J. Immunol. 172, 7495 – 7502.

128. Walshe VA et al. 2009 Integrating in silico and
in vitro analysis of peptide binding affinity to
HLA-Cw*0102: a bioinformatics approach to the
prediction of new epitopes. PLoS ONE 4, e8095.
(doi:10.1371/journal.pone.0008095)

129. Doytchinova IA, Guan P, Flower DR. 2006 EpiJen:
a server for multi-step T cell epitope prediction.
BMC Bioinform. 7, 131 – 142. (doi:10.1186/1471-
2105-7-131)

130. Doytchinova IA, Flower DR. 2007 VaxiJen: a server
for prediction of protective antigens, tumour
antigens and subunit vaccines. BMC Bioinform. 8, 4.
(doi:10.1186/1471-2105-8-4)

131. Dimitrov I, Garnev P, Flower DR, Doytchinova I. 2010
EpiTOP: a proteochemometric tool for MHC class II
binding prediction. Bioinformatics 26, 2066 – 2068.
(doi:10.1093/bioinformatics/btq324)

132. Lapinsh M, Prusis P, Gutcaits A, Lundstedt T,
Wikberg JES. 2001 Development of
proteochemometrics: a novel technology for the
analysis of drug – receptor interactions. Biochim.
Biophys. Acta 1525, 180 – 190. (doi:10.1016/
S0304-4165(00)00187-2)

133. Brusic V, Schonbach C, Takiguchi M, Ciesielski V,
Harrison LC. 1997 Application of genetic search in
derivation of matrix models of peptide binding to
MHC molecules. Proc. Int. Conf. Intell. Syst. Mol. Biol.
5, 75 – 83.

134. Kellam P, Holzerlandt R, Gramoustianou E, Jenner R,
Kwan A. 2008 Immunoinformatics viral
bioinformatics: computational views of host and
pathogen. In Immunoinformatics: bioinformatic
strategies for better understanding of immune
function: Novartis Foundation Symp., 254
(eds G Bock, J Goode), pp. 234 – 249. Chichester,
UK: John Wiley & Sons, Ltd.
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