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Abstract

Motivation: How to partition a dataset into a set of distinct clusters is a ubiquitous and challenging

problem. The fact that data vary widely in features such as cluster shape, cluster number, density

distribution, background noise, outliers and degree of overlap, makes it difficult to find a single al-

gorithm that can be broadly applied. One recent method, clusterdp, based on search of density

peaks, can be applied successfully to cluster many kinds of data, but it is not fully automatic, and

fails on some simple data distributions.

Results: We propose an alternative approach, clusterdv, which estimates density dips between

points, and allows robust determination of cluster number and distribution across a wide range of

data, without any manual parameter adjustment. We show that this method is able to solve a range

of synthetic and experimental datasets, where the underlying structure is known, and identifies

consistent and meaningful clusters in new behavioral data.

Availability and implementation: The clusterdv is implemented in Matlab. Its source code, together

with example datasets are available on: https://github.com/jcbmarques/clusterdv.

Contact: michael.orger@neuro.fchampalimaud.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A notable feature in data is that the points, rather than being evenly

distributed, are more densely clustered in some regions of space than

others. Unsupervised computational methods that can automatically

determine the number of clusters in data and define their natural

boundaries are useful to identify unsuspected natural phenomena

and are widely used across many disciplines of science. One of the

aims of machine learning is to develop general purpose clustering

heuristics that function automatically for the most diverse types of

data possible and hence many clustering strategies have been pro-

posed (Wiwie et al., 2015; Xu and WunschII, 2005); however, there

is no universal consensus on the definition of a cluster or on which

clustering algorithm is the most effective (Jain et al., 1999).

Some widely used clustering strategies, as e.g. k-means (Lloyd,

1982), k-medoids (Kaufmann and Rousseeuw, 1987), mixture mod-

els, and affinity propagation (Frey and Dueck, 2007), depend on

assumptions about the cluster shape, and are therefore not suitable

for detecting clusters with arbitrary shapes. Spectral clustering meth-

ods that use the eigenvectors of the similarity matrices (Donath and

Hoffman, 1973; Shi and Malik, 1997), are able to detect clusters of

arbitrary shape and a completely automatic version, self-tuning

spectral clustering (ST-spectral), provides a means to select the opti-

mal number of clusters (Perona and Zelnik-Manor, 2004).

However, these methods can be sensitive to noise or clusters distrib-

uted over multiple scales (Zhang et al., 2016). Density-based

methods, such as density-based spatial clustering of applications

with noise (DBSCAN), OPTICS and density peak clustering (clus-

terdp), also allow for clusters with arbitrary shape to be discovered

(Ankerst et al., 1999; Ester et al., 1996; Rodriguez and Laio, 2014),

but still require user input to set parameters, or partition the result-

ing dendrogram. Here we focus on one of these methods, clusterdp,

which is fast, resilient to noise and captures clusters of arbitrary

shapes. It also performed well in classifying faces from images and,

in a meta-study of clustering methods, to identify clusters in

VC The Author(s) 2018. Published by Oxford University Press. 2125

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35(12), 2019, 2125–2132

doi: 10.1093/bioinformatics/bty932

Advance Access Publication Date: 8 November 2018

Original Paper

http://orcid.org/0000-0002-9763-8902
https://github.com/jcbmarques/clusterdv
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty932#supplementary-data
https://academic.oup.com/


biomedical data (Wiwie et al., 2015). However, in many cases, the

output of clusterdp is critically dependent on the parameter that is

used for estimating the local densities (dc). Additionally, as we also

show here, the clusterdp heuristic fails when applied to certain dis-

tributions with clearly distinguishable clusters.

We designed an alternative approach that is both more general

and allows cluster selection to be fully automated. Our method,

which we call clustering by density valleys (clusterdv), is based on

similar principles to clusterdp, but differs in several key elements.

We use an adaptive Gaussian density estimator to compute the local

densities, in common with other variants of the method (Wang and

Xu, 2017), and we define point separation based on how deep a

density valley had to be traversed to connect pairs of points.

We developed a robust rule to identify, and to hierarchically order,

putative cluster centers. Last, we implemented methods, based on

statistical comparison with reference distributions and the largest

jump within the cluster hierarchy, to select the number of clusters

automatically.

We validated clusterdv by applying it, without parameter tuning,

to a wide variety of artificial and real-world test data with known

ground truth cluster identity. We show that clusterdv can identify

the correct number of clusters very reliably, including in distribu-

tions that cannot be clustered using clusterdp. The method also

assigns points to the correct clusters with high accuracy. Finally, we

show that it allows robust identification of behavioral categories in

experimental data from larval zebrafish. Altogether clusterdv is an

automatic unsupervised method for density cluster identification

that achieves state of the art performance over a wide range of types

of data, making it an ideal tool to discover structure in real world

data where the ground truth is not known.

2 Materials and methods

2.1 Density valley clustering algorithm
The core algorithm for clusterdv is as follows:

i. Let xi be a point in the dataset and q(xi) the value of the kernel

density estimation (KDE) at that point.

ii. The density valley depth on a line between two points,

D(xi, xj), is defined as the minimum value of the KDE sampled

at a number ðgÞ of discrete intervals on a line from xi to xj: So,

Dðxi; xjÞ ¼ min
n2N: N¼ 0; 1=g ;

2=g ... 1f g
qðð1� nÞ � xi þ n � xjÞ.

iii. The density valley, D(p), along a path p containing n unique

points is defined as the smallest density valley between any pair

of consecutive points. D pð Þ ¼ min
m2N: N¼f1;2;3...n�1g

Dðxm;xmþ1Þ.
iv. The path valley between two points, P(xi, xj), i 6¼ j, is defined as

the largest D(p) for all paths that connect xi and xj

(PijÞ: P xi; xjð Þ ¼ max
p2Pij

DðpÞ.
v. The maximum density valley for point x; V(x), is defined as the

highest path valley connecting to any point of higher density.

VðxÞ ¼ max
y: qðyÞ>qðxÞ

Pðx; yÞ.

vi. The Separability Index, SI(xi), for all points xi in the dataset, is

calculated as SIðxiÞ ¼ 1� VðxiÞ=qðxiÞ.
vii. The points are re-ordered in descending order of SI(x). The

number of cluster centers is selected as argmax
n: 1�n>nPts

SIðxnÞ �

SIðxnþ1Þ (‘max SI jump criterion’; nPts ¼ number of data points

with SI>0).

For a detailed description of clusterdv see Supplementary

Material.

2.2 Clusterdv determination of number of clusters and

point assignment
Data points with positive SI value were considered ‘putative’ cluster

centers. Their SI value was used to construct dendrograms that re-

flect the ranking of cluster centers. For all datasets we computed

three different criteria for determining a threshold SI value at which

to cut the dendrogram. For the ‘max SI jump’ we take the largest

jump in the SI between successive cluster centers. Alternatively, we

take the 95th percentile of the second highest SI value from 100 ref-

erence distributions computed using the ‘simplex’ or the ‘onion’

methods (see Supplementary Material for details). All cluster centers

with higher SI values than each of these criteria formed the associ-

ated solutions for each dataset. For all datasets the non-cluster cen-

ter points were assigned, sequentially and in decreasing density

order, to the same cluster of the nearest neighbor of higher density

(Rodriguez and Laio, 2014).

See Supplementary Material for a detailed description of all the

methods used.

3 Results

3.1 Identifying limitations of density peak clustering
The clusterdp algorithm relies in calculating two quantities: the local

density (q) at each point and the minimum distance from each point

to a point with higher q (d) (Rodriguez and Laio, 2014). Both of

these values depend on the choice of dc, a free parameter in the clus-

tering method which determines the spatial scale used to calculate

local densities. Since clusterdp requires the user to select a number

of cluster centers based on the distributions of q and d, we developed

an automated heuristic for this choice that we named automatic

clusterdp (see Supplementary Material and Supplementary Fig. S1).

In most cases, this method, when applied to datasets for which the

ground truth was available, performed as well or better than human

observers in selecting the correct number of clusters (Supplementary

Fig. S2).

We took advantage of the good performance of automatic clus-

terdp to sample the dc parameter for eight datasets used in the ori-

ginal study and found that the results of clusterdp are highly

dependent on dc, for all datasets we tested, and there was no single

value or range of values that consistently gave correct results

(Supplementary Fig. S3).

Another potential pitfall of clusterdp is that, if d uses Euclidean

distance as its metric, it will tend to favor density peaks that are far

apart within large dense regions of points over nearby peaks that are

clearly separated by an empty region of space. Arguably, though,

the latter is a more salient feature of the data. To illustrate this

point, we constructed a synthetic dataset, hereinafter called ‘exclam-

ation mark 1’, that consists of groups of points drawn from two

spatially uniform, rectangular distributions: an isolated group of

low-density points, very close to an extended high-density region

(Fig. 1A). This situation is commonly observed in real datasets, for

example the zebrafish swimming data described later, where groups

may be very unevenly represented and the more spatially restricted

cluster has much lower density. The clusterdp algorithm is unable to

find the low-density cluster without also splitting the single dense

cluster into several parts (Fig. 1B). This is due to the fact that clus-

terdp ranks cluster centers according to the values of d and local

density, making it impossible, in case of the ‘exclamation mark 1’

example, for a user or an automatic algorithm to select the low-

density cluster center (red dot) without including first the two cluster

centers that exist in the high-density cluster (cyan and blue dots)
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(Fig. 1B). This problem is exacerbated by the fact that the originally

proposed method for assigning points to clusters does not correctly

partition the data, even when the cluster centers correctly identify

both groups (Fig. 1B, third panel, dark blue points in the corner of

the lower cluster). This failure to rank the cluster centers correctly

does not occur in a dataset with similar characteristics, but in which

the smaller cluster has higher density (Fig. 1C and D). To verify that

this limitation was not dependent on parameter choice, we systemat-

ically varied dc and plotted the locations of cluster centers for all

cases where the correct number (2) was found. In all such cases, for

the “exclamation mark 1” dataset, the cluster centers were both

found in the larger cluster (Fig. 1E). The opposite result was

observed for the ‘exclamation mark 2’ dataset where, if the algo-

rithm found the correct number of clusters, they always spanned the

two regions (Fig. 1F). These results suggest two key limitations of

clusterdp: a sensitive dependence on parameter choice, and a failure

to capture correctly the structure in certain simple data

distributions.

3.2 The clusterdv algorithm
We set out to create a new clustering heuristic, based on the working

principle of clusterdp, that was robust, general and automatic. That

is to say, it should give repeatable results across many different data

distributions, without the need for parameter fitting and should

select the most suitable numbers of clusters in which to partition the

data without human intervention. First, to calculate the local density

at each point we used an adaptive Gaussian-based kernel density es-

timate (Breiman et al., 1977), with the bandwidth at each point

based on a heuristic that was applied identically, without any par-

ameter tuning, to all datasets in this report (Fig. 2A and B). Second,

we defined the separation of pairs of points in a way that aimed to

capture a notion of distinct clusters. Specifically, two points should

be considered well separated if you have to pass through a region of

low density to get from one to the other, regardless of how close to-

gether they are in space. This separation was quantified by finding

the path connecting two points, within a graph spanning the whole

dataset, along which the minimum density was highest. We first esti-

mated the minimum density along lines defined by single edges in

the graph by sampling at discrete intervals from the previous kernel

density estimate (Fig. 2C). After, we searched for the path joining

each pair of points, following any of these lines, which dropped the

Fig. 1. Density peak clustering fails with uneven clusters. (A, C) The ‘exclam-

ation mark 1 and 2’ datasets were drawn from two-part probability distribu-

tions (left). White represents 2.5-fold higher probability than gray and black is

probability 0. (B, D) Manual clusterdp applied to the ‘exclamation mark’ data-

sets. Left to right: clusterdp decision plot (q versus d) of the distribution in (A,

C). Clusterdp solutions of data in (A, C) by picking the two or three cluster cen-

ters with highest c (d*q). Density profile of data in (A, C) (dc ¼ 9%). (E–F) Left:

Number of cluster centers picked by automatic clusterdp in function of dc

value for the ‘exclamation mark 1’ (E) and the ‘exclamation mark 2’ (F) data-

sets. Red outlines mark the ground truth (two clusters). Right: the cluster cen-

ters obtained by automatic clusterdp whenever the two-cluster solution was

selected. Cluster centers and points are color coded blue-cyan-red in order of

decreasing c (d*q) as in legend

Fig. 2. The clusterdv method. (A) Point distribution drawn from a mixture of

two gaussians. (B) Local densities are calculated using an adaptive gaussian

density estimator. (C) Density profiles along straight lines between pairs of

points are calculated, in a set of discrete steps. (D) The path valley is the high-

est minimum density along any path that connects one point to another, via

this set of straight lines (path shown by white point). For each point, the max-

imum density valley depth is the highest such value between that point and a

point of higher density. (E) Maximum density valley depth versus local dens-

ity (q). (F) SI versus local density (q). Paths that don’t have a dip in density can

give negative values because the two points are in the same cluster and the

end points are not considered. Blue line is a manually selected cutoff that

selects the ‘real’ cluster centers (cyan and clue circles). Gray circles are ‘spor-

adic’ cluster centers that were not selected. (G) Dendrogram computed from

SI. (H) Cluster assignment of the point distribution in (A) obtained by choos-

ing the cluster centers with higher SI value than the blue line in (F, G). (I–J)

Left to right: distribution, clusterdv decision plot (SI versus q), SI dendrogram,

and two and three cluster solutions for the exclamation mark 1 (I) or 2 (J)

datasets. Cluster centers and points are color coded blue-cyan-red in order of

decreasing SI value as shown in legend. Black points mark cluster centers in

distributions
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least in density along its length (density paths, Fig. 2D). To find such

paths we used the single link algorithm (Sibson, 1973) on the previ-

ously calculated density lines. Therefore, the value of the ‘density

path’ between two points is the lowest density you have to pass

through to get from one point to the other. It should be possible to

join two points that lie in the same unimodal cluster by a path whose

density profile is always higher than the lower density point.

Therefore, a point from which you cannot get to a higher density re-

gion without first passing through a region of lower density, is at a

local maximum, and should be considered as a potential cluster cen-

ter. So, for each point, we calculated the highest density path value

between that point and any point of higher density (maximum dens-

ity valley depth) (Fig. 2D).

Figure 2E shows this maximum density valley depth, plotted

against the local density at each point. However, in order to be sen-

sitive to clusters of very different densities, we should not consider

the absolute value of the density drop, but rather how low it is rela-

tive to the associated peak. We chose to consider a low-density

peak, separated by an empty region from the rest of the data, as a

more salient feature of a dataset than a small dip separating two

very high-density peaks. To capture this distinction, we calculated a

SI by first dividing the maximum density valley depth of each point

by its local density, in effect normalizing the drop of density to

the density at each point, and then subtracting that value from

1 (see Section 2 for formula). A SI value of 1 indicates that there is a

region of zero density between a point and any higher density re-

gion, and a negative value indicates that a point has a path to a

denser point that never dips below the starting density and is there-

fore not a cluster center (Fig. 2F). All putative cluster centers (points

with positive SI) can now be ranked according to their SI. These

points are arranged in a hierarchical tree by connecting each new

center point with the branch it would be assigned to, if the clusters

were assigned without using that point (Fig. 2G). This SI tree reflects

the hierarchical organization of clusters that exist in data. For data-

sets with complex clustering structure, e.g. with nested groups of

clusters (Supplementary Fig. S4), the SI tree will capture this organ-

ization through groups of nodes at different levels. The total number

of clusters is determined by distinguishing from the pool of putative

cluster centers, which ones are ‘real’ and which arise due to stochas-

tic variations in the density estimation of data with finite sample

size. In practice, the selection of ‘real’ clusters is achieved by setting

a cutoff on the SI values (blue line in Fig. 2F and G). We applied

clusterdv to the ‘exclamation mark’ datasets and confirmed that the

SI value ranks cluster centers correctly for both datasets (Fig. 2I and

J). Additionally, if more than two cluster centers are selected

(red lines in Fig. 2I and J), the data are partitioned in a manner that

respects, as much as possible, the boundaries of the two true clusters

(right panels of Fig. 2I and J), unlike clusterdp (right panels of

Fig. 1B). In summary, clusterdv does not need any parameter opti-

mization to work and reports the ranking of cluster centers correct-

ly, even in difficult cases such as the ‘exclamation mark 1’ dataset.

3.3 Validation of clusterdv
Clusterdv is able to solve datasets with uneven clusters where the

tightest cluster has lower density, but can the correct SI cutoff be

determined automatically and does the method give correct solu-

tions for data with other characteristics? To answer these questions,

we applied clusterdv to 33 artificial and real-world datasets with

known ground truth that were designed to present varying difficult

challenges for clustering analysis (Supplementary Table S1). Three

automatic criteria were tested to determine at which level the

SI dendrogram should be cut and decide the number of clusters in

each set. The more conservative method was to choose the largest

jump in SI in the cluster tree. Alternatively, we estimated the SI dis-

tribution of clusters identified by chance in control datasets with

similar density profiles, but with only a single peak in the underlying

distribution (‘onion’) or similar spatial extent, but smoothing out

variations in density (‘simplex’) (Supplementary Figs S5 and S6) and

selected all clusters above these thresholds (see Supplementary

Material). The three methods gave the same correct solution for 13

datasets, and, with the exception of the Olivetti face dataset

(Samaria and Harter, 1994), spanned a range of cluster numbers

encompassing the known correct value. The max SI jump, in every

case, gave a higher SI cutoff than the other criteria and was able to

solve correctly 29 of the 33 datasets (Fig. 3, for more examples see

Supplementary Fig. S7). There were only four datasets for which the

SI jump criteria failed to find the exact solution, and in three of

those it identified a number of clusters just one step away from the

correct answer. The methods based on reference distributions usual-

ly identified more structure, especially in the real-world datasets, as

might be expected, but still also had high success rates

(Supplementary Table S1). In the case of the Olivetti face dataset

(Samaria and Harter, 1994), the clusters were fractured in the fea-

ture space that was used (Sampat et al., 2009), so it may not be pos-

sible to improve on this result without a different representation of

the data. Nevertheless clusterdv achieved higher success (Olivetti, SI

jump, Fowlkes Mallows Index [FMI]¼0.77 and Supplementary Fig.

S8), with much larger true associations for a given false positive

Fig. 3. Clusterdv gives the correct solution for a wide range of datasets. (A)

(Gionis et al., 2007), (B) (Rodriguez and Laio, 2014), (C) (Chang and Yeung,

2008), (D) (Fränti and Virmajoki, 2006). Left panels: cluster assignment by

clusterdv using the SI jump criteria. Central panels: local densities calculated

using adaptive Gaussian estimator. Right panels: SI dendrograms. Lines

show cutoff criteria according to legend
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rate, than previously published methods (Rodriguez and Laio, 2014)

(78% at a false alarm rate of 1, versus �65% previously reported

for clusterdp). Another notable feature of these results is that the

correct solution almost always existed within the dendrogram of

cluster centers, and in 31 out of 33 cases could be obtained by cut-

ting at a single level (shown in best cutoff column of Supplementary

Table S1). In the case of the modified national institute of standards

and technology (MNIST) handwritten number dataset (LeCun et al.,

1998), the 10-digit solution existed in the tree, but could not be

found using a single SI cutoff, without also finding multiple clusters

within digit groups. The ‘correct’ solution could however be found

by choosing the most balanced partition into 10 clusters, and this

could be used as a classifier which gave a 5.9% error rate for new

data. This performance is comparable with the best unsupervised

methods described for MNIST, that also use information about the

construction of the dataset, but not individual data labels (5% error

rate in Chen et al., 2016) (Supplementary Fig. S9). Importantly, in

all cases for which the correct number of clusters was identified, the

assignment of cluster centers always matched the ground truth, and

the assignment of points to clusters was largely correct

(Supplementary Table S1).

We further tested the robustness of clusterdv by performing three

tests: scaling the kernel bandwidths used for density estimation

(Supplementary Fig. S10A–C), applying non-linear transformations

to a simple point distribution (Supplementary Fig. S10D–G), and

down sampling the number of points (Supplementary Fig. S11).

Clusterdv gave correct solutions over most of the conditions of the

three tests, showing that it is robust to variation in its density esti-

mation, the shape of clusters and the number of points in data.

3.4 Clusterdv outperforms clusterdp and ST-spectral

clustering
Clusterdv is a robust automatic clustering method that solves a wide

range of datasets, but how does its performance compare to other state

of the art clustering algorithms? To make this comparison, we applied

ST-spectral (Perona and Zelnik-Manor, 2004), a method that, as clus-

terdv, does not require any parameter tuning, and clusterdp, a cutting

edge density-based clustering method, to the same array of datasets

previously used to test clusterdv. For clusterdp we used the recom-

mended range for the dc parameter (Rodriguez and Laio, 2014). We

started by testing the automatic versions of ST-spectral and clusterdp

against the three automatic methods of clusterdv. Clusterdv, using the

SI jump criteria, outperformed both automatic clusterdp and ST-

Spectral, and also the two reference-based cutoffs (Fig. 4A), achieving

significantly higher FMI values than any other method. Since the auto-

matic rules to choose the number of clusters vary between ST-Spectral,

clusterdp and clusterdv, we performed an additional test where the

number of clusters is set, for each clustering method and dataset,

according to the ground truth. In this case any problems in solving cor-

rectly the datasets are not due to the heuristic that chooses the cluster

number but must come from problems in other steps of the algorithms.

Figure 4B shows that, even in the situation of manually selecting the

correct cluster number, clusterdv still clearly surpasses clusterdp and

ST-Spectral, being able to correctly solve 31 of the 33 datasets

(Supplementary Table S1), while clusterdp and ST- Spectral could only

solve correctly 21 (Supplementary Tables S2–S4). Overall, clusterdv

managed to outperform clusterdp and ST-Spectral in one of its auto-

matic implementations (SI jump criteria), but also when the number of

clusters was optimal, so the gain of performance for clusterdv likely

comes from having a more reliable rule to identify the correct cluster-

ing structure than the other methods.

3.5 Clusterdv is able to categorize zebrafish startle

behavior
The aim of clustering analysis is to identify groupings on real-world

data that correspond to real natural phenomena. These datasets

often have complex and noisy structure that differs from the datasets

used to validate clustering algorithms. We used clusterdv to perform

unsupervised categorization of movements of zebrafish larvae

responding to acoustic stimuli. Larvae, which swim in short bouts of

movement (Marques et al., 2018), execute two types of escapes

(C-starts) in response to acoustic startles: one bout type with short

latency (SLC) and another with long latency (LLC) (Fig. 5A)

(Burgess and Granato, 2007). Critically, both responses differ in a

set of kinematic parameters and the neural circuits that produce

these behaviors (Supplementary Figs S12 and S13) (Burgess and

Granato, 2007). The proportion of the two types observed varies

with the experimental conditions, creating datasets with uneven dis-

tributions of bouts. Also, the fish do not always respond to the

stimulus with C-starts, so these datasets often have bouts that ap-

pear in kinematic space as outliers or that degrade cluster bounda-

ries. In spite of these challenges, the SLC responses are stereotypical

and form a tight cluster that appears distinct from the wide spread

cluster that corresponds to the LLC bout type (Fig. 5B). These two

swim types can be categorized by sorting them by the response la-

tency to stimulus onset (red line in Fig. 5A) or by setting a threshold

that separates them in kinematic space (green line in Fig. 5B) provid-

ing a ‘ground truth’ to the dataset. If the tail movements associated

with swim bouts of each category are superimposed it becomes ap-

parent that they correspond to two types of movements that are

stereotypical within group (Supplementary Fig. S13B).

We applied five commonly used clustering methods to this data-

set: k-means (Jain, 2010), agglomerative hierarchical clustering with

Fig. 4. Comparison between, ST-spectral clustering, clusterdp and clusterdv.

The ST-spectral clustering, clusterdp and clusterdv methods (legends in x

axis) were applied to 31 datasets that had known ground truth (for references

of datasets see Supplementary Tables S1–S4) and the FMI was used to com-

pare the clustering methods’ performance with the ground truth. For clus-

terdp the dc parameter was set to 1 and 2% (legend in x axis). (A) The number

of clusters were set automatically by ST-spectral clustering (Perona and

Zelnik-Manor, 2004), auto clusterdp (see Supplementary Fig. S1 for details)

and in the case of clusterdv by using the simplex, onion or SI jump criteria.

(B) The number of clusters were set manually (ST-spectral clustering) or by

choosing the cutoff that corresponds to the known number of clusters, after

sorting the cluster centers by the highest c (clusterdp) or SI values (clusterdv).

Gray points in plots are FMI values of each dataset. Boxplot indicates median

with 25th and 75th percentile hinges, and whiskers extending to the smallest/

largest value no less/more than 1.5� interquartile range from the median.

Black line marks the median. Paired Mann–Whitney test corrected for mul-

tiple comparisons by Holm-Bonferroni method, n ¼ 31, comparisons with

P<0.05 were labeled in plots
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unweighted pair group method with arithmetic mean (UPGMA)

(Sokal and Michener, 1958), DBSCAN (Ester et al., 1996), ST-

Spectral (Perona and Zelnik-Manor, 2004) and clusterdp

(Rodriguez and Laio, 2014). These algorithms weren’t able to cat-

egorize the two types of movements, even when the correct number

of cluster number were set by hand, or in the case of DBSCAN,

when the parameter space was searched (Supplementary Figs S14

and S15). When we applied clusterdv to this dataset, the cluster cen-

ter ranking was correct (Fig. 5C), and the algorithm was able, using

an automatic criterion, to find essentially the same solution that was

found by drawing a line in kinematic space or sorting the swims by

latency (compare Fig. 5B with D). Clusterdv is thus able to categor-

ize automatically animal behavior in a dataset with unevenly distrib-

uted data that are corrupted by noise and outliers.

4 Discussion

We have described here a novel, robust and simple density-based

clustering algorithm, clusterdv, based on the density valleys between

data points, which is applicable to a wide variety of data. It delivers

better results than clusterdp, a state of the art density-based cluster-

ing algorithm (Rodriguez and Laio, 2014), and ST-spectral, a

method that also does not need any parameter setting. In particular,

clusterdv is able to find tight clusters of low density, where clusterdp

fails, because its rule gives more importance to gaps between clusters

than distances. Also, clusterdv’s rule to find the number of clusters is

more robust than the heuristic used by ST-spectral (Perona and

Zelnik-Manor, 2004). Thus, a fully automatic version of clusterdv

significantly outperforms clusterdp and ST-Spectral across a wide

variety of datasets, even in the case where the number of cluster cen-

ters is manually set for these methods based on prior knowledge of

the data structure (Supplementary Fig. S16).

All density-based clustering methods suffer from the problem

that density estimation for data with finite sample size produces

‘sporadic’ local maxima that are not related to the ‘real’ structure

present in data. Clusterdv produces a hierarchical tree of ‘putative’

cluster centers and uses an intuitive metric, the separability index or

SI to rank their importance. The number of ‘putative’ cluster centers

is often small, because all data points with negative SI values, which

are not separated by density valleys, are a priori excluded from

being cluster centers. To determine how many clusters exist in the

data, it is necessary to decide which cluster centers are likely to be

genuine, and which may occur sporadically due to sampling error,

by setting an appropriate threshold on the SI value. We automated

this step of the algorithm, by developing data-based criteria to

choose the number of clusters. One such criterion, selection of the

largest jump in SI, correctly determined the number of clusters in

29 out of 33 datasets, and is close to the correct solution in all cases,

giving results that are comparable to setting the correct number of

clusters by hand. It should be noted that this method is based on the

assumption that any clustered organization is clearly distinct from

noise in the data. For real world datasets, it is not clear that this as-

sumption will always be met. Therefore, to be applied in real-world

datasets, such as the zebrafish swimming data, we constructed, from

the original data, references, termed ‘onion’ and ‘simplex’, which

match the density profiles and spatial distributions of the data, re-

spectively, but not the spatial structure, similar to the gap statistic

method (Tibshirani et al., 2001). These reference distributions are

used to measure the probability that ‘sporadic’ cluster centers may

arise in that particular set of data. Often the ‘onion’ and ‘simplex’

methods also gave the correct solution for many of the datasets we

tested (14 and 21 correct datasets, respectively), but other times

these methods overestimated the number of clusters. Even when the

number of clusters did not match the ground truth, these methods

still showed good performance, because the dendrogram reflected

the true underlying data structure. It is likely that some of the data-

sets, in particular the real-world ones, contain other clustered organ-

ization that is not captured by the manual labeling. Thus, it is

possible, in some cases, that the reference-based methods are uncov-

ering meaningful structure.

Most clustering methods need one, or several, parameters to be

set, so that correct results are obtained for different data distribu-

tions. These criteria introduce a subjective step in clustering analysis

that may impact the particular solutions obtained. This is not the

case for clusterdv. We benchmarked clusterdv on a set of 33 distri-

butions with known ground truth that were chosen because they

offer difficult challenges to clustering analysis such as: arbitrary

cluster shape (Chang and Yeung, 2008; Fu and Medico, 2007;

Gionis et al., 2007; Jain and Law, 2005), number (Karkkainen and

Franti, 2002) and spatial distribution (Veenman and Reinders,

2002), clusters with fuzzy edges (Fränti and Virmajoki, 2006; Monti

et al., 2003), data with many dimensions (Charytanowicz et al.,

2010; Zachary, 1977), corruption with noise (Karypis et al., 1999;

Rodriguez and Laio, 2014), and distributions with uneven propor-

tions of clusters; and did not need to adjust any parameter to solve a

particular dataset. Nevertheless, there are parameters that can be set

in clusterdv, if desired. One such parameter, the number of edges

used to calculate the density lines, allows a tradeoff of computation-

al time versus accuracy, and needs to be set sufficiently large not to

degrade the results. The density estimation by Gaussian mixture

(Breiman et al., 1977) may be performed using distinct methods or

rules, but we found that the one simple heuristic used here always

gave satisfactory results and it is robust to being scaled 10 fold and

to data being down sampled. Other methods have been proposed

that improve on, or automate, aspects of clusterdp (e.g. Courjault-

Radé et al., 2016; Mehmood et al., 2017; Wang and Xu, 2017;

Zhang et al., 2016), but, to our knowledge, none has been demon-

strated to work well across a similar range of datasets without par-

ameter tuning.

Although clusterdv is able to solve a wide range of types of data

it also has some limitations. It will not separate clusters that don’t

have separate peaks but are distinguished by sharp gradients in point

density or where sharp gradients in density are not well captured by

the KDE (Supplementary Fig. S17). The former is a class of cluster-

ing problems that are particularly challenging for density-based

Fig. 5. Clusterdv enables unsupervised categorization of zebrafish acoustic

startle behavior. (A) Swim bout latency from start of acoustic startle. Red line

divides swims bouts with short latency (SLC) from bouts with long latency

(LLC). (B) Principal component analysis (PCA) applied to swim bout kinematic

parameters (see Supplementary Material for details). Red points correspond

to SLC bouts, whereas black points correspond to LLC bouts categorized by

red line in (A). Green line separates the small SLC cluster from the larger LLC

cluster. (C) Clusterdv SI dendrogram for data in (B). Lines represent cutoff cri-

teria used to choose number of clusters. Red line, SI jump. Orange line, sim-

plex threshold; green line, onion threshold. (D) Clusterdv assignment

according to the simplex threshold in (C). Black points mark cluster centers
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methods, but can be solved by graph based algorithms (Zhang,

1971). The increased accuracy of clusterdv also comes with the trade-

off of being slower than clusterdp (Supplementary Fig. S18). The rate-

limiting step of the algorithm is the step where the density valley

depth is computed, since the density has to be estimated along paths

between all pairs of points. The computational time of this step scales

with the square of the number of points. To mitigate this drawback

of clusterdv we implemented two faster versions that limit the set of

edges used for the density valley depth calculation (Kruskal, 1956),

with minimal effect on the output, and set the option of using

Matlab’s parallel processing toolbox (Supplementary Material).

Clusterdv does not work directly with distance-based data,

because it is necessary to embed this kind of data in a low dimen-

sional space to calculate q and the density paths. We used two meth-

ods to create low-dimensional embeddings for high-dimensional

data, T-distributed Stochastic Neighbor Embedding (t-SNE)

(Maaten and Hinton, 2008) and Uniform Manifold Approximation

and Projection (UMAP) (McInnes and Healy, 2018), and in most

cases clusterdv outperformed clusterdp (Supplementary Table S5).

Nevertheless, any other method to reduce dimensionality could be

combined with clusterdv.

Finally, we applied clusterdv to the difficult problem of unsuper-

vised behavioral categorization. We created a zebrafish larvae behav-

ioral dataset that is sparse and composed of highly uneven clusters

that are plagued with noise, but is known to contain two distinct

swim categories (Burgess and Granato, 2007). This dataset proved to

be challenging for commonly used clustering algorithms. Clusterdv

could identify, in a completely automatic fashion, meaningful behav-

ioral categories that these animals use when startled with acoustic

stimuli, while clusterdp failed to provide correct results.

In many situations, it is important to determine the clusters that

exist in a dataset, without a priori knowledge of their number or

shape. To do this with confidence requires a method that delivers

consistent results, and robustly selects the correct number and distri-

bution of clusters. The systematic validation of clusterdv across

many artificial and real world datasets, makes it suitable to apply to

novel problems. We expect clusterdv to be useful in analyzing a

wide range of data that has structure that reflects natural phenom-

ena, but where the ground truth is unknown.
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