
SI: Advances in Antiviral Nucleoside Analogs and Their Prodrugs Antiviral Chemistry and Chemotherapy

Nucleoside analogs as a rich source
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arthropod-borne flaviviruses
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Abstract

Nucleoside analogs represent the largest class of small molecule-based antivirals, which currently form the backbone of

chemotherapy of chronic infections caused by HIV, hepatitis B or C viruses, and herpes viruses. High antiviral potency

and favorable pharmacokinetics parameters make some nucleoside analogs suitable also for the treatment of acute

infections caused by other medically important RNA and DNA viruses. This review summarizes available information on

antiviral research of nucleoside analogs against arthropod-borne members of the genus Flavivirus within the family

Flaviviridae, being primarily focused on description of nucleoside inhibitors of flaviviral RNA-dependent RNA polymer-

ase, methyltransferase, and helicase/NTPase. Inhibitors of intracellular nucleoside synthesis and newly discovered nucle-

oside derivatives with high antiflavivirus potency, whose modes of action are currently not completely understood, have

drawn attention. Moreover, this review highlights important challenges and complications in nucleoside analog devel-

opment and suggests possible strategies to overcome these limitations.
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Introduction

The genus Flavivirus belongs to the Flaviviridae family

and includes more than 70 single-stranded plus-sense

RNA viral species. Flaviviruses of human medical

importance are tick- or mosquito-transmitted viruses

with typical representatives being tick-borne encepha-

litis virus (TBEV), Omsk hemorrhagic fever virus

(OHFV), Kyasanur Forest disease virus (KFDV),

Alkhurma hemorrhagic fever virus (AHFV),

Powassan virus (POWV), West Nile virus (WNV),

dengue virus (DENV), Japanese encephalitis virus

(JEV), yellow fever virus (YFV), or Zika virus

(ZIKV).1,2 The Flaviviridae family also includes some

less known or neglected viruses, such as louping ill

virus (LIV), Usutu virus, Langat virus, or

Wesselsbron virus.3–6 The flaviviral genome is a

single-stranded, plus-sense RNA of about 11 kb in

length that encodes a single polyprotein, which is co-

and posttranslationally processed into three structural

(capsid, premembrane or membrane, and envelope)

and seven nonstructural proteins (NS1, NS2A, NS2B,

NS3, NS4A, NS4B, and NS5).7 Both NS3 and NS5
proteins possess enzymatic activities reported to be
important targets for antiviral development. Whereas
NS3 acts as a serine protease, a 50-RNA triphospha-
tase, a nucleoside triphosphatase (NTPase), and a
helicase,8,9 NS5 consists of a complex containing the
RNA-dependent RNA polymerase (RdRp) and the
methyltransferase (MTase) activities.10,11
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Flaviviral infections are accompanied by a wide
spectrum of distinct clinical manifestations, ranging
from relatively mild fevers and arthralgia to severe vis-
cerotropic symptoms (YFV and DENV), hemorrhagic
fevers (KFDV and OHFV), encephalitis/myelitis (JEV,
WNV, and TBEV), and neuropathic or teratogenic
manifestations (ZIKV). More than 200 million clinical
cases of flaviviral infections, including numerous
deaths, are reported annually worldwide.12 Currently
no specific antiviral therapies are available to treat
patients with flaviviral infections, thus the search for
safe and effective small-molecule inhibitors that would
be active against these viruses represents a high
research priority.13

Nucleoside analog inhibitors have figured promi-
nently in the search for effective antiviral agents.14

Nucleoside analogs are synthetic, chemically modified
nucleosides that mimic their physiological counterparts
(endogenous nucleosides) and block cellular division or
viral replication by impairment DNA/RNA synthesis
or by inhibition of cellular or viral enzymes involved in
nucleoside/tide metabolism (Figure 1).15 The first anti-
viral analogs were developed in the late 1960s and cur-
rently there are over 25 approved therapeutic
nucleosides used for the therapy of viral infections of
high medical importance, such as HIV/AIDS (tenofo-
vir),16,17 hepatitis B (lamivudine/entecavir),18,19 hepati-
tis C (sofosbuvir),20 or herpes infections (acyclovir).21

So far, numerous nucleoside analogs have been
described to inhibit arthropod-transmitted flaviviruses.
Since these viruses are closely related to the hepatitis C
virus (HCV), for which many potent inhibitors are
being currently developed, anti-HCV nucleoside ana-
logs represent promising tools to be repurposed against
other viruses within the Flaviviridae family.12

The aim of this review is to provide an overview of
known antiviral agents targeting selected arthropod-
borne flaviviruses and to discuss their characteristic
properties, modes of action, and advantages or limita-
tions of their therapeutic use. Moreover, the important
challenges and complications in antiflavivirus nucleo-
side analog development are highlighted and possible
strategies to overcome their shortcomings are
suggested.

Major classes of antiflavivirus nucleosides

Nucleoside analogs active against arthropod-borne fla-
viviruses are usually classified according to their targets
in the viral life cycle. Such antiviral molecules act as
inhibitors of flaviviral RdRp,22–26 MTase,27,28 and heli-
case/NTPase.29,30 Other nucleoside scaffolds suppress
host cell enzymes involved particularly in nucleoside
biosynthetic pathways31–34 or in some cases, exhibit
multiple modes of action.32,35 In vitro antiviral effects

and cytotoxicity profiles of the most important antifla-
vivirus nucleoside analogs are summarized in Table 1.
An overview of in vivo antiflaviviral activities of select-
ed nucleosides as evaluated in different animal models
is presented in Table 2.

Inhibitors of flaviviral NS5 RdRp

The flavivirus NS5 protein is approximately 900 amino
acids in length and consists of the NH2-terminal MTase
domain required for the 50-RNA capping process and
the COOH-terminal RdRp domain responsible for the
replication of the viral RNA genome.10,36 Flaviviral
RdRp is a right hand-shaped structure with fingers,
palm, and thumb domains; the palm domain is the cat-
alytic domain carrying the polymerase active site that
coordinates two Mg2þ ions essential for catalyzing the
polymerization reaction.37 Nucleoside inhibitors of fla-
viviral RdRp are the most attractive targets for anti-
viral drug design; as human replication/transcription
enzymes lack RdRp activity, such compounds are
expected to show fewer deleterious side effects and
favorable safety profiles.12,15,38,39

The mode of action for nucleoside RdRp inhibitors
is based on the premature termination of viral nucleic
acid synthesis.40 Following the intracellular phosphor-
ylation, the 50-triphosphate metabolites are competi-
tively incorporated into the flaviviral RNA nascent
chains (Figure 1). This prevents further extension of
the incorporated analog by addition of the next nucle-
oside triphosphate resulting in formation of
incomplete (nonfunctional) viral RNA chains.41

Nucleoside inhibitors of flaviviral RdRp act as
“nonobligate chain terminators,” as their 30-hydroxyl
group is conformationally constrained or sterically/
electronically hindered, thus decreasing the potency
to form a phosphodiester linkage with the incoming
nucleoside triphosphate.40 The nonobligate terminators
differ from “obligate chain terminators,” in which the
30-hydroxy group is completely missing, as exemplified
by numerous nucleoside reverse transcriptase inhibitors
for the treatment of HIV infections.42 Chemical mod-
ifications of the heterobase moiety, different types of
glycosidic bonds, and substitutions at different posi-
tions of the sugar ring, which are typical modifications
for nucleoside inhibitors of flaviviral RdRps, are shown
in Table 3.

10-Cyano substituted nucleosides

GS-441524, a 10-cyano substituted C-nucleoside
derived from 4-aza-7,9-dideazaadenosine,43 was devel-
oped by Gilead Sciences, Inc. as a treatment for filovi-
rus infections also showing reasonable antiviral activity
against paramyxo- and pneumoviruses.44 Within the
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Figure 1. Intracellular uptake and metabolism of nucleoside analogs and nucleoside analog prodrugs. Nucleoside analogs enter cells
through specific plasma membrane nucleoside transporters. Inside the cell, the compounds are phosphorylated by cellular nucleoside
kinases resulting in formation of nucleoside mono-, di-, and triphosphates. The first kinase phosphorylation is the rate-limiting step of
the triphosphate conversion, which can be overcome by the monophosphate prodrug approach based on the introduction of a
phosphorylated group into the 50 nucleoside position. The phosphorylated group includes protecting moieties to increase hydro-
phobicity and facilitate the cellular uptake of the prodrug. Monophosphate prodrugs enter cells independently of membrane trans-
porters and the protecting groups are removed by intracellular esterases or phosphoramidases after cell penetration. The
triphosphates of nucleoside species represent the active forms of nucleoside analogs that act by inhibiting cellular or viral enzymes,
such as DNA/RNA polymerases. During DNA/RNA replication, nucleoside analogs are incorporated into nascent DNA or RNA
chains resulting in termination of nucleic acid synthesis or in accumulation of mutations in viral genomes to suppress viral replication
due to error catastrophe. At normal physiological conditions, intracellular nucleoside concentrations are maintained at low levels due
to nucleoside/nucleotide catabolic pathways, such as deamination (oxidation) of heterocyclic base, hydrolysis or phosphorolysis of
heterocyclic base, and hydrolysis of phosphomonoester bonds. These catabolic reactions also concern most nucleoside analogs
containing the natural N-glycosidic bond and/or the degradable functional groups of the heterocyclic base. Figure created using Servier
Medical Art available on www.servier.com.
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Flaviviridae family, this compound exerted micromolar

inhibitory activity against YFV and DENV-2 (EC50

values of 11 and 9.46 mM, respectively) in various

cell-based screening systems.43 Surprisingly, consider-

ably less favorable in vitro activities (>30–51.2 mM)

were reported for WNV and tick-borne flaviviruses,

such as AHFV, KFDV, TBEV, and OHFV.43,45

A phosphoramidate prodrug of GS-441524, referred

to as GS-5734, recently entered Phase II clinical trials

for treatment of Ebola infections, displayed 10- to 40-

fold higher antiviral effect against members of the

TBEV serocomplex when compared with its parental

analog GS-441524. The increased antiviral potency

could be related to an improved conversion of the pro-

drug to the biologically active form; however, the

reported SI values (2.4–8.3) indicate a low therapeutic

potential for this nucleoside to treat flaviviral infec-

tions.45 Further substitutions of GS-441524 molecule

at the C10 position with methyl, vinyl, or methyl–ethy-

nyl moieties yielded compounds with considerably

reduced potency and a narrower spectrum of antiviral

activity.43

20-C-methyl substituted nucleosides

20-C-Methyl-nucleoside scaffolds represent the initial

major class of therapeutic nucleosides developed by

Merck Research Laboratories to demonstrate potent

inhibition of HCV replication.46–50 Antiviral activity

of 20-C-methylated nucleosides beyond the

Flaviviridae family was reported for representatives

of Picornaviridae and Caliciviridae families,51–53 indi-

cating the potential for broad-spectrum inhibitory
activity for these compounds within the positive
single-stranded RNA viruses.

The 20-C-methyl substituent introduced at the
nucleoside b-face appears to be an important structural

element for highly selective micromolar inhibition of
tick-borne flaviviruses, particularly for TBEV,

AHFV, KDFV, OHFV, and POWV, when assayed in
porcine stable kidney cells (PS), human neuroblastoma
cells UKF-NB4, or adenocarcinomic human alveolar

basal epithelial cells A549.24,54,55 From mosquito-
transmitted flaviviruses, 20-C-methylated nucleosides
inhibited WNV, DENV, and YFV in cell-based or

cell-free reporter assay systems, showing low micromo-
lar antiviral activities.50,56,57 A phosphoramidate

prodrug of 6-O-methyl-20-C-methylguanosine, denoted
as INX-08189, exerted nanomolar inhibitory activity
against DENV-2, and the combination of INX-08189

with ribavirin resulted in significant synergistic anti-
DENV activity in vitro.58 7-Deaza-20-C-methyladeno-
sine together with other 20-C-methylated species was

the first described nucleoside-based inhibitors of
ZIKV, after its epidemiological outbreaks in

Oceania and Latin America.23,59 7-Deaza-20-C-methyl-
adenosine showed anti-ZIKV potency not only on
immortalized cell lines, but also on induced pluripotent

stem cell-derived neuronal cell types, such as
cortical neurons, motor neurons, and astrocytes.60

The triphosphate analogs of 20-C-methylated nucleo-

sides exhibited strong inhibitory activity in a

Table 3. Heterobase substitutions and ribose modifications of selected flaviviral RdRp nucleoside inhibitors.

Heterobase identity/

modification

Type of the

glycosidic bond

Ribose

substitution

Ribose

position Example

4-Aza-7,9-dideazaadenie

4-Aza-7,9-dideazaadenie

C-glycosidic

C-glycosidic

-CN (a)
-CN (a)

C10

C10
GS-441524

GS-5734

Adenine

7-Deazaadenine

Guanine

Cytosine

Uracil

6-O-methylguanine

N-glycosidic

N-glycosidic

N-glycosidic

N-glycosidic

N-glycosidic

N-glycosidic

-CH3 (b)
-CH3 (b)
-CH3 (b)
-CH3 (b)
-CH3 (b)
-CH3 (b)

C20

C20

C20

C20

C20

C20

20-C-methyladenosine

7-Deaza-20-C-methyladenosine

20-C-methylguanosine

20-C-methylcytidine

20-C-methyluridine

INX-08189

Uracil N-glycosidic -F (a), CH3 (b) C20 Sofosbuvir

Adenine

7-Deazaadenine

7-Deaza-7-carbamoyladenine

N-glycosidic

N-glycosidic

N-glycosidic

-ethynyl (b)
-ethynyl (b)
-ethynyl (b)

C20

C20

C20

20-C-ethynyladenosine
NITD008

NITD449

Cytosine

Cytosine

N-glycosidic

N-glycosidic

-H (a), OH (b)þN3 (a)
–N3 (a)

C20þ C40

C40
40-Azido
40-Azido-aracytidine

9-Deazaadenine C-glycosidic O exchanged for N – BCX4430

3-Oxopyrazine-2-carboxamide N-glycosidic No substitution – T-1106

6-Methyl-7-deazaadenine N-glycosidic No substitution – 6-Methyl-7-deazadenosine

Uracil

Uracil

N-glycosidic

N-glycosidic

Trityl

Trityl

C20 and C50

C30 and C50
20,50di-O-trityluridine
30,50di-O-trityluridine
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polymerase-based in vitro assay using an active recom-
binant ZIKV RdRp.61

Strong antiflaviviral activity for several 20-C-methyl
modified nucleosides was also demonstrated using
numerous in vivo efficacy models. For example, 7-
deaza-20-C-methyladenosine substantially improved
disease outcome, increased survival, and reduced
signs of neuroinfection and viral titers in the brains
of BALB/c mice infected with a lethal dose of
TBEV.62 This compound also reduced viremia in
AG129 mice infected with the African strain of
ZIKV.59 Moreover, 20-C-methylcytidine protected
suckling mice challenged with DENV56 and hamsters
infected with a lethal dose of YFV, even when admin-
istered up to three days postinfection.63

20-Fluoro-20-C-methyl substituted nucleosides

Similar to the 20-C-methylated nucleosides, analogs
possessing the 20-a-fluoro-20-b-C-methyl modification
were initially identified as promising inhibitors of
HCV polymerase activity.64 Sofosbuvir, a phosphora-
midate prodrug of 20-fluoro-20-C-methyluridine devel-
oped by Gilead Sciences, Inc., is one of the most potent
and selective inhibitors in this series and was approved
by the Food and Drug Administration (FDA) for the
treatment of chronic HCV infection.65 Sofosbuvir is
nontoxic for most human cell lines and is a very poor
substrate for human mitochondrial RdRp, resulting in
an acceptable safety profile and negligible mitochondri-
al toxicity.66,67

Sofosbuvir was demonstrated to inhibit the ZIKV
RdRp in a recombinant polymerase assay68 and to sup-
press ZIKV replication in different cell-based systems
using U87 glioblastoma cells, baby hamster kidney
fibroblasts (BHK-21), SH-sy5y neuroblasts, hepatocar-
cinoma Huh-7 cells, Jar human placental choriocarci-
noma cells, neural stem cells, and brain organoids with
nanomolar or low micromolar inhibitory activity.25,69

Interestingly, no inhibition of ZIKV replication with
sofosbuvir even at the 50 mM level was observed in
Vero cells,23 indicating that the sofosbuvir-mediated
anti-ZIKV effect is strongly cell-type dependent.70

Sofosbuvir protected inbred C57BL/6J mice, which
were previously immunosuppressed with a single dose
of anti-Ifnar1 blocking monoclonal antibody, against
ZIKV-induced mortality.69 Moreover, this compound
reduced viral titer in blood plasma, spleen, kidney, and
brain in suckling Swiss albino mice and prevented
virus-induced neuromotor impairment in ZIKV-
infected animals.71

Surprisingly however, sofosbuvir was inactive
against TBEV, when screened on both PS and UKF-
NB4 cells.54 Another 20-a-fluoro-20-b-C-methyl modi-
fied nucleoside, PSI-6206, and its 30,50-diester prodrug

mericitabine, also displayed no activity against

TBEV replication. The lack of anti-TBEV activity for

the 20-a-fluoro-20-b-C-methyl modified nucleosides

could be ascribed to their inefficient intracellular con-

version to their corresponding triphosphates and,

moreover, to extensive deamination/demethylation in

the tested cell cultures resulting in their conversion to

uridine.46,54

20-C-ethynyl substituted nucleosides

20-C-Ethynyl substituted nucleosides have been primar-

ily identified as inhibitors of DENV.22,72–75 20-C-
Ethynyladenosine represents the lead compound in

this series, which inhibited DENV-2 replication with

an EC50 of 1.41 mM in cell-based assays and with a

CC50 value of 40 mM.22 The 7-deaza derivative of 20-
C-ethynyladenosine, denoted as NITD008, inhibited

DENV of different serotypes at submicromolar or

low micromolar concentrations when tested in BHK-

21 cells, A549 cells, Huh-7 hepatocarcinoma cells, and

human peripheral blood mononuclear cells (PBMCs),

showing a significantly improved cytotoxicity profile

(CC50 of >100 mM) compared with that of 20-C-ethy-
nyladenosine.26 NITD008 was also assayed against

WNV, YFV, and ZIKV and exhibited excellent in

vitro inhibitory parameters and a protective effect

against WNV and ZIKV infections in mouse efficacy

models.26,76 NITD008 was also reported to effectively

inhibit the in vitro replication of TBEV, AHFV,

KDFV, OHFV, and POWV, with nanomolar or low

micromolar antiviral levels observed in various cell-

based screening systems.77

Introduction of the C7 carbamoyl moiety to

NITD008 molecule provided another 20-ethynyl
modified derivative, referred to as NITD449. Despite

its low micromolar anti-DENV efficacy, this nucleoside

disappointingly exhibited only low levels in plasma

when dosed orally.72 To increase the oral bioavailabil-

ity, the isobutyryl ester prodrug of NITD449, designed

as NITD203, was synthesized. NITD203 successfully

exhibited both nanomolar anti-DENV activity as

well as improved pharmacokinetic parameters.72

Although NITD008 and NITD203 showed anti-

DENV potency in rodent models, even when the treat-

ment was delayed up to 48 h after infection, both

nucleosides failed in preclinical toxicity studies in rats

and dogs due to their insufficient safety profiles.26,72

NITD008 failed to achieve no-observed-adverse-effect

levels (NOAEL) when rats (10 mg/kg/day) and dogs

(1 mg/kg/day) were dosed daily for two weeks.26

Similarly, NOAEL was not achieved for NITD203 in

the two-week toxicity test when rats were dosed at 30

and 75 mg/kg/day.72
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Further substitutions of the C7 position of
NITD008 with fluoro or cyano moieties provided com-
pounds with nano- or low micromolar anti-DENV
activities and acceptable cytotoxicity profiles. In con-
trast, 20-C-ethyl, -vinyl, or -methylethynyl substituted
derivatives of 20-C-ethynyladenosine were completely
inactive when tested against DENV. Similarly, the
exchange of the adenine base for cytosine or guanine
also yielded inactive compounds.22,72

20-O-substituted nucleosides

20-O-Methyl substituted adenosine, guanosine, cyti-
dine, and uridine were evaluated for their potential
anti-TBEV activity; however, no or negligible antiviral
effects were observed when tested in both PS and
UKF-NB4 cells.54 Such abrogation of the nucleoside
inhibitory activity could be related to the elimination
of the 20-a-hydroxy hydrogen bond donor/acceptor
properties when the methyl moiety is introduced at
the nucleoside O20 position.46,54 The ability of flaviviral
RdRp to discriminate among nucleosides modified at
the 20-position on the nucleoside a-face is likely related
to the need of the polymerase to avoid incorporation of
20-a-deoxynucleoside monophosphates into the viral
nascent RNA chain.46

30-C- and 30-O-substituted nucleosides

Methylation of the C30 or O30 position to generate the
corresponding 30-C-methyl or 30-O-methyl modified
structures resulted in a complete loss of anti-TBEV
activity, regardless of the purine/pyrimidine heterobase
identity. These nucleosides exerted no cytotoxic effects
and caused no morphological changes in PS or porcine
embryo kidney (PEK) cell cultures.35,54 Similarly, 30-
deoxynucleosides exhibited no detectable inhibitory
effect on TBEV replication.54 In contrast, several
nucleosides with a trityl group at the C30 position
showed micromolar inhibitory activity against DENV
and YFV (see below).78 The observed inactivity of 30-
O-methylated and 30-dehydroxylated nucleosides could
be related to either a strict requirement of the TBEV
RdRp active site for a 30-hydroxyl group to form the
appropriate hydrogen bonding interactions with the
nucleoside triphosphate molecule, or, to inefficient cel-
lular uptake and metabolism to convert the nucleoside
molecule into the corresponding triphosphate
form.46,54

40-Azido substituted nucleosides

Using high-throughput screening of large nucleoside
libraries in combination with a rational drug design
approach by investigators at Roche, several cytidine
analogs with an azido group at the C40 position were

identified as potent inhibitors of HCV replication in
subgenomic replicon assays.79–81 It was later shown
that these compounds were also highly active against
henipaviruses and other paramyxoviruses.82 Two 40-
azido modified nucleoside analogs, 40-azidocytidine
(R-1479) and 40-azido-aracytidine (RO-9187), showed
nano- or micromolar in vitro antiviral activity against
TBEV.54 Moreover, both compounds were found to be
active also against WNV (L. Eyer, manuscript in
preparation).

The anti-TBEV activity of RO-9187 (the arabino-
counterpart of 40-azidocytidine) was unexpected, as
this compound lacks the 20-a-hydroxy moiety, a deter-
minant which was generally considered to be crucial for
specific hydrogen-bonding interactions with RdRps
during the RNA replication process.54,80 Some addi-
tional interactions of the polymerase active site with
both the 20-b-hydroxy substituent and the 40-azido sub-
stituent are thought to compensate for the loss of the
20-a-hydroxy interaction, resulting in the strong and
selective anti-TBEV activity of RO-9187.
Interestingly, the anti-TBEV efficacy of both 40-azido
modified nucleosides was cell-type dependent; the com-
pounds were active only in PS cells, but not in UKF-
NB4 cells.54

An ester prodrug of 40-azidocytidine, denoted as
balapiravir, was completely inactive against TBEV in
vitro, probably because of its poor intracellular uptake
or insufficient kinase phosphorylation in the tested host
cell lines.54 In contrast, balapiravir was reported to
show strong in vitro antiviral activity against DENV
of various serotypes; it was the first direct antiviral
agent tested clinically for DENV infection.
Unfortunately, this compound failed to achieve antivi-
ral efficacy in DENV patients, which was reflected in a
negligible reduction of DENV viremia and persistence
of clinical symptoms, even though the plasma concen-
tration of the compound was higher than the 50%
effective concentration.83 One of the possible explana-
tions is that DENV infection stimulates PBMCs to pro-
duce cytokines, which are responsible for the decreased
efficiency of the conversion of balapiravir to its triphos-
phate form.84

Interestingly, nucleoside analogs combining the 40-
azido moiety with the 20-C-methyl group in one mole-
cule (e.g. 20-C-methyl-40-azidocytidine) did not exhibit
any antiviral activity when tested against HCV; how-
ever, the corresponding 50-monophosphate prodrugs
displayed considerably improved virus inhibitory
effects (EC50 values in the micromolar ranges) without
apparent cytotoxicity.85 Other interesting compounds,
40-azido-20-deoxy-20-C-methylcytidine and its ester pro-
drugs, were found to show nano- or low micromolar
antiviral efficacy in vitro.86 Unfortunately, such nucle-
oside scaffolds have not been evaluated against
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arthropod-borne flaviviruses; the reported results orig-

inate from HCV replicon-based assays.85,86

Imino-C-nucleoside analog BCX4430

BCX4430, developed by BioCryst Pharmaceuticals

Inc., is an adenosine analog with the furanose oxygen

on the ribose ring replaced by nitrogen and the hetero-

base nitrogen 9 replaced by carbon.87 This interesting

nucleoside is classified as imino-C-nucleoside.88

BCX4430 was initially described as an inhibitor of filo-

virus infections, exerting antiviral activity against a

broad spectrum of single-stranded RNA viruses, par-

ticularly against members of the Bunyaviridae,

Arenaviridae, Picornaviridae, Orthomyxoviridae,

Paramyxoviridae, Coronaviridae, and Flaviviridae

families.89 Currently, this compound has entered

Phase I clinical trials for Ebola virus disease treatment

focused on intramuscular administration of BCX4430

in healthy volunteers and to date has shown promising

pharmacokinetics properties and good tolerability.87

BCX4430 is active against numerous mosquito-

transmitted flaviviruses, such as WNV (EC50 of

2.33 mM)90 and representatives of both the African

and Asian lineages of ZIKV (3.8–11.7 mg/ml).91 For

YFV, JEV, and DENV-2, micromolar EC50 values

were reported.89 In vivo efficacy of BCX4430 was

also demonstrated in a lethal hamster model of YFV

infection and in a mouse model of ZIKV infection.91,92

Low micromolar antiviral activity of BCX4430 was

also described for some of the medically important

tick-borne flaviviruses, such as TBEV, LIV, and

KFDV.90

Heterocyclic base-modified nucleosides

Heterocyclic base-modified nucleosides with demon-

strated antiflaviviral activities include T-1106,93–95 6-

methyl-7-deazaadenosine,96 and numerous N6-alkyl

or aryl substituted nucleosides.35,97 T-1106 is a ribosy-

lated analog of the pyrazine derivative T-705 (6-fluoro-

3-hydroxy-2-pyrazinecarboxamide, favipiravir),98

which was described to inhibit the HCV RdRp in

enzyme assays.93 Nucleoside inhibitor T-1106 dis-

played a negligible in vitro activity against YFV in

Vero cells, as well as in luciferase-based assays.94 In

contrast, this compound exerted favorable efficacy,

bioavailability, and low toxicity in a hamster model

of YFV infection, using a hamster-adapted Jimenez

YFV strain. After intraperitoneal application of

100 mg/kg/day, T-1106 improved survival rates,

serum parameters, weight gain, and mean day to

death when administered up to four days after virus

challenge.93,94 In this model, the combination of T-

1106 with ribavirin gave superior effects compared to
monotherapy (with either T-1106 or ribavirin).95

6-Methyl-7-deazaadenosine is a hydrophobic mimic
of adenosine showing nanomolar antiviral activity
against DENV-2 in a Vero cell-based screening
system, as well as in luciferase-driven DENV-2 replicon
assay, with no cytotoxic effects noted after 7 h of treat-
ment.96 Related compounds such as 6-methyl-1-dea-
zaadenosine and 6-methyl-4-deazaadenosine were
completely inactive when tested against DENV-2.
Mechanistic studies of the 50-triphosphate of 6-
methyl-7-deazaadenosine revealed that this nucleotide
is an efficient substrate for viral RdRp (screened
against polio RdRp) and is incorporated into nascent
viral RNA strains mimicking both ATP and GTP.96

N6-Alkyl or aryl substituted nucleosides, originally
identified as inhibitors of Lassa fever virus, Marburg
virus, and enterovirus A71, showed interesting bioac-
tivity profiles when tested against TBEV.35,99,100

Whereas N6-methyladenosine and N6-benzyladenosine
were completely inactive, nucleosides with bulky sub-
stituents, such as N6-(9-anthracenylmethyl)adenosine
and N6-(1-pyrenylmethyl)adenosine, exerted a micro-
molar anti-TBEV effect. In contrast, N2- and N4-
substituted analogs showed no antiviral activity.
Moderate anti-YFV and anti-DENV activities were
also observed in N6-subsitituted analogs of 50,30-O-
and 50,20-O-tert-butyldiphenylsilyl-modified adeno-
sine.97 The mechanism of action of these nucleosides
is poorly understood; however, they likely interact with
the RdRp or MTase domain of the flaviviral NS5 pro-
tein, as demonstrated by docking studies.35 Bulky aro-
matic substituents could also play a role in the
interaction with the viral membrane resulting in cell
entry inhibition.101

Tritylated nucleosides

In a large-scale cell-based screening campaign of alky-
lated, silylated, or acylated pyrimidine nucleosides,
20,50di-O-trityluridine and 30,50di-O-trytiluridine were
identified as inhibitors of DENV-2 and YFV replica-
tion, showing high antiviral potency and favorable
cytotoxicity profiles in Vero cells.78,102,103 Substantial
antiviral effect against YFV was observed also in 20-
deoxy-30,50-di-O-trityluridine and in several 5-haloge-
nated bis-tritylated pyrimidine nucleosides; however,
their anti-DENV activity was proven to be weaker.104

Thymidine or 20-deoxyuridine congeners of 20,50- and
30,50-tritylated nucleosides led to the loss of antiflavivi-
rus activity or to increased compound cytotoxicity.

The mechanisms of action of tritylated nucleosides
are not completely understood. Based on the observed
inhibition of DENV replication in subgenomic replicon
assays, it is assumed that these compounds may be
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acting as inhibitors of intracellular viral replication

events rather than suppressing either early or late pro-

cesses of viral infection, such as entry or assembly.103

Although the presence of large, hydrophobic trityl moi-

eties does not make these structures ideal candidates

for further drug development, their chemical structures

may provide valuable information for advanced mech-

anistic studies and for further development of related

nucleoside scaffolds with improved biological

parameters.104

Nucleoside inhibitors of flaviviral MTase

The NH2 domain of flaviviral NS5 protein is associated

with the virus’s MTase activity, which is involved in

methylation of the 50-cap structure of genomic

RNA.8,105 The flaviviral cap structure is formed by

the conserved dinucleotide sequence AG

(m7GpppAm) and is crucial for mRNA stability and

efficient translation.106 Two topologically distinct

methylation reactions are mediated by the flaviviral

NS5 MTase: the N7 of guanine is methylated by the

(guanine-N7)-MTase and the first nucleotide of RNA

transcript is further methylated at the ribose 20-hydrox-
yl by (nucleoside-20-O)-MTase. The resulting product

of the methyl donation for both methylation reactions

by S-adenosyl-L-methionine is the nucleoside analog S-

adenosyl-L-homocysteine (SAH).107

SAH and the nucleoside antibiotic sinefungin are

natural nonselective inhibitors of many eukaryotic

and viral MTases, including those of DENV108,109 or

ZIKV.61 Chemical derivatization of SAH at the N6

position provided inhibitors with nano- or low micro-

molar activity against DENV MTase, which did not

inhibit the corresponding human enzymes.110 Other

rationally designed nucleosides with potent inhibitory

activity against MTase contain a thymine base with a

hydrophobic methyl tert-butyl substituent at the 50

position of the sugar moiety.111 Two of these nucleo-

sides, GRL-002 and GRL-003, inhibited the N7 and 20-
O MTase activity of WNV in enzyme-based assays and

the observed MTase inhibition was in agreement with

the micromolar in vitro anti-WNV efficacy.111 Another

class of promising selective antiflavivirus compounds is

represented by 50-silylated 30-1,2,3-triazole-substituted
nucleoside scaffolds derived from 30-azidothymidine.

Similar structures were originally developed for HIV-

1 inhibition.27 Both the 50-silyl protecting group and

the 30 bulky triazole substituent appeared to be crucial

structural elements for low micromolar inhibition of

flaviviral MTase in enzyme-based assays, as well as

for inhibition of WNV and DENV replication in cell

culture. These nucleosides inhibit the methylation reac-

tions through competitive interactions with the

substrate binding site and also with the GTP-binding

pocket of the flaviviral NS5 MTase.28

Recently, a novel series of flexible nucleoside ana-

logs known as “fleximers” have exhibited activity
against several hard to treat viruses, including filovi-

ruses such as Ebola and Sudan,112 coronaviruses

including Severe Acute Respiratory Virus and Middle

East Respiratory Virus,113 as well as most recently,

flaviviruses including ZIKV and DENV. The fleximers

feature a “split” purine nucleobase that has been shown

to impart significant activity to the nucleoside scaffold

as well as to allow it to overcome resistance related to

point mutations.114–116 The most recent series com-
bined the fleximer approach with the acyclic nucleoside

acyclovir, an FDA approved drug for herpes virus.

While these analogs inhibited the aforementioned

viruses, acyclovir shows no activity against any of

those viruses, thereby underscoring the importance of

the fleximer approach. Since those initial findings, these

compounds have also demonstrated potent activity

against DENV and ZIKV (K. Seley-Radtke, manu-

script in preparation). Preliminary results indicate
that these compounds target the DENV and ZIKV

NS5 in at least its cap-MTase activity, with negligible

effects on the cognate human N7-MTase. In that

regard, initial screening revealed promising levels of

MTase inhibition, particularly for the triphosphate of

the compound (Flex 1-TP), with an IC50 of 22 mM for

both the DENV and ZIKV 20-O-MTase (K. Seley-

Radtke, manuscript in preparation). As a result, Flex

1-TP was further tested against DENV NS5, and while
it was not incorporated, it successfully inhibited further

incorporations of additional nucleotides, thereby halt-

ing replication, however not as a typical chain termi-

nator. In addition, the acetate-protected dimethoxy

analog (Flex 2) is a potent DENV inhibitor (3.2 mM,

unpublished results, Smee laboratory, Utah); however,

more work needs to be done to fully elucidate these

novel compounds’ mechanism of action. It may well

be that these nucleotide analogs target the NS5 protein
at both the RdRp and MTase regions, which would

make them highly effective viral inhibitors, with low

probability of viral resistance developing.

Nucleoside inhibitors of flaviviral

NTPase/helicase

Flaviviral NTPase and helicase activities are associated

with the COOH-proximal domain of the NS3 pro-

tein.117 Flaviviral helicases are capable of unwinding

duplex RNA structures during viral replication by dis-

rupting the hydrogen bonds keeping the two strands

together.118,119 The helicase activity is strictly associat-

ed with NTP hydrolysis (NTPase activity); the released
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chemical energy is used for the translocation of the

enzyme along the double-helix structures, capturing

the exposed single strand regions or for a direct disrup-

tion of the hydrogen bonds between the two RNA

strains.120

Specific nucleoside inhibitors of flaviviral NTPase/

helicase can interact with dsRNA or DNA resulting in

the weakened stability of double-helix structures or by

steric hindrance of translocation of the enzyme along

the polynucleotide chain. Such a mechanism could

modulate the efficacy of the unwinding reaction or

NTPase activity of the enzyme and therefore, affect

the viral replication process.117–121 Weak inhibitory

effects on flaviviral NTPase/helicases were described

for ribavirin triphosphate,124,125 50-O-fluorosulfonyl-
benzoyl esters of purine nucleosides,126,127 or haloge-

nated benzotriazole-modified nucleosides.30,122 These

compounds were primarily evaluated in enzyme-based

assays for their putative anti-HCV activity; however,

some of them have been found to inhibit also

NTPase/helicases of WNV, JEV, or DENV.117–127

Ribavirin and other nucleoside synthesis

inhibitors

Ribavirin, a nucleoside analog featuring a [1,2,4]tria-

zole ring for a nucleobase, is a licensed drug against

various RNA viruses. The predominant inhibitory

mechanism for ribavirin against flaviviral replication

is the suppression of de novo biosynthesis of guanine

nucleotides through direct inhibition of inosine mono-
phosphate dehydrogenase, an enzyme converting ino-

sine monophosphate to xanthosine monophosphate, a

precursor in GTP biosynthesis.32 Speculation over

other modes of action for ribavirin includes specific

inhibition of the viral RdRp,128 accumulation of muta-

tions in viral genomes resulting in error catastro-

phe,129,130 interference with mRNA capping

guanylation,131 and immuno-modulation promoting

the Th1 antiviral response.32,132,133

Ribavirin was shown to exert a moderate inhibitory

effect for multiple mosquito-borne flaviviruses in vari-

ous cell cultures,31,134,135 often being used as a positive

control in many in vitro25,59,92 and in vivo antiviral

studies.91–94 Ribavirin administered to YVF-infected

hamsters challenged intraperitoneally, resulted in sig-

nificant improvement in survival rates, even if the ther-

apy was started two days post-YFV infection.93,94 In

contrast however, in primates, only a weak prophylac-

tic effect on viremia in rhesus monkeys challenged with

DENV was observed.136 Several ribavirin derivatives

were recently synthesized and showed interesting bio-

activity profiles: ETAR (1-b-D-ribofuranosyl-3-ethy-
nyl-[1,2,4]triazole) and IM18 (1-b-D-ribofuranosyl-4-

ethynyl-[1,3]imidazole) inhibited DENV-2 replication
in Vero cells by more than 10-fold compared with riba-
virin and showed no detectable cytotoxic effects up to
1000 mM.135 Another derivative, EICAR (1-b-D-ribo-
furanosyl-5-ethynyl-imidazole-4-carboxamide), was
reported to possess a similar in vitro spectrum of anti-
viral activity, but lower selectivity compared with those
of ribavirin.137

Two nucleosides whose antiviral activity is based on
the depletion of the intracellular nucleoside pool are 6-
azauridine and 5-aza-7-deazaguanosine. 6-Azauridine
and its derivatives are inhibitors of orotidine mono-
phosphate decarboxylase blocking cellular de novo
pyrimidine biosynthesis.31,33 6-Azauridine proved to
be active against numerous arthropod-borne flavivi-
ruses,55 however exhibited slight cytotoxicity with an
inhibitory effect on the growth of host cells.24 A triac-
etate prodrug of 6-azauridine showed low micromolar
activity against AHFV and WNV in vitro55 and very
low toxicity in both animal and human studies.138

Another derivative, 2-thio-6-azauridine, exerted a mod-
erate inhibitory effect on WNV.33 Similar results were
achieved using 5-aza-7-deazaguanosine (ZX-2401)139;
this compound exhibited synergistic in vitro anti-YFV
activity in combination with interferon. The mecha-
nism of action for 5-aza-7-deazaguanosine is currently
unknown; however, it is conceivable that it likely
resembles that of ribavirin.34

Rigid amphipathic nucleosides

Nucleoside derivatives containing bulky aromatic sub-
stituents (perylene or pyrene moieties) attached to the
heterocyclic base were originally synthesized as fluores-
cent nucleoside probes140–142; later these structures
were identified as inhibitors of herpes simplex virus,
type 1 and 2 (HSV-1 and HSV-2), vesicular stomatitis
virus, and Sindbis virus replication.143 Further studies
demonstrated their broad-spectrum antiviral activity
against other enveloped viruses, such as influenza
virus, murine cytomegalovirus, and HCV.144 The
mechanism of action of these rigid amphipathic nucleo-
sides is based on their incorporation into the viral or
cellular membranes, preventing fusion.143,144

Alternatively, these nucleosides may also function by
photosensitization of lipid membranes, resulting in
irreversible damage of enveloped virion particles.145

5-(Perylen-3-yl)ethynyl-arabinouridine and 5-(pery-
len-3-yl)ethynyl-20-deoxyuridine were shown to act as
strong inhibitors of TBEV in PEK cell culture.101 The
perylene moiety as well as the rigid ethynyl linker
appeared as crucial structural elements for nanomolar
anti-TBEV activity and low cytotoxicity (>50 mM).
Interestingly, uracil nucleosides bearing the pyrene
moiety, such as 5-[(pyren-3-yl)methoxypropyn-1-yl]-
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20-deoxyuridine and 5-(pyren-1-yl)ethynyl-20-deoxyuri-
dine, showed almost a 10-fold lower anti-TBEV poten-

cy compared to their perylene-substituted counterparts.
Such compounds, if not used as therapeutic agents,
could still contribute to a better understanding of dif-
ferent modes of action of various nucleoside
scaffolds.101

Challenges and complications of

antiflavivirus nucleoside analog

development

Introduction of various chemical substituents into dif-

ferent positions of the nucleoside scaffold can dramat-
ically affect the physicochemical properties of the
compound. Such modifications can also significantly
influence the compound’s biological/pharmacokinetic

parameters, such as cellular uptake,15,146 the ability of
the compound to be activated (phosphorylated) by cel-
lular kinases,147 degradation by nucleoside catabolic
enzymes,148 or cellular toxicity.149,150 Use of nucleoside

analogs can also result in the undesirable emergence of
drug-resistant virus mutants.151–153 This section high-
lights the most important challenges and complications
toward the development of nucleoside inhibitors of
arthropod-transmitted flaviviruses and suggests possi-

ble strategies to surmount these difficulties.
For most nucleoside analogs, the first kinase phos-

phorylation is the rate-limiting step for the conversion
to the nucleoside triphosphates. This limitation has a
major influence on nucleoside analog antiviral activi-
ty147,154 but can be bypassed by the use of a monophos-

phate prodrug approach based on the introduction of
the phosphorylated group into the 50 nucleoside posi-
tion. The phosphorylated group includes masking moi-
eties on the charged phosphate leading to a neutral and
eventually hydrophobic entity able to deliver the nucle-

oside 50-monophosphate into the cells (Figure 1).15 The
monophosphate prodrug approach has been shown to
convert some inactive nucleosides into strong inhibi-
tors, or, has improved the kinetics parameters of intra-

cellular nucleoside triphosphate formation.85 This
strategy, together with enantioselective purification,
led to the development of the phosphoramidate prodrug
sofosbuvir, which exhibited considerably increased
phosphorylation efficacy compared to the parent nucle-

oside, 20-C-fluoro-20-C-methyluridine.155,156

Rapid degradation of nucleoside analogs by nucleo-

side catabolic pathways (Figure 1) is another undesir-
able phenomenon, which can adversely affect the
antiviral potency of some nucleoside analogs.148 To
address this problem, appropriate structural changes

can be introduced into the nucleoside scaffolds to pro-
tect the nucleosides from metabolic deactivation.157

Such a strategy was successful for 20-C-methyladeno-
sine, which was found to be rapidly deaminated by
cellular adenosine deaminase to the inactive inosine
derivative and/or degraded by purine nucleoside phos-
phorylase, resulting in poor bioavailability and rapid
clearance of the nucleoside in plasma.49,50 Substitution
of the adenine N7 nitrogen for a carbon provided met-
abolically stable 7-deaza-20-C-methyladenosine, which
is a poor substrate for both nucleoside catabolic
enzymes. This compound was characterized by excel-
lent bioavailability and half-life in beagle dogs and
rhesus monkeys.50 Another possible strategy to
increase the metabolic stability of therapeutic nucleo-
sides is based on the introduction of a C-glycosidic
bond into the nucleoside scaffold to generate C-nucle-
oside analogs, such as BCX443089 or GS-5734.43 The
major advantage of C-nucleosides over the canonical
N-nucleosides lies in their resistance to unwanted phos-
phorolysis by intracellular phosphorylases, which oth-
erwise would cleave the N-glycosidic linkage.88

Individual host cellular types can display differences
in expression levels of nucleoside kinases and other
enzymes/proteins involved in nucleoside metabolism
and transport. This can then result in cell-type depen-
dent antiviral activity as manifested by different EC50

values for the same inhibitor when assayed on different
cell lines.158,159 Strong anti-TBEV activity for 20-C-
methylguanosine, 40-azidocytidine, and 40-azido-aracy-
tidine in PS cells was associated with rapid and efficient
nucleoside conversion to the corresponding triphos-
phates. On the other hand, no anti-TBEV effect or
phosphorylation products were observed when both
compounds were tested in UKF-NB4.54 Similarly, the
loss of anti-ZIKV activity in Vero cells for sofosbuvir is
likely related to the increased expression of the multi-
drug resistance ABC transporter in this cell line, result-
ing in the efflux of the compound from the cells.23,25

Clearly, cell-type dependent antiviral activity of some
nucleosides can considerably affect the results of anti-
viral screens and therefore, using multiple clinically rel-
evant cell lines for evaluation of compounds for
antiviral activity is important.70

Another possible complication in nucleoside drug
development is an undesirable toxicity profile for the
nucleoside inhibitor, which can be related to poor selec-
tivity between viral and human enzymes.39,149,150

A typical example of a nonselective nucleoside analog
is 7-deazaadenosine (tubercidin), which exhibits high in
vitro cytotoxicity. This has been attributed to the incor-
poration of tubercidin monophosphate into cellular
DNA/RNA by human polymerases.50 In contrast,
two derivatives of tubercidin, 7-deaza-20-C-methylade-
nosine and 6-methyl-7-deazaadenosine, are selectively
recognized by flaviviral RdRp and are nontoxic in most
mammalian cell lines.50,96 Some nucleoside analogs
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inhibit the mitochondrial DNA or RNA polymerase c,
resulting in mitochondrial toxicity.149,160 This has been
the primary reason for the failure of several promising
nucleosides/prodrugs in clinical trials, as has been
shown for some 20-C-methyl- and 40-azido modified
nucleosides.67 Newly developed compounds should
also be evaluated for their genotoxicity and mutagenic-
ity, as well as for renal, cardiovascular, or liver toxicity
using various biochemical in vitro assays.161–163

Nevertheless, even if a compound successfully passes
through numerous in vitro tests, it can still exhibit
harmful side effects when tested in animals, as observed
with the adenosine analog NITD008.26

In that regard, the availability of suitable animal
models is crucial for the successful evaluation of a
nucleoside’s therapeutic in vivo antiviral efficacy.
Some flaviviruses, particularly DEVN and ZIKV, do
not readily replicate or cause pathology in immuno-
competent mice and, therefore, the use of these rodents
as animal infection models is substantially limited.164–
166 To overcome this problem, suckling or young
mice,167 AG129 mice lacking INF-a/b and INF-c
receptors,168 IFNAR�/� mice lacking only the IFN-
a/b receptor,169 or immunosuppressed mice170 can be
used as appropriate models to evaluate nucleosides in
vivo. However, as these animals are defective in an
immune response, this model may also underestimate
the real efficacy of the test compounds. Rodent-
adapted flavivirus strains, such as the hamster-
adapted YFV strain Jimenez,171 mice-adapted DENV
strain D2S10,26 or ZIKV African strain Dakar
41519,172 represent other possible options for in vivo
antiviral studies; the biological properties of such virus-
es can be, however, considerably different compared
with those of the parent human-adapted strains.169

Another issue is related to the length of therapeutic
treatment. Most tick- and mosquito-borne flaviviruses
cause acute infections, in which short-time treatment
duration is expected, ranging between several days to
weeks.173 This is in contrast to chronic diseases, such as
HCV, HBV, and HIV infections, which require long-
lasting, and sometimes lifelong, treatment regimens.72,173

The differences between the acute and chronic diseases
should be considered during preclinical development of
antiflaviviral inhibitors. Thus, some compounds that
show insufficient safety profiles when tested for treatment
of chronic infections can be still suitable and safe for
short-term therapy of acute flaviviral diseases.72

Antiviral therapies based on chemical inhibitors of
viral replication can be accompanied with a rapid emer-
gence of drug-resistant mutants which substantially
complicates the course of infection treatment, as seen
in HIV, HBV, or HCV infections.152,153 In flaviviruses,
a rapid evolution of resistance to 20-C-methylated
nucleoside inhibitors was observed; this resistance

was associated with a signature mutation S603T
(in AHVF and TBEV)55,62 or S604T (in ZIKV)68

within the active site of the viral RdRp. Interestingly,
the biological properties of the TBEV mutant viruses
were dramatically affected, which was manifested by

resistance-associated loss of viral replication efficacy
in cell culture and a highly attenuated virulence pheno-
type in mice. This resulted in an unusually low mortal-

ity rate when mice were infected with the mutant
strain.62 As TBEV mutants resistant to 20-C-methylat-
ed nucleosides are highly sensitive to 40-azido substitut-
ed nucleosides,62 a combination treatment based on

two or more inhibitors could be a possible strategy in
order to minimize the risks for the emergence of viral
drug resistance.174–176

Conclusions

More than 200 million clinical cases caused by

arthropod-borne flaviviruses, including numerous
deaths, are reported worldwide annually. So many
cases of infection indicate the importance for the pur-

suit of new small molecule-based therapeutics to
combat emerging viral pathogens. Among these, inhib-
itors of flaviviruses represent a critical unmet medical
need. In that regard, nucleoside inhibitors of flaviviral

RdRps are the most attractive targets for antiviral drug
design. Nucleosides with the methyl- or ethynyl- mod-
ification at the C20 position and their 20-fluoro deriva-

tives are the best understood antiflavivirus nucleoside
analogs, many of which were initially developed for
treatment of HCV infections and later reemployed to

suppress replication of other non-HCV flaviviruses.
Other important antiflavivirus nucleosides are repre-
sented by inhibitors of nucleoside biosynthesis, whose

mode of action is predominantly based on depletion of
the intracellular nucleoside pool. Nucleoside inhibitors
of flaviviral MTase and NTPase/helicase, as well as
some newly discovered flavivirus inhibitors, such as

tritylated nucleosides, rigid amphipathic nucleosides,
or N6-aryl-substituted adenosine derivatives, whose
mechanisms of action are still poorly understood, can

be used as initial structures or starting points for fur-
ther developments of new generations of nucleoside
scaffolds with improved biological parameters. Taken

together, specific nucleoside analog-based antiviral
therapy in combination with effective vaccination strat-
egies could provide potent prophylactic and curative
tools to treat human infections caused by flaviviruses.
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