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A B S T R A C T   

Background: Immunogenic cell death (ICD) triggers adaptive immune responses that aid in anti-
cancer therapy. However, the significance of ICD-associated genes (ICDAGs) in clinical applica-
tions and their potential impact on the tumor microenvironment (TME) remains unclear. 
Methods: The TCGA cohort was divided into different ICD clusters using the method of Consensus 
clustering. We assessed the clinical results and TME features of various ICD clusters. GSVA 
quantified the activation of hallmark gene sets. To establish an ICD molecular subtypes-related 
prognostic model (ICDRPM), we performed LASSO Cox regression analysis on the differentially 
expressed genes (DEGs) among ICD subtypes. We evaluated the assessment of risk groups by 
analyzing the proportion of immune cells, the TME, differences in genomic mutation, the efficacy 
of immunotherapy, and drug sensitivity. To enhance the clinical effectiveness of the ICDRPM, a 
nomograph was developed. 
Results: Two distinct molecular subtypes were identified, and changes in ICDRGs were associated 
with clinical outcomes and TME characteristics of patients. A total of 1162 differentially 
expressed genes (DEGs) were obtained from two ICD clusters, and an ICDRPS was then developed 
to predict overall survival (OS). During both internal and external validation, patients classified as 
high-risk exhibited significantly poorer overall survival compared to those classified as low-risk. 
Additionally, the ICDRPS (ICD_score) was identified as an independent prognostic indicator for 
patients with BC, demonstrating excellent predictive performance. Afterward, we constructed a 
dependable nomogram to improve the practicality of the ICD_score. Furthermore, low-risk in-
dividuals showed stronger immunocyte infiltration, higher immune checkpoint expression, and 
higher IPS-PD-1 combined IPS-CTLA4 scores, indicating a greater response to immune checkpoint 
inhibitors (ICIs). Moreover, individuals categorized as having low or high risk exhibited con-
trasting sensitivity to anticancer medications. 
Conclusions: The model constructed for genes related to ICD provided meaningful clinical im-
plications for immunotherapy, and facilitated individualized treatment for BC patients.  
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1. Introduction 

Bladder cancer (BC), a common urological malignancy, ranks 10th among all diagnosed cancers [1]. According to the status of 
muscular invasion, it could be stratified as non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) 
[2]. Despite neoadjuvant and adjuvant chemotherapy, MIBC has an unfavorable outlook and frequently experiences recurrence 
following the initial resection [3]. Recently, the treatment of advanced BC has been transformed by cancer immunotherapy, which 
involves the use of immune checkpoint inhibitors (ICIs) [4,5]. Nevertheless, ICIs only elicit a response in a small fraction of patients 
[4–6]. Increasing evidence has suggested that the therapeutic response of ICIs may be related to the tumor immune microenvironment 
(TIME) [7]. Therefore, it is vital to determine immune-specific biomarkers for targeting immunotherapy in BC. 

The body’s innate defense mechanism against cancer cells is known as anti-tumor immunity. Multiple mechanisms collaborate to 
recognize and eradicate tumors. The following are some of the primary mechanisms involved in the immune response against tumors: 
(1) Immune cells: The immune system consists of specialized cells that can identify and eliminate cancerous cells. The types of cells 
present are T cells, B cells, NK cells, and dendritic cells [8–10]. (2) Tumor-associated antigens (TAAs): TAAs are molecules produced by 
cancer cells that are recognized by the immune system as foreign. Immune cells can then attack cancer cells that display these antigens 
[11–13]. (3) Tumor-infiltrating lymphocytes (TILs): TILs are immune cells that have migrated into the tumor microenvironment and 
can directly attack cancer cells [14–17]. (4) Cytokines: Cytokines are molecules that immune cells produce for signaling purposes. By 
facilitating the attraction of immune cells to the tumor site, they can enhance the immune response [18]. (5) Checkpoint inhibitors: 
Checkpoint inhibitors, also known as immune checkpoint inhibitors, are medications that inhibit specific molecules on immune cells to 
prevent cancer cells from deactivating them. This has the potential to boost the body’s immune system in fighting against cancer [19]. 
By collaborating, these mechanisms function in unison to detect and eradicate malignant cells. Nevertheless, on occasion, cancerous 
cells can elude the immune system’s monitoring mechanisms, resulting in the development and advancement of tumors. Scientists are 
exploring methods to boost the body’s ability to fight against tumors to enhance the effectiveness of cancer treatment. 

Cancer development and progression heavily rely on the tumor microenvironment. Additionally, it impacts the reaction of cancer 
cells toward immunotherapy [20]. These key factors that contribute to tumor resistance to immunotherapy include tumor hetero-
geneity, immunosuppressive cells, inflammatory cytokines, tumor-associated fibroblasts, and genetic alteration [21–24]. Developing 
successful cancer treatments relies heavily on comprehending the mechanisms behind tumor resistance to immunotherapy. Scientists 
are currently exploring methods to overcome these obstacles and improve the immune system’s ability to fight against cancerous cells. 
This involves the creation of novel treatments that focus on the tumor microenvironment, along with the discovery of biomarkers that 
can anticipate the reaction to immunotherapy. 

Immunogenic cell death (ICD) is a kind of antitumor immunity that alters the immunological microenvironments of tumors by 
emitting warning signals, which is beneficial for immunotherapy [25,26]. Numerous studies have explored that ICD was majorly 
triggered and mediated by damage-associated molecular patterns (DAMPs). Chronic exposure to DAMPs may activate autoimmunity 
and advance immune-mediated elimination in the TME [27]. ICD enhances antitumor immune responses by transforming dying cancer 
cells into therapeutic immunizations [28]. Higher ICD propensity tumors may evoke a more robust antitumor immune response, 
helping to impede tumor proliferation. Nevertheless, studies on the clinical applications of ICD are limited. Therefore, further studies 
on BC patients should be explored in the clinical setting to validate the potential of ICD in tumor immunity. In a nutshell, the 
intervention of ICD may provide a novel research direction for the prognosis and therapy of patients with BC. Hence, we developed an 
innovative predictive framework utilizing the ICD molecular classification to forecast overall survival and provide improved treatment 
recommendations for individuals diagnosed with BC. 

2. Materials and methods 

2.1. Public data collecting and processing 

In this study, we retrieve the raw read count of RNA sequencing from 412 individuals diagnosed with Bladder Urothelial Carcinoma 
(BLCA) and 19 healthy bladder tissues. Additionally, we collect mutation data and clinical information of 407 BLCA patients from The 
Cancer Genome Atlas (TCGA) repository. Simultaneously, data on the expression profiles of microarrays (GSE13507 for MIBC (n = 62) 
and NMIBC (n = 103) and GSE32894 for MIBC (n = 51)), along with clinical details of bladder cancer samples, were acquired from the 
Gene Expression Omnibus (GEO) database. To decrease the likelihood of non-cancer-related fatalities, we eliminated 6 patients 
diagnosed with BC who had a survival period of less than 30 days. Supplementary Table 1 displays the clinicopathological features of 
patients with bladder cancer in the TCGA and GEO cohorts. 

2.2. Consensus clustering analysis of ICDRGs 

34 ICDRGs in total (Supplementary Table 2) were extracted from earlier publications [29]. The “ConsensusClusteringPlus” package 
was utilized for performing consensus clustering analysis. Patients with BC in the TCGA dataset were categorized into various clusters. 
The best categorization was determined by analyzing the cumulative distribution function (CDF) curve and the correlations among 
clusters. After that, the “ggplot2” and “Rtsne” R packages were utilized to perform principal component analysis (PCA) and 
t-distributed stochastic neighbor embedding (t-SNE). The prognostic predictive performance of the ICD cluster was assessed using 
Kaplan-Meier curves. The heatmap was created using the R software package called “pheatmap”, and the distinctions were detected 
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utilizing the R package “limma”. 

2.3. Relationship of molecular patterns with TME in BC 

To measure the amount of immune cells infiltrating in various ICD clusters, we conducted single-sample gene set enrichment 
analysis (ssGSEA) using the R package “GSEABase” [30]. Subsequently, the analysis of gene set variation (GSVA) enrichment was 
utilized to uncover the potential biological functions among different subtypes of ICD. 

2.4. Identification of DEGs and functional enrichment analysis 

Further investigation was conducted using genes that exhibited differential expression (DEGs) (with a false discovery rate (FDR) 
below 0.05 and a log|FC| exceeding 1) among various subtypes. For the analysis of DEGs, we utilize the R package called “cluster-
Profiler” to perform Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. 

2.5. Development of the ICD-related prognostic model (ICDRPM) 

Using univariate Cox regression analysis, we acquired the prognostic DEGs linked to ICD clusters from the aforementioned out-
comes. Later, we conducted Lasso Cox regression analysis with the assistance of the R package called “glmnet”. The TCGA training 
cohort was used to develop the ICDRPM after selecting Candidate DEGs through multivariate Cox analysis. The ICDRPM was used to 
calculate the ICD_score for every BC patient. Subsequently, the patients in both the training cohort and validation cohort were 
categorized into low- and high-risk groups according to the median ICD_score. The ICD_score equation is as follows: ICD_score =
∑

coefi ∗ expi. 
The coefficient and expression of each prognostic DEG are represented by coef and exp, respectively. To ascertain the distribution of 

patients in various risk groups, the distribution of patients in different risk groups was determined using the R package called “Rtsne” 
through PCA and tSNE analyses. The disparities in overall survival between these two groups were examined using K-Meier curves. The 
performance of ICDRPM was evaluated by calculating the receiver operating characteristic (ROC) curve with the assistance of the 
“survcomp” and “survivalROC” packages. 

2.6. Clinical significance analysis of the prognostic ICD_score 

We verified the independent prognostic performance of ICD_score by integrating patients’ clinical information and ICD_score for 
uniCox and multivariate Cox analysis, after excluding patients with incomplete data. The operating system of subgroups was estab-
lished through K-M analysis utilizing the “survminer” software package. Moreover, the association between ICD_score and clinical 
characteristics was investigated utilizing the “limma” software package, encompassing factors such as sex, age, grade, and TNM stage. 

2.7. Establishment of a predictive nomogram 

The nomogram was plotted using the “rms” package in conjunction with the patients’ ICD_core and other clinicopathological 
characteristics [31]. To examine the prognostic predictive precision of the nomogram, especially in forecasting the patients’ 1-, 3-, and 
5-year overall survival (OS), the ROC curve was generated. To confirm the accuracy of the column line graphs, calibration curves were 
employed. 

2.8. Assessment of the immune status between the two risk groups 

The CIBERPORT algorithm was employed for calculating the abundance of immune infiltrating cells. To quantify the tumor 
microenvironment, we utilized the ESTIMATE algorithm [32] to compute the stromal score, immune score, and ESTIMATE score 
(which is the sum of stromal and immune scores) for each sample. Furthermore, a comparison was made between the risk groups 
regarding the levels of expression of immune checkpoints that are commonly observed. As an immune checkpoint inhibitors (ICIs) 
response indicator, the Immunophenotypescore (IPS) is positively correlated with tumor immunogenicity; a high IPS indicates an 
effective response to ICIs therapy. To compare the responses to immune checkpoint inhibitors (ICIs) among various risk groups, the 
BLCA cohort’s IPS was obtained from The Cancer Immune Atlas (TCIA) website (https://www.tcia.at/home). 

2.9. Genomic mutation and drug sensitivity analysis 

To illustrate the distribution of gene variations between two risk groups, we utilized the R package called “maftools” to generate a 
waterfall diagram. In light of the significance of tumor mutation burden (TMB) in guiding immunotherapy [33], we additionally 
assessed the TMB score in two different risk categories. Additionally, a stratified survival analysis was conducted to investigate the 
association between TMB and the ICD_score. To assess the ability of ICD_score in predicting clinical drug therapy sensitivity in BC 
patients, we calculated the IC50 values for each patient for 198 drugs using the “oncoPredict” package [34]. 
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2.10. Statistical analysis 

Version 4.2.0 of R was utilized for all statistical analyses. Different group comparisons were conducted using the Wilcoxon and 
Kruskal-Wallis tests. The Kaplan-Meier analysis utilized log-rank tests. The symbols * represent a significance level of P ≤ 0.05, ** 
represent a significance level of P ≤ 0.01, *** represent a significance level of P ≤ 0.001, and **** represent a significance level of P ≤
0.0001. Significance was observed among them, with a statistically significant difference at P < 0.05. 

3. Results 

3.1. Generation of ICD subtypes in BC 

To further determine the correlation between ICD and BC, consensus clustering was performed to stratify BC samples into different 
subtypes based on the expression levels of 34 ICDRGs. We found that the intragroup correlations were the highest and the intergroup 
correlations were the lowest when k = 2 by increasing the clustering variable (k) from 2 to 9. Therefore, 401 patients in the TCGA 
cohort were stratified into two subtypes, namely ICD clusters A (n = 231) and B (n = 170) (Fig. 1A). PCA and t-SNE analyses analysis 
showed the reliability of the grouping (Fig. 1B and C). According to the survival analysis, Fig. 1D shows that the OS of subtype B 
patients was remarkably higher than that of subtype A patients. Furthermore, ICD cluster A exhibited elevated levels of gene expression 
related to ICD and was linked to a more advanced AJCC stage and lower grade (Fig. 1E). 

3.2. Characteristics of TME in different subtypes 

We observed that the percentage of most infiltrated immune cells varied across ICD clusters based on the ssGSEA algorithm 
(Fig. 2A). The levels of activated CD4 T cells, CD56bright natural killer cells, gamma delta T cells, activated dendritic cells, natural 

Fig. 1. Generation of ICD subtypes in bladder cancer patients. (A) Consensus matrix heatmaps at optimal k = 2 and their related regions. (B, C) PCA 
and t-SNE analyses reflected huge differences in the transcriptome between the two ICD subtypes. (D) The overall survival curve of bladder cancer 
patients in two ICD subtypes. (E) The heatmap visualized the correlation between the clinical features of patients and two ICD subtypes. 
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killer T cells, natural killer cells, neutrophils, plasmacytoid dendritic cells, regulatory T cells, T follicular helper cells, and Type 2 T 
helper cells of subtype A were significantly higher compared to subtype B. On the other hand, CD56dim natural killer cells and mast 
cells of subtype A were noticeably lower than subtype B. Furthermore, we conducted GSVA analysis to compare the disparities in ICD- 
related enrichment pathways between the two subgroups. The analysis revealed that cell cycle, pancreatic cancer, colorectal cancer, 
and metabolism were enriched in ICD cluster A (Fig. 2B). The findings suggested that various categories of ICD had distinct impacts on 
the physiological functioning of individuals diagnosed with BC. 

3.3. The potential biological function of DEGs 

To examine the possible biological characteristics of ICD subtypes, we acquired 1162 DEGs associated with ICD between cluster A 
and cluster B through the utilization of the “limma” package. Following this, we conducted GO and KEGG analyses. According to the 
GO terms, the differentially expressed genes (DEGs) were predominantly enriched in RNA splicing, focal adhesion, and binding to 
cadherin (Fig. 2C). KEGG analysis showed significant enrichment in cell cycle, focal adhesion, antigen processing and presentation, 
cellular senescence, glycolysis/gluconeogenesis, etc (Fig. 2D). 

3.4. Establishment and validation of the ICDRPM 

Using uniCox analysis, we assessed the predictive significance of DEGs linked to ICD subtypes in the training set and identified a 
total of 219 genes associated with prognosis at p < 0.05 (Supplementary Table 3). Subsequently, LASSO and multiCox analyses for 
these prognosis-related DEGs were performed to develop an optimal prognostic model (Fig. 3A–C). Finally, 6 genes (DAD1, ANXA5, 
PRPF19, PSMB9, CDC42EP5, and NOTCH3) were obtained in accordance with the Akaike Information Criteria (AIC) values. The 

Fig. 2. Characteristics of TME and biological function analysis. (A) Correlation between the two subtypes and 23 human immune cell subgroups. (B) 
GSVA analyses of the two ICD subtypes. (C) GO enrichment analysis of DEGs between two distinct subtypes. (D) KEGG enrichment analysis of DEGs 
between two distinct subtypes. 
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ICD_score was constructed using the findings from multiCox analysis. 
ICD_score = (0.001160 * expression of DAD1) + (0.002261 * expression of ANXA5) + (0.003111 * expression of PRPF19) +

(− 0.005631 * expression of PSMB9) + (− 0.003542 * expression of CDC42EP5) + (0.004057 * expression of NOTCH3). All individuals 
were categorized into low- or high-risk groups based on the median ICD_score, and OS in the training cohort was compared. As the 
ICD_score increased, the patients’ OS decreased and the mortality rate showed a gradual increase (Fig. 3D). In the training cohort, 
patients at high risk exhibited poor overall survival outcomes (Fig. 3E). The patients in the two risk groups demonstrated a strong 
ability to be distinguished according to the results of PCA and t-SNE analyses (Fig. 3F and G). In the training cohort, the model 

Fig. 3. Establishment of the ICDRPM in the TCGA training cohort. (A) The changing track of the Lasso regressed independent variable, the abscissa 
represented the logarithm of the independent variable lambda, and the ordinate represented the coefficient of the independent variable. (B) The 
confidence interval under each Lambda of Lasso. (C) Multivariable Cox regression analysis of OS. Data are presented as hazard ratio (HR) ± 95% 
confidence interval [CI]. (D) The distribution of ICD_score and survival status of bladder cancer patients with increasing ICD risk scores. (E) Kaplan- 
Meier curve of OS according to the ICDRPM in the TCGA cohort. (F, G) PCA and t-SNE analyses of high and low-risk groups. (H) ROC curve for 
predicting OS at 1, 3, and 5 years. 

Fig. 4. Validation of the ICDRPM in the GSE13507 cohort. (A) The distribution of ICD_score and survival status of bladder cancer patients with 
increasing ICD risk scores. (B) PCA analysis of high and low-risk groups. (C) Kaplan-Meier curve of OS according to the ICDRPM in the validation 
cohort. (D) ROC curve for predicting OS at 1, 3, and 5 years. 
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accurately predicted patients’ OS at 1, 3, and 5 years with AUC values of 0.748, 0.727, and 0.715, respectively, as shown in Fig. 3H. 
The ICD_score in the GSE13507 BCE cohort (including NMIBC and MIBC) and GSE32894 MIBC cohort was calculated using the 

identical coefficient and formula to ensure the validity of the signature. The TCGA training cohort stratified all BC patients into low- 
and high-risk groups using identical cut-off values. Likewise, as the ICD_score rose, the patients’ overall survival declined, and the 
mortality rate steadily rose in both GSE13507 and GSE32894 groups (Fig. 4A and B). From PCA, the ICD_score exhibited good 
discriminating power with two distinct clusters (Fig. 4C and D). In both GSE13507 and GSE32894 cohorts, the Kaplan-Meier analysis 
demonstrated that patients with a low risk had superior overall survival compared to patients with a high risk (Fig. 4E and F). 
Additional examination of ROC curves verified the strong predictive ability of the signature in both the GSE13507 and GSE32894 
groups (Fig. 4G and H). When combined, the ICDRPM demonstrated robust efficacy in predicting survival in the TCGA training dataset 
as well as two GEO validation datasets. 

Afterward, we chose six immune signatures that had been previously published for bladder cancer to compare with our signature 
(Fig. S1). According to the results, the area under the curve (AUC) of our signature was considerably better than that of other clinical 
features (Fig. S1). Additionally, our signature surpassed the performance of the other six immune signatures previously published. 

3.5. Clinical correlation analysis of the prognostic ICD_score 

To assess the autonomous predictive significance of ICD_score (Fig. 5A and B), we conducted both uniCox and multiCox exami-
nations. According to the forest plot, the ICD_score was identified as a separate prognostic determinant. To calculate the ICD_score 
within the subgroups, we additionally performed survival analysis on the subgroups. Individuals were categorized based on different 

Fig. 5. Clinical correlation analysis of the prognostic ICD_score. (A, B) Univariate and multivariate Cox regression analyses of ICD_score and other 
clinical variables. Data are presented as hazard ratio (HR) ± 95% confidence interval [CI]. (C–H) Kaplan-Meier curve of OS according to the 
ICDRPM in the TCGA subgroup with age younger than 65 (C), age older than 65 (D), female (E), male (F), stage III-IV (G), and high-grade (H). (I, J) 
Association of ICD_score with patients’ age (I) and TNM stage (J). 
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clinical traits. According to the data presented in Fig. 5C–H, individuals classified as low-risk had longer lifespans across different age 
groups (≤65 or > 65 years), gender groups (female or male), stage III-IV, and high-grade groups when compared to those classified as 
high-risk. Furthermore, to investigate the connection between ICD_score and clinical characteristics, we examined the association 
between clinical data and observed that older individuals exhibited an elevated ICD_score (Fig. 5I). Furthermore, a greater risk score 
was observed in the advanced TNM stage (Fig. 5J). 

3.6. Construction and evaluation of nomograph 

A line graph was drawn depicting the factors involved in the construction of the nomogram, which included ICD_score, stage, and 
age. The line graphs could predict the 1-, 3- and 5-year OS of patients with BC based on the total score (Fig. 6A). The ROC curve reflects 
the high accuracy of the line graph in predicting OS (Fig. 6B). The calibration curves showed strong fitting between predictions and 
observations (Fig. 6C). The findings indicate that the utilization of ICD_score in conjunction with additional clinical factors can greatly 
enhance the capacity to forecast patient prognosis. 

3.7. Assessment of TIME and immunotherapeutic response in distinct groups 

Distinct ratios of immune cells were observed in the two risk groups (Fig. 7A–J). The ICD_score exhibited a negative correlation 
with CD8+ T cells, activated dendritic cells, B cells naïve, and plasma cells. Conversely, M0 and M2 Macrophages, Neutrophils, Eo-
sinophils, T cells regulatory, and activated mast cells showed a positive correlation with the ICD_score. Later on, it was discovered that 
the immune score of the low-risk category showed a clear tendency to rise in comparison to the high-risk category (Fig. 7K). These 
results demonstrated that ICDRPM could accurately predict TIME in the different risk populations. 

ICI is regarded as a significant advancement in the field of cancer therapy. Consequently, we conducted a comparison of 35 
prevalent ICPs in two distinct risk categories, including PD-1, PD-L1, and TNFSF families. The expression levels of these ICPs exhibited 
notable variations between the two risk subgroups (Fig. 7L). In the assessment of IPS for patients in the risk groups, we discovered that 
those classified as low risk exhibited elevated IPS scores when treated with anti-PD-1 therapy, anti-CTLA4 therapy, or a combination of 
both (Fig. 7M − P). 

3.8. Mutation and drug susceptibility analysis 

Fig. 8A and B displayed the genomic mutation landscape of the two risk categories in TCGA-BLCA. According to the data presented 
in Fig. 8A and B, the group with the highest score exhibited elevated mutation rates. From the low-risk to the high-risk groups, the 
TP53 gene mutation rates showed a more notable increase (42% vs. 54%; Fig. 8A and B) compared to other genes. After conducting 
additional analysis, we observed that the TMB of the high-risk group was comparatively lower than that of the low-risk group (Fig. 8C). 
Afterward, we categorized the patients into two TMB groups based on the TMB score. According to Fig. 8D, the group with a high TMB 
exhibited a greater rate of survival compared to the group with a low TMB. Fig. 8E illustrated that patients with a low ICD_score had a 
significantly better OS compared to those with a high ICD_score, regardless of their TMB level. 

To investigate the potential clinical application of the two risk groups, the GDSC database was used to predict the IC50 value of 198 
drugs, indicating their sensitivity to medication. Of which 84 drugs exhibited significant differences between the two risk groups. 
Patients with high ICD_score may have positive responses to Cisplatin, Docetaxel, Paclitaxel, Talazoparib, and Vinblastine, while 
patients with low ICD_score may have positive responses to Selumetinib, Mitoxantrone, and Sorafenib, etc (Fig. 8F-M). 

Fig. 6. Construction and evaluation of nomograph. (A) Development of a nomogram by combining ICD_score with age, and TNM stage to predict 
the survival probability. (B) ROC curves of the nomogram. (C) Calibration plots of the nomogram. 
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4. Discussion 

ICD, which was identified in recent decades, sheds light on the pertinent conversation between dying malignant cells and adaptive 
immunocytes in cancer treatment [35]. ICD modifies the tumor immunological microenvironment by emitting danger signals or 
DAMPs, which may benefit immunotherapy [35]. Consequently, ICD-related biomarkers may aid in identifying BC patients who may 
benefit from antitumor therapy. At present, most studies focus on one or two ICDRGs or one type of immune cell. However, the 
characteristics of TMEs and the overall impact of the combined action of numerous ICDRGs have not been thoroughly explained. 
Hence, the objective of this research was to systematically investigate ICDRGs and develop a precise and user-friendly clinical scoring 
framework using ICD molecular subtypes. This framework will assist in accurately forecasting the prognosis of individuals with BC and 
providing personalized treatment recommendations. 

In the current research, we assessed the manifestation of 34 ICDRGs in BC and healthy tissues, resulting in the categorization of 
patients into two distinct molecular subcategories. The two subtypes exhibited notable variations in clinical outcomes and immune 
infiltrating cell. Furthermore, there is a strong correlation between the differentially expressed genes (DEGs) of the two ICD subtypes 
and the pathways associated with immunity and tumors. Next, we built a robust ICDRPM and a quantitative nomogram that 

Fig. 7. Assessment of tumor immune microenvironment and immunotherapeutic response in distinct groups. (A–J) Correlation of ICD_score with 28 
immune cells. (K) Comparison of immune score in high-risk and low-risk patients. (L) Differential expression of immune checkpoint molecules in the 
high- and low-risk groups. (M − P) Differential levels of IPS with CTLA-4 (pos/neg)/PD-1 (pos/neg) in different score groups. pos: positive, neg: 
negative. IPS: immunophenoscore. 
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significantly improves its performance. The high and low ICD_score groups exhibited notable variations in clinical characteristics, 
prognosis, tumor microenvironment (TME), immune checkpoint expression, mutation profile, response to immunotherapy, and 
sensitivity to drugs. The ICDRPM allows for more precise forecasts and categorizations of patients’ prognoses, which hold immense 
importance in clinical practice and also showcase individual treatment results. 

BC is a type of cancer that triggers an immune response due to its high tumor mutation burden (TMB) and the presence of neo-
antigens [36]. Additionally, it interacts with immune cells in the tumor microenvironment (TME). The prognosis of BC patients is 
significantly influenced by numerous immune cell types in the TME [37,38]. Therefore, we examined the correlation between 
ICD_score and the immune landscape and found that the high-risk category displayed a characteristic tumor microenvironment with 
immunosuppression. In particular, there was a notable decrease in the prevalence of CD8+ T cells and activated dendritic cells among 
the high-risk group, whereas there was an increase in the prevalence of Tregs, M0, and M2 macrophages. Moreover, the immune score 
of the high-risk cohort was significantly inferior to that of the low-risk cohort. Favorable overall survival was observed in correlation 
with an augmentation of infiltrating CD8+ T cells [7]. B cells can inhibit cancer progression by killing cancer cells directly, secreting 
immunoglobulins, or promoting T cell response [39]. In contrast, Tregs play a crucial role in preserving immune tolerance by not only 
suppressing effector cells in the tumor but also serving as vital participants in the peritumor, stroma, vasculature, and lymphatics to 
restrict anti-tumor immune responses [40]. Additionally, M0 macrophages can transform into M2 macrophages, thereby facilitating 
immune evasion [41]. Furthermore, mast cells play a crucial role in controlling both inflammation and immunosuppression [42]. In 
addition to inhibiting the immune response against tumors through the release of anti-inflammatory cytokines, they also can promote 
tumor growth by controlling the formation of new blood vessels [43,44]. The low-risk subgroup showed an increased presence of 
immune cells infiltrating the tumors, leading to their classification as “hot tumors” and indicating significant potential for fighting 
cancer. The presence of an immunosuppressive TIME in the high-risk subgroup of patients could potentially account for the signifi-
cantly poorer survival rate observed in high-risk BC patients. 

Clinical outcomes and response to immunotherapy have been demonstrated to be associated with TMB. Multiple research studies 
have indicated that elevated TMB demonstrates efficacy in forecasting rates of objective remission and progression-free survival; 
however, its capacity to predict overall survival is restricted [45]. Through our research, we discovered a strong correlation between 
TMB and the ICD_score. By incorporating both TMB and the score into a comprehensive predictive model, we were able to enhance 
survival prognosis, thereby offering valuable insights for immunotherapy guidance. The success of immune-checkpoint blockade has 
greatly contributed to the effectiveness of immunotherapy as a significant clinical approach in cancer treatment. The safety and 
effectiveness of some ICIs have been confirmed by clinical studies [46,47]. During this investigation, we noticed a notable disparity in 
the manifestation of PD-L1 and PD-1 among the various rating categories. The IPS demonstrated improved treatment outcomes in the 
low score category irrespective of the PD-1 and CTLA-4 status, offering a valuable reference for immunotherapy. 

Taken together, we systematically explored ICDRGs and established a novel clinical scoring system that would facilitate clinical 
application, especially in combination with clinical features. These findings may contribute to further understanding of the role of 
ICDRGs in BC progression as well as drug treatment responses, which highlights the potential of this model in prognosis prediction and 
targeted therapy of BC. However, there are several shortcomings in this study. First, the data utilized in this research are obtained from 
publicly accessible sources, and it is necessary to validate them further by incorporating data from a prospective and multicenter study. 
Second, the interaction between the genes involved in constructing the model and tumor immunity needs to be tested by experimental 
investigations in vitro and in vivo. Third, several key clinical variables, such as surgery and neoadjuvant chemoradiotherapy are not 
available, which may affect prognosis and the prognostic state of immune response. 

5. Conclusions 

We developed and verified a robust and potent prognostic signature associated with ICD to anticipate the survival results and 
immunotherapy response in BC patients. This signature also aids in optimizing individualized therapy, rendering it highly valuable for 
clinical application and translation. 
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