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Abstract: The harmful microalgae Gymnodinium catenatum is a unique naked dinoflagellate that
produces paralytic shellfish poisoning toxins (PSTs). This species is common along the coasts of the
Mexican Pacific and is responsible for paralytic shellfish poisoning, which has resulted in notable
financial losses in both fisheries and aquaculture. In the Gulf of California, G. catenatum has been
related to mass mortality events in fish, shrimp, seabirds, and marine mammals. In this study, the
growth, toxin profiles, and toxin content of four G. catenatum strains isolated from Bahía de La
Paz (BAPAZ) and Bahía de Mazatlán (BAMAZ) were evaluated with different N:P ratios, keeping
the phosphorus concentration constant. All strains were cultivated in semi-continuous cultures
(200 mL, 21.0 ◦C, 120 µmol photon m−2s−1, and a 12:12 h light-dark cycle) with f/2 + Se medium
using N:P ratios of: 4:1, 8:1, 16:1, 32:1, and 64:1. Paralytic toxins were analyzed by HPLC with
fluorescence detection. Maximum cellular abundance and growth were obtained at an N:P ratio
of 64:1 (3188 cells mL−1 and 0.34 div day−1) with the BAMAZ and BAPAZ strains. A total of ten
saxitoxin analogs dominated by N-sulfocarbamoyl (60–90 mol%), decarbamoyl (10–20 mol%), and
carbamoyl (5–10 mol%) toxins were detected. The different N:P ratios did not cause significant
changes in the PST content or toxin profiles of the strains from both bays, although they did affect
cell abundance.

Keywords: Gymnodinium catenatum; paralytic toxins; semi-continuous culture; toxin profile; N:P ratio;
Gulf of California

Key Contribution: We found that the different N:P ratios in semi-continuous cultures did not have
a significant effect on the variation in growth rates, toxin profiles, or toxicity between BAPAZ and
BAMAZ strains of G. catenatum. Nevertheless, growth rates and cellular abundance were mainly
influenced by the specific concentrations of the nitrogen source (NaNO3).

1. Introduction

The athecate dinoflagellate Gymnodinium catenatum [1] is the only naked gymnodinioid
known to produce paralytic shellfish poisoning toxins (PSTs). Information of the global
distribution of G. catenatum has increased over recent decades, and the species is currently
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known to be distributed worldwide across various coastal ecosystems [2–12]. In Mexico, G.
catenatum has been reported along the Pacific coast, in the Gulf of California [9,13–20], and
along the Campeche coast of the Gulf of Mexico [21]. On multiple occasions, G. catenatum
has been related to shellfish contaminated with PSTs in the Mexican Pacific and the Gulf of
California [9,17,18,22–29]. In some of these cases, the consumption of contaminated bivalve
mollusks resulted in human fatalities. Not surprisingly, G. catenatum has caused notable
financial losses in both fisheries and shrimp aquaculture. In addition, many epizootic
diseases in fish, seabirds, sea turtles, and marine mammals have been associated with this
gymnodinioid [9,13,22,23,28–34]. Interestingly, studies with G. catenatum strains isolated
from Bahía de La Paz and Bahía Concepción in the Gulf of California have shown that the
toxin profiles of the strains from both locations were similar [14,35].

The widespread proliferation of G. catenatum in various marine ecosystems is due to
its tolerance to a wide range of salinity and temperature [16,28], in addition to its ability to
form resistant cysts [6,11,36] and withstand different nutrient regimes [37]. Moreover, the
growth and toxicity of dinoflagellates such as G. catenatum are mainly influenced by light
intensity, temperature, salinity, nutrients, and N:P ratio [17,35,38–46].

Some studies have been conducted to determine the role that nutrients play in PSTs
production, although these have been mainly conducted with Alexandrium spp. [38,47–49].
These studies have demonstrated that biochemical changes at the cellular level and a
decrease in toxin content occur when the supply of N is deficient, both of which affect cell
division and lead to a decrease in cell abundance. The role of phosphorus in PST synthesis
is not well understood. However, some studies have shown that PST production increases
while cell division decreases in culture media deficient in phosphorus [39,50,51], which
suggests that a mechanism exists that allows for microalgae to accumulate nitrogen under
phosphorus-deficient conditions.

In the Gulf of California, wastewater discharge, increases in coastal zone use, and
other anthropogenic factors in addition to natural processes such as upwelling and river
runoff, have increased the concentrations of nitrogen and phosphorus compounds over
the last three decades [31,52–54]. For this reason, our aim in this study was to improve our
understanding of the ecophysiology of G. catenatum by determining the effects of different
N:P ratios on the cell density, growth rate, toxicity, and toxin profiles of G. catenatum strains
isolated from Bahía de La Paz and Bahía de Mazatlán in the Gulf of California and grown
in semi-continuous cultures.

2. Results
2.1. Average Growth Rate

The growth rates of G. catenatum strains from both bays varied from 0.09 to 0.32 div
day−1 (Figure 1A–D), and statistically significant differences were found among N:P ratios
and strains. In the strains GCMQ-4, BAMAZ-2 and BAPAZ-5, a tendency for the growth
rate to increase was observed as the N:P ratio increased from 4:1 (0.13–0.29 div day−1), 8:1
(0.15–0.22 div day−1), and 16:1 (0.22–0.29 div day−1). However, with higher N:P ratios of
32:1 and 64:1, the opposite was observed in BAMAZ-2 (Figure 1C). Maximum growth rates
of 0.32 and 0.31 div day−1 were observed in BAPAZ-7 and BAPAZ-5 with the N:P ratios of
32:1 and 64:1, respectively (Figure 1B,D).
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Figure 1. Average growth rates (A–D) and cell abundance (E–H) of Gymnodinium catenatum strains 
(i.e., GCMQ-4, BAMAZ-2, BAPAZ-5, and BAPAZ-7) grown with different N:P ratios in semi-con-
tinuous cultures. Data were analyzed using a one-way ANOVA for each strain between the five N:P 
ratios followed by Tukey’s post-hoc test. Different letters above the bars indicate statistically signif-
icant differences at p ˂ 0.05. Bars represent the standard error. 

2.2. Average Cell Abundance in Semi-Continuous Cultures 
The average cell abundance in the semi-continuous cultures varied between 700 and 

3200 cells mL−1 (Figures 1E–H). Strain BAPAZ-5 maintained an average cell abundance of 
734 ± 275 and 2444 ± 212 cells mL−1 with N:P ratios of 64:1 and 4:1, respectively (Figure 1F). 
The maximum cell abundances observed in BAPAZ-7 were recorded with N:P ratios of 
64:1 and 4:1 (2530 ± 327 and 1900 ± 259 cells mL−1, respectively; Figure 1H). Strain BAMAZ-
2 showed maximum cell abundance with N:P ratios of 64:1 and 8:1 (3188 ± 1105 and 2157 
± 347 cells mL−1, respectively; Figure 1G). The average density observed in GCMQ-4 
ranged from 829 ± 120 to 1477 ± 393 cells mL−1 (Figure 1E). The ANOVA results revealed 
no significant differences within N:P ratios for GCMQ-4 (p < 0.05; Figure 1E). BAMAZ-2 
showed average cell abundances that were significantly different between the N:P ratios 
of 64:1 and those of 4:1, 8:1, 16:1, and 32:1 (p < 0.05; Figure 1G). The average cell abundance 
of BAPAZ-5 tended to decrease as the N:P ratio increased; statistical analyses showed sig-
nificant differences of the N:P 64:1 with the N:P ratios of 4:1, 8:1, 16:1, and 32:1 (Figure 1F). 
BAPAZ-7 showed an inverse tendency to that of BAPAZ-5, as its average cell abundance 

Figure 1. Average growth rates (A–D) and cell abundance (E–H) of Gymnodinium catenatum strains
(i.e., GCMQ-4, BAMAZ-2, BAPAZ-5, and BAPAZ-7) grown with different N:P ratios in semi-
continuous cultures. Data were analyzed using a one-way ANOVA for each strain between the
five N:P ratios followed by Tukey’s post-hoc test. Different letters above the bars indicate statistically
significant differences at p < 0.05. Bars represent the standard error.

2.2. Average Cell Abundance in Semi-Continuous Cultures

The average cell abundance in the semi-continuous cultures varied between 700 and
3200 cells mL−1 (Figure 1E–H). Strain BAPAZ-5 maintained an average cell abundance
of 734 ± 275 and 2444 ± 212 cells mL−1 with N:P ratios of 64:1 and 4:1, respectively
(Figure 1F). The maximum cell abundances observed in BAPAZ-7 were recorded with N:P
ratios of 64:1 and 4:1 (2530 ± 327 and 1900 ± 259 cells mL−1, respectively; Figure 1H). Strain
BAMAZ-2 showed maximum cell abundance with N:P ratios of 64:1 and 8:1 (3188 ± 1105
and 2157 ± 347 cells mL−1, respectively; Figure 1G). The average density observed in
GCMQ-4 ranged from 829 ± 120 to 1477 ± 393 cells mL−1 (Figure 1E). The ANOVA results
revealed no significant differences within N:P ratios for GCMQ-4 (p < 0.05; Figure 1E).
BAMAZ-2 showed average cell abundances that were significantly different between the
N:P ratios of 64:1 and those of 4:1, 8:1, 16:1, and 32:1 (p < 0.05; Figure 1G). The average cell
abundance of BAPAZ-5 tended to decrease as the N:P ratio increased; statistical analyses
showed significant differences of the N:P 64:1 with the N:P ratios of 4:1, 8:1, 16:1, and 32:1
(Figure 1F). BAPAZ-7 showed an inverse tendency to that of BAPAZ-5, as its average cell
abundance increased as the N:P ratio increased, and significant differences between the



Toxins 2022, 14, 501 4 of 20

N:P ratio of 64:1 and those of N:P ratios of 4:1, 8:1, 16:1, and 32:1 were found (p < 0.05;
Figure 1H).

2.3. Toxin Content

In general, the toxin content was significantly different between strains cultured at N:P
ratios of 4:1, 32:1, and 64:1, with significantly greater toxin content registered in BAPAZ-7
at an N:P ratio of 64:1 with respect to those of the other strains and ratios (149.81 ± 25.54 pg
STXeq cell−1; Figure 2E). BAMAZ-2 showed maximum toxin content of 58.45 ± 8.16 and
64.67 ± 10.14 pg STXeq cell−1 with the N:P ratios of 32:1 and 64:1, respectively (Figure 2D,E).
An increase in toxin content was evident in BAMAZ-2 and BAPAZ-7 with the N:P ratios
of 32:1 and 64:1 (Figure 2D,E), whereas BAPAZ-5 showed the inverse of this tendency
(Figure 2A–E). The toxin content of GCMQ-4 varied from 4.89 to 10.54 pg STXeq cell−1,
and statistical analyses revealed significant differences within N:P ratios (Figure 2A,B).
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to the different N:P ratios. More than 90% of the toxin content was composed of decar-
bamoyl and sulfocarbamoyl toxins, whereas less than 10% was attributed to carbamoyl 

Figure 2. Toxin content (pg STXeq cell−1) in Gymnodinium catenatum strains (i.e., GCMQ-4, BAMAZ-2,
BAPAZ-5, and BAPAZ-7) in semi-continuous cultures with N:P ratios of 4:1 (A), 8:1 (B), 16:1 (C), 32:1
(D), and 64:1 (E). Data were analyzed using a one-way ANOVA for each N:P ratio between strains
followed by Tukey’s post-hoc test. Different letters above the bars indicate statistically significant
differences at p < 0.05. Bars represent the standard deviation.

The toxin content (pg cell−1) varied between strains according to N:P ratio, and distinct
differences were present in the toxin content of the G. catenatum strains in response to the
different N:P ratios. More than 90% of the toxin content was composed of decarbamoyl and
sulfocarbamoyl toxins, whereas less than 10% was attributed to carbamoyl toxins (Figure 3).
GCMQ-4 presented the lowest toxin content when compared to the other strains (from
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8.17 ± 0.92 to 12.34 ± 2.36 pg cell−1; Figure 3). In general, the toxin content of this strain
did not show any clear trend during the experimental period (Figure 3). The maximum
toxin content of BAMAZ-2 (28.65 ± 4.36 pg cell−1) was registered with the N:P ratio of 4:1,
and the ANOVA results did not indicate any significant differences within the different
N:P ratios of 16:1, 32:1, and 64:1 (28.21 ± 5.12, 24.98 ± 6.21, and 18.76 ± 4.78 pg cell−1,
respectively). BAPAZ-5 and BAPAZ-7 showed maximum toxin content of 51.54 ± 8.45 and
38.26 ± 6.12 pg cell−1 with the N:P ratios of 16:1 and 64:1, respectively (Figure 3). The
toxin content of BAPAZ-5 showed a clear trend during the experimental period, as its toxin
content increased when the N:P ratio increased from 4:1 (12.32 ± 2.36 pg cell−1) to 16:1
(51.54 ± 8.45 pg cell−1). In comparison, BAPAZ-7 showed higher toxin content with N:P
ratios ranging from 16:1 (25.48 ± 5.98) to 64:1 (38 ± 7.34 pg cell−1; Figure 3).
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Figure 3. Toxin content (pg cell−1) in Gymnodinium catenatum strains (i.e., GCMQ-4, BAMAZ-2,
BAPAZ-5, and BAPAZ-7) by analog (i.e., carbamoyl, decarbamoyl, and sulfocarbamoyl) for the N:P
ratios of 4:1, 8:1, 16:1, 32:1, and 64:1 in semi-continuous cultures. Gray columns indicate carbamoyl
(GTX 2 + GTX 3), decarbamoyl (dcSTX + dcNeo + dcGTX 2 + dcGTX 3), and sulfocarbamoyl (B1 + B2
+ C1 + C2) toxins, respectively. Data were analyzed using a one-way ANOVA for each strain with
five N:P ratios for each toxin group followed by Tukey’s post-hoc test. Different letters above the bars
indicate statistically significant differences at p < 0.05. Bars represent the standard deviation.

2.4. Toxin Profile

The toxin profiles of G. catenatum show the presence of ten STX analogs from the
sulfocarbamoyl (B1, B2, C1, and C2), decarbamoyl (dcSTX, dcNEO, dcGTX2, and dcGTX3)
and carbamoyl (GTX2 and GTX3) toxin groups (Figure 4). The molar percentages recorded
for GCMQ-4 shown in Figure 5 indicate a high molar percentage of sulfocarbamoyl toxins
(45–88 mol%), followed by those of decarbamoyl toxins (0.87–36 mol%) and carbamoyl tox-
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ins (5.02–18 mol%). The results of the statistical analyses (mol%) indicated that significant
differences were found among all N:P ratios (p < 0.005) in the three toxin groups. Strain
BAMAZ-2 tended to increase its molar percentage of sulfocarbamoyl toxins from 60 to
90 mol% as the N:P ratio increased from 4:1 to 64:1. However, the tendency of decarbamoyl
and carbamoyl toxins to increase was inverse to that of the sulfocarbamoyl toxins (Figure 5).
In BAPAZ-5, the molar percentage of sulfocarbamoyl toxins decreased (96 to 78 mol%)
while that of the decarbamoyl toxins increased (3 to 22 mol%) as the N:P ratio increased
(Figure 5). In BAPAZ-7, a decrease in the molar percentage of sulfocarbamoyl toxins (90 to
71 mol%) was observed while that of decarbamoyl toxins increased (2 to 30 mol%) as the
N:P ratio increased from 16:1 to 64:1. Carbamoyl toxins did not show significant changes in
molar percentage in any strain (Figure 5).
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Figure 4. Paralytic shellfish poisoning toxins (PSTs) detected in four strains of Gymnodinium catenatum
(i.e., BAPAZ-5, BAPAZ-7, BAMAZ-2, and GCMQ-4) collected in Bahía de La Paz and Bahía de
Mazatlán. Table modified from [55].
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Figure 5. Toxins (mol%) in Gymnodinium catenatum strains (i.e., BAPAZ-5, BAPAZ-7, BAMAZ-2,
and GCMQ-4) by analog (i.e., carbamoyl, decarbamoyl, and sulfocarbamoyl) for N:P ratios of 4:1
(A), 8:1 (B), 16:1 (C), 32:1 (D), and 64:1 (E) in semi-continuous cultures. White, gray, and black
columns indicate carbamoyl (GTX 2 + GTX 3), decarbamoyl (dcSTX + dcNeo + dcGTX 2 + dcGTX 3),
and sulfocarbamoyl (B1 + B2 + C1 + C2) toxins, respectively. Data were analyzed using a one-way
ANOVA for each N:P ratio for each toxin group between strains followed by Tukey’s post-hoc test.
Different letters above the bars indicate statistically significant differences at p < 0.05. Bars represent
the standard deviation.

3. Discussion

The present study compared the growth rates, toxin content, and PST profiles of four
strains of G. catenatum obtained from Bahía de La Paz and Bahía de Mazatlán cultivated
with different N:P ratios in semi-continuous cultures. When comparing growth rates and
average maximum abundance among G. catenatum strains from the Gulf of California
grown under different culture conditions to those obtained in this study, we observed
similar results (Table 1). In particular, we can observe that the growth rates recorded
in this study (0.21–0.34 div day−1) are similar to those reported by other authors for G.
catenatum strains grown under similar culture conditions (0.19–0.24 div day−1) [56] using
the same culture media [28,57]. However, previous studies have reported higher growth
rates (0.57–0.8207 div day−1) using different culture media, such as GSe or f/2 with Se and
soil extract, than those in this study (see Table 1) [45,58–61]. The differences in the growth
rates among strains from the same region could be due to the different culture media
used in each experiment and the methods employed to isolate each strain. Han et al. [10]
mention that the growth rates of G. catenatum from Korean waters can vary between strains
and may depend on the geographical origin of each strain. Kim et al. [62] mentioned that
nitrogen is one of the most critical nutrients that affects cell growth and the biochemical
composition of microalgae.
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Table 1. Gymnodinium catenatum strains isolated from Bahía de La Paz (BAPAZ), Bahía de Mazatlán
(BAMAZ), and Bahía Concepción (BACO) in the Gulf of California, Mexico (Mx).

Strain Code Origin Growth Rate (div
day−1)

Maximum Density
(Cells mL−1)

Toxin Content (pg
STXeq Cell−1)

Growth Conditions References

GCCV-10 BACO, Mx
0.14–0.21

0.24
0.28–0.31
0.15–0.19

Nd

Nd f/2, 15–29 ◦C, and
salinity of 30.

f/2, 20 ◦C, and salinity
from 26 to 30.

f/2, 20 ◦C, and salinity
from 28 to 38.

f/2 with Se (10−6 M,
10−7 M 10−8 M) and

Gse, 20 ◦C, and salinity
of 35.

Band-Schmidt et al. [28]

GCCQ-1 BACO, Mx 0.74 ± 0.07 1619 ± 252 13.16
GSe with Se

concentration (10−9 ,
10−7 M) and salinity of

~35.

Band-Schmidt et al. [58]
GCCV-2 BACO, Mx 0.70 ± 0.07 1090 ± 270 16.63 Gárate-Lizárraga et al. [14]
GCCV-4 BACO, Mx 0.82 ± 0.09 3393 ± 836 11.66
GCPV-1 BAPAZ, Mx 0.74 ± 0.06 1631 ± 152 12.68
GCPV-2 BAPAZ, Mx 0.77 ± 0.05 1421 ± 290 23.29
GCMV-1 BAMAZ, Mx 0.81 ± 0.02 2063 ± 226 23.96
GCMV-2 BAMAZ, Mx 0.82 ± 0.03 1865 ± 516 16.60

BACO, Mx 60.3 f/2 + H2SeO3 (10−8 M) Palomares-García et al. [63]

GCCV-7 BACO, Mx 0.19–0.24 5852 21.8

f/2 with Se (10−8 M),
salinity of 35 with

different N:P ratios (5.4,
9.2, 23.5, 44.7 y 74.3),
and batch cultures.

Bustillos-Guzmán et al. [56]

BAPAZ-10 BAPAZ, Mx 0.57 4048 ± 440 370

Gse with Se (10−7 M)
with vermicompost,

salinity of 34, in batch
cultures.

Fernández-Herrera et al. [61]
Fernández-Herrera et al. [64]

(In review)

GCMQ-4 BAMAZ, Mx 0.29 ± 0.024 2273 ± 913 3–10

f/2 with Se (10−8 M),
salinity of 35 with

different N:P ratios (4,
8, 16, 32, and 64), in

semi-continuous
cultures.

This study

BAMAZ-2 BAMAZ, Mx 0.21 ± 0.096 4000 ± 276 9–58

f/2 with Se (10−8 M),
salinity of 35 with

different N:P ratios (4,
8, 16, 32, and 64), in

semi-continuous
cultures.

This study

BAPAZ-5 BAPAZ, Mx 0.32 ± 0.035 3666 ± 798 8–32

f/2 with Se (10−8 M),
salinity of 35 with

different N:P ratios (4,
8, 16, 32, and 64), in

semi-continuous
cultures.

This study

BAPAZ-7 BAPAZ, Mx 0.34 ± 0.057 3983 ± 375 24–149

f/2 with Se (10−8 M),
salinity of 35 with

different N:P ratios (4,
8, 16, 32, and 64), in

semi-continuous
cultures.

This study

Nd. No data available.

The role of nutrients (primarily nitrogen and phosphorus) in the growth of G. cate-
natum strains from the Gulf of California in semi-continuous regimes remains poorly
studied. However, the function of nitrogen in the physiology of dinoflagellates has been
reviewed and described by some authors such as Dagenais-Bellefuille and Morse [62],
and its particular importance has been highlighted both in primary metabolism, as in
the synthesis of amino acids, nucleic acids, and chlorophyll (e.g., photosynthesis), and
secondary metabolism in the production of various phycotoxins (e.g., PSTs biosynthesis).
Thus, changes in the concentrations of various nitrogenous compounds can significantly
affect these physiological processes. These authors describe that a high concentration of
nitrogen can be correlated with an increase in cell division that results in the formation of
harmful algal blooms (HABs), whereas decreases in nitrogen can cause cell cycle arrest, and
induce physiological, behavioral, and transcriptomic changes. Phosphorus is also an essen-
tial macronutrient needed to form compounds that are later used in energy transport, such
as ATP, ADP, NADPH, and NADP molecules [62]. Thus, these nutrients are components of
cell membranes in the form of compounds such as phospholipids, which phytoplankton
incorporate directly.

In this study, the high nitrogen concentration of 232 µM (N:P of 64:1) was related to
high cell abundance in BAPAZ-7 (3983 ± 375 cell mL−1) and BAMAZ-2 (4000 ± 276 cell mL−1;
Figure S1). Han et al. [10] found that G. catenatum showed the lowest cell density (485 cells mL−1)
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with the high N:P ratio of 48:1, indicating that N:P ratios above 24:2 did not increase the growth
rate or cell abundance of strains isolated from Korea.

These results indicate that it is not possible to identify a pattern with regard to the
effects of different N:P ratios on the variables measured in this study. However, statistically
significant differences were identified between strains. For example, BAPAZ-5 showed
better growth at the lowest N:P ratios when compared to the growth of other strains in
this study (Figure 1B), although the opposite was observed with the growth of BAMAZ-2.
Collectively, the variability among strains and the absence of a clear pattern, either among
strains of the same region or among different geographic regions, has been associated
with the genetic diversity of phytoplankton species. According to Wood and Leatham [65],
this diversity is responsible for the contrasting results observed when strains of the same
species are evaluated. In this study, we used only two strains from each bay, BAPAZ-5
and BAPAZ-7 from Bahía de La Paz and BAMAZ-2 and GCMQ-4 from Bahía de Mazatlán.
Both BAPAZ-5 and GCMQ-4 were isolated in 2000, while the other strains were isolated
in June 2006 and May 2007. The method used to isolate G. catenatum strains may be one
factor responsible for the aforementioned differences. In addition, the time of isolation
may also be in part responsible for the differences found among strains in this study [65].
BAPAZ-5, BAPAZ-7, and BAMAZ-2 were isolated from vegetative cells, while GCMQ-4
was established by cyst germination.

We confirmed the presence of ten PSTs in G. catenatum and detected N-sulfocarbamoyl
(C1, C2, B1, and B2), decarbamoyl (dcSTX, dcNEO, dcGTX2, and dcGTX3), and carbamoyl
(GTX2 and GTX3) toxins (Figure 4). Nevertheless, the presence of STX derivatives, such as
the benzoates described for this species [66,67], cannot be discarded because the method we
used does not detect them. In previous studies with G. catenatum strains from the Mexican
Pacific, the presence of five hydroxy-benzoyl analogues (GC 1/2, GC3, and GC4/5) and two
sulfated benzoyl analogues (GC 1b/2b) was confirmed [35]. This toxin profile is similar to
those of previous reports for strains from the same area [14,57,58]. Band-Schmidt et al. [57]
suggested that the toxin profiles (dcSTX, dcGTX2/3, and C1/2 as well as low proportions
of GTX2/3 and B2) could be used as biomarkers for strains from Bahía Concepción, in the
Gulf of California. However, differences among toxin profiles can also be observed among
different culture media and culture lengths [17,58]. The dcNEO toxin was always present
in the four strains of G. catenatum cultured in f/2 media; however, dcNEO has not yet
been reported for strains from the Gulf of California [14,17,58]. Bustillos-Guzmán et al. [35]
mentioned that the erroneous identification of peaks in fluorescence (false positives) was
due to the detection method used and that the recurrent finding of NEO in strains from the
Gulf of California corresponds to dcNEO, as confirmed by LC-MS/MS.

Studies related to the toxin content of G. catenatum in semi-continuous cultures are
scarce. Béchemin et al. [68] cultured the dinoflagellate Alexandrium minutum at five N:P
ratios and observed an increase in the toxicity per cell (1.24–8.01 fmol cell−1) in cultures
with N:P ratios ranging from 1.16:1 to 80:1, observing a significant increase in cellular
toxicity under phosphorus-limited conditions (i.e., N:P 80). We observed a similar trend in
BAMAZ-2 (12 to 60 pg STXeq cell−1) and BAPAZ-7 (32 to 158 pg STXeq cell−1; Figure 2).
The inverse of this pattern was observed with GCMQ-4, with low toxicity (12 to 3 pg STXeq
cell−1) under nitrogen-deficient conditions. GCMQ-4, obtained from a cyst germination,
showed the lowest toxicity of the four strains in this study. The other three strains, which
were isolated from vegetative cells, increased their toxin content up to 6-fold compared
to that of GCMQ-4. Differences in the toxicity and toxin profiles between strains isolated
from cysts and vegetative cells have been reported. Oshima et al. [69] observed that the
isolation method could be related to the toxin content at different N:P ratios. Negri et al. [66]
observed that cultures generated from cyst germination usually exhibited 10-fold lower
toxin content that cultures isolated from vegetative cells. These differences found in the
content of toxins may be due to the influence of bacteria at the time of germination of
the cyst. Green et al. [70] suggest that bacteria actively participate in the production of
PSTs. They hypothesized that bacteria are required to activate the biosynthesis of PSTs of
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G. catenatum and that the process of cleaning (sonication and washing) of cysts in sterile
seawater as part of the process of isolation of cysts from sediments may cause the observed
reduction in PSTs. We observed a clear pattern in three of the four strains in this study,
with toxin content decreasing or increasing in treatments in which nitrogen or phosphorus
was limiting, respectively (Figure 2A–E). These results may indicate that nitrogen plays a
functional role in the biosynthesis of PSTs.

Amino acids rich in N, such as arginine, and lysine are precursors to the synthesis of
PSTs, and thus an increase in nitrogen could increase the synthesis of these precursors and
consequently the toxin content in cells [71,72]. John and Flynn [73] found a positive relation-
ship between toxin content and the intracellular concentration of arginine in Alexandrium
fundyense. Anderson et al. [39] analyzed different metabolites produced by A. fundyense
under phosphorus-limiting culture conditions and detected an increase in the concentration
of arginine, the precursor of saxitoxin. This was also shown by John and Flynn [73] with
the same species. When phosphorus is added to deficient media, cell division increases
and the concentration of toxins per cell decreases [74,75].

Limited variation was observed in the toxin content per cell among the four strains in
semi-continuous cultures and different N:P ratios in this study, with values ranging from
4.8 to 38 pg cell−1 (Figure 3). Bustillos-Guzmán et al. [56] also did not observe significant
changes in toxin content when varying the nutrient concentration in batch cultures of G.
catenatum and attributed these results to the short acclimatization period of the strains.
However, we acclimatized the strains in this study four cell cycles to each N:P ratio before
initiating the experiment; therefore, the acclimatization of the strains to the different N:P
ratios did not have a notable effect on the cell content, as shown by our results (Figure 3).
Wide variation in toxin content per cell has been reported for G. catenatum strains isolated
from the same geographic area, and this may be considered a common characteristic [58].

On a molar basis, as is characteristic for strains from the Gulf of California, the
sulfocarbamoyl toxin C1/2 and decarbamoyl toxin dcGTX2/3 contributed the highest
molar percentages to total toxicity (Figure 5) [17,35]. GCMQ-4 showed an increase in
the molar percentage of carbamoyl toxins from 4 to 32 mol% as the N:P ratio increased
(Figure 5A–D) along with a decrease in the molar percentage of sulfocarbamoyl toxins
(48 mol%); however, this strain was the least toxic. Similar results have been previously
reported for other strains isolated from Bahía de Mazatlán [17].

The effects of different nitrogen and phosphorous concentrations on growth, toxin con-
tent, and toxin profiles have been evaluated in other species and not only in PST-producing
dinoflagellate species, such as Alexandrium spp, Pyrodinium bahamense and Gymnodinium
catenatum. The cell toxin content of these species has been found to change according to
the N:P ratio and culture media (Table 2) [10,47,56–58,68,72,73,76–80]. In addition, these
factors have also been found to influence the growth of other harmful microalgae species,
such as the dinoflagellates Karenia mikimotoi, Prorocentrum donghaiense [44], Amphidinium
carterae [46], Prorocentrum minimum [81], Prorocentrum lima, and Dinophysis spp., the pro-
duction of toxins (e.g., diarrhetic toxins) and other physiological processes [82–84]. Similar
observations have been made with brevetoxin production in Karenia brevis [85,86] and in the
production of some ciguatoxin analogs by Gambierdiscus spp. [87,88]. In addition, the N:P
ratio and growth medium have also been found to affect the growth of Ostreopsis c. f. ovata
and its production of ostreocins [89,90], Margalefidinium polykrikoides [91], and the raphido-
phyte Fibrocapsa [92]. Domoic acid production in diatoms of the genus Pseudo-nitzschia has
been found to be influenced by phosphorus and nitrogen deficiency [93]. Cyanobacteria
growth [94] and the production of cyanotoxins, such as cylindrospermopsins and micro-
cystins, by Raphidiopsis raciborskii, Microcystis sp., and Planktothrix sp., have also been found
to be affected by nitrogen and phosphorous concentration [73,95–97].

There is a consensus among some research groups regarding the effect that eutrophica-
tion can have on the global increase of harmful algal blooms [43], namely that higher inputs
of key nutrients, such as nitrogen and phosphorus, can stimulate the growth of harmful
microalgae species. Some species of dinoflagellates and cyanobacteria are harmful because
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they produce N-rich toxins (e.g., PSTs, cylindrospermopsin, microcystin, and Nodularin,
with C:N ratios of 1.5, 3.0, 4.3, and 5.1, respectively) that harm humans, animals, and
the overall health of ecosystems [72,98]. Identifying quantitative relationships between
nutrient inputs and the proliferation of specific microalgae is challenging and complex due
to the diversity of the sources, forms, and flows of both exported and cycled nutrients; the
diversity of algal nutrient acquisition mechanisms; and the interactions among noxious
species and other organisms within food webs [99].

Some studies have used meta-analyses to evaluate how changes in nutrient availability
can influence the synthesis of N-rich phycotoxins. For example, Branderburg et al. [72] de-
scribed that N-rich phycotoxin content generally increased or decreased under conditions
of phosphorus limitation or nitrogen limitation, respectively, although variation among
responses both within and between toxin-producing genera and toxin analogs was present.
Both the production and composition of phycotoxins have been shown to follow stoichio-
metrically predictable patterns [98,100]. However, Davidson et al. [100] indicated that if
the nutrient concentrations were not limiting for growth, then the nutrient ratio would
not influence the resulting floristic composition. At non-limiting concentrations, evidence
that changing N:P ratios stimulate HABs is limited and based primarily on hypothetical
relationships derived from the data of only a few sites. In all cases, an unequivocal causal
link between increases in the frequency, magnitude, or duration of HABs and changes in
either nitrogen or phosphorus limitation have been difficult to establish. Bellefeuille and
Morse [62] mentioned that nitrogen is generally required for the synthesis of amino acids,
nucleic acids, chlorophylls, and toxins, and these changes in nitrogen concentration strongly
affect cell density, primary production, and secondary metabolism. For example, high
nitrogen concentrations are correlated with high cell division, resulting in the formation of
HABs [62].

In vitro studies have shown that nutrient ratios can influence phycotoxin production,
but sex- and species-based differences and controlled environmental conditions make it
difficult to extrapolate results to explain what may happen in natural settings [100]. Our
understanding of the roles that particulate and dissolved organic nutrients (especially
organic nitrogen) play in the growth of harmful microalgae remains limited, although these
roles may be quite relevant. A better understanding of the role of mixotrophy in HAB
formation and of the competition for environmentally realistic concentrations of organic
nutrients between HAB-forming and non-HAB-producing species is needed [100,101].

Table 2. Location, toxin content, and N:P ratios of harmful algal bloom (HAB) species that pro-
duce paralytic shellfish toxins (PSTs), namely Alexandrium spp., Gymnodinium catenatum, and
Pyrodinium bahamense.

Species/Strains Location Toxin Content (fmol/Cell) Media and N:P ratio References

Alexandrium:
A. affine Vietnam 1–2.28 Nd Nguyen-Ngoc [102]

A. catenella/ACT03 Thau, France 2.90–50.3 f/2 & Provasoli Laabir et al. [103]
A. fundyense/CCMP Bigelow, Laboratories, USA 1–80 mM STX-eq 0.01: 55.55

0.18:5.42 John and Flynn [104]

A. minutum Bay Morlaix, France 0.41–8.01 5.0−3 :198.7
2:0.5 Béchemin et al. [68]

A. peruviamum/ApKS01 Malaysia 0.25–0.75 31.7:0.03 Lim and Ogata [41]

A. tamarense Southeast, China 8–55
f/2

1.29:0.77
f/2

Wang et al. [76]

A. tamiyavanichi Japan Nd f/2
1. 29:0.77 Oh et al. [105]

Gymnodinium catenatum/GCCV-6,
-7, -8, -9, -10, -11, -12, -13, -14, -15,
-16, -17, -18, -19, -20, -21 and -22

Mexican Pacific 26–28 pg STXeq/cell f/2
1. 29:0.77 Band-Schmidt et al. [57]

Gymnodinium catenatum/GCCQ-1,
GCCV-2, GCCV-4, GCPV-1,
GCPV-2, GCMV-1, GCMV-2

Mexican Pacific 13–101 pg
STX eq/cell

GSe
10:0.1 Band-Schmidt et al. [58]

Gymnodinium catenatum Australia Nd 7.60, 33.6, and 3.40 µmol L−1 Hallegraef et al. [7]
Gymnodinium catenatum Korea Nd 0.1:80.8 and 4:0.25 Han et al. [10]
Gymnodinium catenatum/

GCMQ-4, BAMAZ-2, BAPAZ-5,
BAPAZ-7

Mexican Pacific
3–10, 9–58, 8–32, and 24–149

pg
STX eq/cell

f/2 with Se (10–8 M), salinity 35 with different
relations N:P (4, 8, 16, 32, and 64) In this study

Pyrodinium bahamense/PbSA01 Malaysia 400 N:P-R Provasoli Usup et al. [78]
Pyrodinium bahamense var.

bahamense Florida, USA Nd 0.4:23.3 Phlips et al. [79]

PBC-M2-06159 Bambay Bay, Philippines 54–298 f/2
1.29:0.77 Gedaria et al. [80]

Nd. no data available.
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Our results with four isolated strains of G. catenatum from Bahía de La Paz and Bahía
de Mazatlán under the conditions of this study coincide in this sense, as the different
N:P ratios did not notably affect the variation in growth rates, toxin profiles, or toxicity.
However, growth rates and cell abundance were influenced to the greatest extent by the
specific concentrations of the nitrogen source (NaNO3).

4. Conclusions

The different N:P ratios in semi-continuous cultures did not significantly affect the
toxin profiles or the toxin content in the BAPAZ and BAMAZ strains of G. catenatum.
Nevertheless, the growth rates and cellular abundance were influenced by the N:P ratios
using NaNO3 as the nitrogen source. These finding highlights the wide range of N:P
ratios in which G. catenatum could grow under natural conditions. However, analyses of
other regions of the Gulf of California are needed, using other sources of nitrogen and
determining metabolites such as arginine as a precursor in the biosynthesis of PSTs to
understand how the N:P ratio and nitrogen concentration affect both growth rate and
toxin content.

5. Materials and Methods
5.1. Strains

Two strains from Bahía de La Paz (BAPAZ-7 and BAPAZ-5) and two strains from Bahía
de Mazatlán (BAMAZ-2 and GCMQ-4) were used in this study (Figure 6). Table 3 shows
the isolation information for each strain. Strain GCMQ-4 (Bahía de Mazatlán, Sinaloa)
was acquired from the marine dinoflagellate collection (CODIMAR) of CIBNOR in La
Paz, Mexico. The isolation information of the strains in this collection can be found at
https://www.cibnor.gob.mx/investigacion/colecciones-biologicas/codimar accessed on
13 July 2022.

Table 3. Gymnodinium catenatum strains isolated from Bahía de La Paz and Bahía de Mazatlán in the
Gulf of California, Mexico.

Strain (Code) Place and Date of Isolation Water Temperature (◦C) Isolated by

BAPAZ-5 Bahía de La Paz, B.C.S., February 2007 20–21.9 C. Band-Schmidt
BAPAZ-7 Bahía de La Paz, B.C.S., February 2007 20–21.9 C. Band-Schmidt
BAMAZ-2 Bahía de Mazatlán, Sinaloa, February 2007 * Nd C. Band-Schmidt
GCMQ-4 Bahía de Mazatlán, Sinaloa. * Nd L. Morquecho-Escamilla

* Nd: no data available.

Vegetative cells were collected by vertical and superficial trawls with a plankton
net (20 µm mesh). The concentrated phytoplankton collected in each trawl was passed
through a 60 µm mesh net to remove larger organisms. The filtrate was inoculated in
250 mL containers with f/2 culture medium [106] that had been modified by adding
selenium (10−8 M H2SeO3) and reducing the copper concentration (10−8 M CuSO4) [107].
In the laboratory, vegetative cells of G. catenatum (Supplementary Material Figure S2)
were isolated by single cell isolation with a capillary tube under an Axiovert 100 inverted
microscope (Carl Zeiss, Oberkochen, Germany) and individually transferred to a 24-cell
plate containing the modified f/2 medium. Cells were incubated at a temperature of
21.0 ± 1.0 ◦C, light intensity of 120 µmol photon m−2 s−1, and a 12:12 h light–dark cycle.

https://www.cibnor.gob.mx/investigacion/colecciones-biologicas/codimar
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5.2. Experimental Culture Condition of Gymnodinium Catenatum

The growth of the four G. catenatum strains was followed in 500 mL flasks with 250 mL
of culture medium. The strains were first grown with an N:P ratio of 16:1 to determine the
sampling times and growth phases using NaNO3 as the nitrogen source (Supplementary
Material Figure S2). Every third day, a 1 mL sample was obtained in triplicate for cell
counts, and the samples were fixed with acid Lugol [108]. Cell counts were performed in
a Sedgewick-Rafter chamber (1-mL capacity) with a DMLS optical microscope (LEICA,
Wetzlar, Germany).

5.3. Experimental Design

For experimental purposes, batch and semi-continuous cultures were used. Batch cul-
tures were performed with the four G. catenatum strains in triplicate in 500 mL Erlenmeyer
flasks. Growth rates and toxin concentrations were evaluated using NaNO3 as the nitrogen
source. The culture media were prepared by varying the amount of nitrogen, keeping the
phosphorus concentration constant (3.63 µM) in the medium, and five N:P ratios of 4:1,
8:1, 16:1, 32:1, and 64:1 were used with concentrations of 14.5:3.63, 29:3.63, 58:3.63, 116:3.63,
and 232:3.63 µM, respectively. These N:P ratios were selected according to those found
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in both bays, starting with the N:P ratio 16:1 and increasing and decreasing the nitrogen
concentration from this ratio by an order of 2.

Flasks were inoculated with 10% of the volume of the stock culture with cell abun-
dances that ranged between 300 and 800 cells mL−1 in 200 mL of culture medium. Cultures
were progressively conditioned to each N:P ratio from the initial condition (16:1). For
each N:P ratio, the cells were adapted for at least three generations before starting the
semi-continuous cultures. Once the cultures were conditioned in each of the N:P ratios,
growth was determined as described in Section 5.2.

Semi-continuous cultures were initiated at the beginning of the stationary phase. The
cultivation system was modified from a batch to a semi-continuous culture system, once
again conditioning all strains for two generations at each N:P ratio. In the semi-continuous
system, 2 mL samples were collected for cell counts and 30 mL samples were collected for
PST analysis every second day for 10 days. Samples intended for cell counts were fixed with
acid Lugol, while the samples intended for PST analysis were concentrated by filtration.
Approximately 20% of the G. catenatum culture media was replaced with ~40 mL of fresh
media after sampling. The culture conditions were the same as those described above.

5.4. Cell Growth

To determine the cell abundance and the growth rate, 10% of the volume of the stock
culture was inoculated with ~300–800 cells mL−1 in 200 mL of culture medium. Cell
abundance was estimated by collecting 2 mL of the culture media and fixing it with acid
Lugol every third day and then counting cells until the decay phase was identified [108].
The counts were performed in a 1 mL Sedgwick-Rafter chamber with a LEICA DMLS optical
microscope. The growth rates were calculated using the following Equation (1) [109]:

µ =
(lnXt − lnX0)

t
(1)

were X0 is the initial cell density, Xt is the cell at time t, and t is the time in days.

5.5. HPLC-FLD Analysis of PSTs

Samples were extracted with 1 mL of acetic acid 0.03 N. Each sample was sonicated
three times for 1 min. The crude extract was centrifuged at 14,000 rpm (18,502.4× g)
(HERMLE Z 216 microcentrifuge, Labortechnik GmbH, Wasserburg, Germany) for 15 min
at 10 ◦C. The supernatant was passed through a syringe (25 mm diameter) with glass fiber
filters (0.45 µm pore size; PVDF Millex membrane). For hydrolysis, 150 µL of each extract
was mixed with 37 µL of HCl 1N and heated with a headblock (VWR digital heatblock,
Troemner, LLC, Thorofare, NJ, USA) for 15 min at 90 ◦C to convert the N-sulfocarbamoyl
toxins to their corresponding carbamated toxins. After cooling at room temperature, the
samples were neutralized with 75 µL of CH3COONa 1N. The extracts were stored at
−20 ◦C until analysis (before 24 h). The hydrolyzed and non-hydrolyzed extracts were
injected into an HPLC liquid chromatograph in independent runs to identify and quantify
previously reported PSTs [110,111]. N-sulfocarbamated toxins (including GTX5/B1 and
GTX6/B2) were quantified by calculating the maximum peak increase, which was used to
relate them to the carbamated toxins formed during the treatment with HCl (B1 to STX,
B2 to neoSTX, C1 to GTX2, C2 to GTX3, C3 to GTX1, and C4 to GTX4). An HP Agilent
1100 chromatography system (Santa Clara, USA) was used, which consisted of an autosam-
pler, degasser, quaternary pump, two binary pumps used for post-column reactions, a
fluorescence detector, a C-18 column, and a post-column reactor. The PSTs were detected
using an excitation wavelength of 333 nm and an emission wavelength of 390 nm. The
identification of PSTs was accomplished by comparing the retention times among samples
and by coelution with commercial standards of saxitoxin (STX), neosaxitoxin (neoSTX),
goniautoxin-1,4 (GTX 1,4), decarbamoylsaxytoxin (dcSTX), decarbamoylgoniautoxin-2,3
(dc GTX 2,3), and N-sulfocarbamoyl-11-hydrosulfate (C1,2; National Research Council
Canada, Halifax, NS Canada).
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5.6. Statistical Analysis

Descriptive statistics of the variables (i.e., toxin content, toxin profiles, and growth
rates) were generated. A Kolmogorov–Smirnov test was used to evaluate normality, and
Levene’s test was used to examine homogeneity of variance. A one-way analysis of variance
(ANOVA) was used to evaluate the effect of the N:P ratio on the toxicity and growth of
the naked dinoflagellate G. catenatum. All statistical tests were performed in Statistica v.
8.0 (Statsoft, Tulsa, AK USA). The results of the statistical tests were considered significant
with a confidence level equal to or greater than 0.95 (p < 0.05).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxins14070501/s1, Figure S1: Growth curves of Gymnodinium
catenatum strains [i.e., GCMQ-4, BAMAZ-2, BAPAZ-5, and BAPAZ-7] grown with different N:P ratios
in batch culture. The cell abundance shown are the average of triplicate culture. Figure S2: Light
micrographs of a Bahía de La Paz Gymnodinium catenatum strain. (A) Ventral view showing the
cingulum and sulcus of single cell. (B) Ventral view of a four-celled chain showing cingulum and
sulcus. Cingulum (Ci), Sulcus (Su). Scale bar: 20 µm. Micrographs: Leyberth José Fernández Herrera.
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