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Cartilage, especially articular cartilage, is a unique connective tissue consisting of
chondrocytes and cartilage matrix that covers the surface of joints. It plays a critical
role in maintaining joint durability and mobility by providing nearly frictionless articulation
for mechanical load transmission between joints. Damage to the articular cartilage
frequently results from sport-related injuries, systemic diseases, degeneration, trauma,
or tumors. Failure to treat impaired cartilage may lead to osteoarthritis, affecting
more than 25% of the adult population globally. Articular cartilage has a very low
intrinsic self-repair capacity due to the limited proliferative ability of adult chondrocytes,
lack of vascularization and innervation, slow matrix turnover, and low supply of
progenitor cells. Furthermore, articular chondrocytes are encapsulated in low-nutrient,
low-oxygen environment. While cartilage restoration techniques such as osteochondral
transplantation, autologous chondrocyte implantation (ACI), and microfracture have
been used to repair certain cartilage defects, the clinical outcomes are often mixed
and undesirable. Cartilage tissue engineering (CTE) may hold promise to facilitate
cartilage repair. Ideally, the prerequisites for successful CTE should include the use
of effective chondrogenic factors, an ample supply of chondrogenic progenitors, and
the employment of cell-friendly, biocompatible scaffold materials. Significant progress
has been made on the above three fronts in past decade, which has been further
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facilitated by the advent of 3D bio-printing. In this review, we briefly discuss potential
sources of chondrogenic progenitors. We then primarily focus on currently available
chondrocyte-friendly scaffold materials, along with 3D bioprinting techniques, for their
potential roles in effective CTE. It is hoped that this review will serve as a primer to bring
cartilage biologists, synthetic chemists, biomechanical engineers, and 3D-bioprinting
technologists together to expedite CTE process for eventual clinical applications.

Keywords: articular cartilage, chondrocytes, stem cells, cartilage tissue engineering, scaffold materials,
biocompatibility, osteoarthritis

INTRODUCTION

Articular cartilage, also known as hyaline cartilage, is a
unique and durable connective tissue that plays a critical
role in physiological mobility by providing nearly frictionless
articulation for mechanical load transmission between joints
(Figure 1) (Ge et al., 2012). Owing to the scarcity and
poor proliferative activity of adult chondrocytes, a lack of
vascularization and innervation, a slow matrix turnover, and a
low supply of progenitor cells (Hunziker, 2002; Makris et al.,
2015), articular cartilage has a very low intrinsic self-regeneration
capacity after injury (Moura et al., 2020). Furthermore, the
chondrocytes of articular cartilage are entrapped in a low-
nutrient and low-oxygen environment (Yamagata et al., 2018).
Damage to the articular cartilage frequently results from sport-
related injuries, diseases, degeneration, trauma, and tumors.
Failure to treat impaired cartilage may lead to osteoarthritis
(Muzzarelli et al., 2012), the most common joint disease
responsible for pain and disability affecting over a quarter of
the adult population (Chen et al., 2017). Cartilage damage
usually recovers through scar tissue formation that is primarily
composed of fibrocartilage (Ahmed and Hincke, 2010). Hence,
it is essential to explore new techniques for articular cartilage
regeneration to effectively restore the function of joints.

Ideal cartilage repair aims to restore key properties of the
original hyaline cartilage in terms of histological structure
and biomechanical functions, which can be only achieved
by replacing with healthy cartilage tissue (Alkaya et al.,
2020). However, current treatments, including microfracture,
autologous and allogeneic osteochondral transplantation, and
autologous chondrocyte implantation (ACI), frequently result
in the formation of fibrocartilage tissue rather than the ideal
native-like hyaline cartilage, leading to serious adverse effects
including pain, donor site morbidity, inconsistent long-term
effects, and infection (Levy et al., 2013; Solheim et al., 2013;
Valderrabano et al., 2017; Moura et al., 2020). ACI is a technique
wherein chondrocytes harvested and cultured from healthy
cartilage are embedded onto defected cartilage covered with
periosteum (Alkaya et al., 2020). The resultant cartilage-like
tissue can be integrated with surrounding normal cartilage and
function mechanically following regeneration. Currently, ACI
is a prevalent clinical method for the treatment of articular
cartilage defects, with positive outcomes in patient satisfaction
and standard knee scores at short- and mid-term follow-ups
(Bentley et al., 2003; Mandelbaum et al., 2007).

While ACI shows promising results in producing hyaline-
like tissue (Minas et al., 2016; Sheu et al., 2017; Krill et al.,
2018), several drawbacks include donor site morbidity, a shortage
in the supply of chondrocytes, chondrocyte dedifferentiation in
monolayer culture, and periosteal hypertrophy (Steinwachs and
Kreuz, 2007). The biggest challenge of ACI is that chondrocytes
are highly prone to transforming into fibroblasts and age
considerably faster under in vitro conditions (Gosset et al., 2008).
Moreover, implantation of chondrocytes without proper scaffolds
often leads to a high likelihood of graft failure, delamination,
and tissue hypertrophy (Wood et al., 2006). The low quantity of
available cartilage cells, further compounded by their low mitotic
activity level, results in difficulty obtaining sufficiently large
amounts from cellular cultures (Zylinska et al., 2018; Alkaya et al.,
2020). Collectively, while cartilage restoration techniques such
as osteochondral transplantation, ACI, and microfracture have
been used to repair certain cartilage defects, the overall clinical
outcomes are often mixed and undesirable. Better and more
efficient cartilage injury repair approaches have to be devised.

Cartilage tissue engineering (CTE) may hold promise to
facilitate cartilage repair. Ideally, a successful CTE requires at
least three critical parameters: the use of effective chondrogenic
factors, an ample supply of chondrogenic progenitors, and the
employment of cell-friendly, biocompatible scaffold materials
(Green et al., 2015; Mostafa et al., 2019). For the past 10 years,
significant progress amounts of basic and translational research
have identified biofactors that can promote and/or facilitate
chondrocyte differentiation and cartilage maturation, while
various sources of mesenchymal stem cells (MSCs) and/or
induced pluripotent stem cells (iPSCs) have been characterized
as potential chondrocyte progenitor cells (Castro-Vinuelas et al.,
2018; Rim et al., 2018). The advent of three-dimensional
(3D) bio-printing should further facilitate the progress of CTE
(Bishop et al., 2017).

In this review, we briefly discuss potential sources of
chondrogenic progenitors, mostly MSCs. We then emphasize
on currently available chondrocyte-friendly scaffold materials,
including natural and synthetic polymers and extracellular
matrix, along with 3D bioprinting techniques, for their potential
roles in effective CTE. Whenever possible, we highlight
promising results from in vitro and/or in vivo studies involved
in the uses of biofactor-stimulated progenitor cells delivered with
biocompatible scaffold materials in this review. It is hoped that
the review can serve as a primer to bring cartilage biologists,
synthetic chemists, biomechanical engineers, and 3D-bioprinting
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FIGURE 1 | Schematic depiction of articular cartilage and chondrocytes of the joint surface.

technologists together to expedite the CTE process for eventual
clinical applications.

MESENCHYMAL STEM CELLS (MSCs)
AS AN IMPORTANT CHONDROGENIC
PROGENITOR SOURCE FOR
CARTILAGE TISSUE ENGINEERING (TE)

Ideal progenitor cell sources to replace chondrocytes should have
the following features: a pool of undifferentiated cells featuring
high regenerative potential, unlimited division capacity, self-
renewal capability, easy accessibility, and hypo-immunogenicity
(Li Y.Y. et al., 2014). MSCs are multipotent progenitor cells that
can self-renew and differentiate into several lineages including
bone, cartilage, fat, and muscle (Green et al., 2015; Pittenger
et al., 2019; Gomez-Salazar et al., 2020). While the most common
used adult source tissues for human MSCs are bone marrow
and adipose tissue, MSCs have been identified in numerous
connective soft tissues (Pittenger et al., 2019; Gomez-Salazar
et al., 2020). As one of the most popular progenitor sources,
MSCs have been used in nearly 1,000 clinical trials for diverse
indications, ranging from musculo-skeletal defects, disorders
of the immune system including auto-immune diseases, to
myocardial infarcts (Rastegar et al., 2010; Teven et al., 2011;
Beederman et al., 2013; Coalson et al., 2019; Pittenger et al., 2019;
Gomez-Salazar et al., 2020; Pakvasa et al., 2021). Nonetheless,
MSCs remain a biological enigma, since retrospective derivation
in culture has concealed the true native identity of these cells, so
their roles in tissue regeneration remain to be fully understood
(Gomez-Salazar et al., 2020).

During in vivo cartilage repair experiments, MSCs showed
improved cell arrangement, subchondral bone regeneration, and
integration compared to mature chondrocytes, suggesting that

MSCs are a suitable alternative for cartilage repair (Li Y.Y. et al.,
2014). Although MSCs can be injected intravenously (IV), intra-
articularly (IA), or intraperitoneally (IP), the cells ultimately
diffuse into the peripheral blood and occupy the non-affected
area (Gonzalez et al., 2009; Ra et al., 2011; Liang et al., 2012;
Zhang et al., 2014). Efforts have been attempted to transplant
MSCs formed in 3D structures, such as seeding in scaffolds,
cell aggregates, and sheets (Tasso et al., 2009). Thus, tissue
engineering (TE) provides a promising approach for cartilage
restoration using MSCs (Chung and Burdick, 2008). The ultimate
goal of TE is to develop biological substitutes that can be
implanted into the body, supporting tissue remodeling in the
frame of a 3D scaffold (Kim W.K. et al., 2019).

The delivery and implantation of MSCs into cartilage defects
can be accomplished by seeding MSCs onto different types of
scaffolds, which are then introduced into cartilage lesions. An
ideal scaffold should contain implanted MSCs and bioactive
molecules for chondrocyte differentiation and maturation
(Henderson et al., 2004). Growth factors are prime bioactive
molecules capable of inducing chondrogenic differentiation of
MSCs (Peterson et al., 2000). A major challenge in TE in
3D microenvironments is the need for biomaterial scaffold to
promote cell attachment, spreading, migration, proliferation,
and differentiation for effective tissue regeneration (Im, 2020;
Mohammadinejad et al., 2020). Such biomaterials should have
the same mechanical properties as native cartilage, be able
to properly integrate with adjacent cartilage, be porous with
interconnected pores, have the ability to establish and maintain
the desired shape of the regenerated cartilage, and yet adequately
biodegrade (Freedman and Mooney, 2019; Alkaya et al., 2020). In
the following sections, we summarize the features of commonly
used scaffold materials, and preparation techniques for biological
scaffolds utilized in either experimental or clinical settings to
develop TE for cartilage repair.
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NATURAL POLYMERS AS SCAFFOLDS
FOR CARTILAGE TISSUE ENGINEERING

Natural polymers, such as chitosan, collagen, alginate, silk
fibroin, hyaluronan, and gelatin, have been used extensively in
TE for cartilage regeneration (Table 1). Due to their superior
biocompatibility, excellent biodegradability, minute negative
immunological influence, and favorable cellular interaction
(Alkaya et al., 2020), many natural materials have been employed
to provide a satisfactory bioactive environment and mechanical
support to foster the growth of new chondral tissue at defect
sites (Bharadwaz and Jayasuriya, 2020). Natural polymers show
structural compatibility akin to the biological molecules found in
organisms when implanted in vivo, thus reducing the risk of an

immune response (Mohammadinejad et al., 2020). Consequently,
certain polysaccharides are either non-immunogenic or possess
low immunogenicity when compared with synthetic polymers.
Moreover, ligands of natural biomaterials can facilitate cell
adhesion and promote the activation of various chondrogenic
activation pathways (Alkaya et al., 2020).

Chitosan
Chitosan (CS) has emerged as a strong candidate scaffold for TE
applications. Originating from chitin, chitosan is a unique natural
polysaccharide with superb properties: high biodegradability,
biocompatibility, non-antigenicity, adsorption capabilities, and
antimicrobial activity (Giuliani, 2019). Studies have also found
no complications, such as inflammation or allergic reactions,

TABLE 1 | Characteristics of the outlined natural polymers for CTE.

Biomaterials Characteristics Advantages Disadvantages References

Chitosan Originating from chitin;
Linear natural carbohydrate biopolymer;
Free amine groups in its backbone
chain;
Slower degradation rate

Biodegradability; Biocompatibility;
Non-antigenicity;
Adsorption capabilities;
Antimicrobial activity;
Promoting chondrogenesis

Low solubility;
Low mechanical
strength

Keller et al. (2017), Giuliani
(2019), Sultankulov et al. (2019)

Collagen Important part of natural cartilage
organic materials;
One of the most abundant proteins in
humans and a major component of
extracellular matrix

Biocompatibility;
Low immunogenicity;
Biodegradability;
Promoting chondrogenesis;
Facilitation of cell ingrowth and
remodeling;
Easy processing

Low solubility;
Low mechanical
strength;
Rapid
biodegradation rate

Lee et al. (2001), Kuroda et al.
(2007), Turk et al. (2018), Li L.
et al. (2019), Marques et al.
(2019)

Silk Extracted from Bombyx mori cocoon;
A biocompatible material found as the
core of a structural protein fiber;

Excellent mechanical properties;
Biocompatibility
Controlled biodegradability;
Lower infection risk;
Easy processing;

Delayed
hypersensitivity;
Initiator of immune
reactions;

Zhang et al. (2010), Wang et al.
(2011), Ma et al. (2018),
Bharadwaz and Jayasuriya
(2020)

Alginate Produced from the cell wall of brown
algae;
Polysaccharide with negative charge;
A cell-friendly gelation

Low immunogenicity;
Biocompatibility;
High abundance resources;
Low prices;
Regulation of the inflammatory
chemokines;
Good chondrogenic potential

Low
biodegradability;
Poor adhesion

Cho et al. (2009), Arlov et al.
(2014), Park and Lee (2014),
Filardo et al. (2018), Li L. et al.
(2019)

Hyaluronic acid A disaccharide unit;
Abundant in the human body, present
in the ECM of the skin, cartilage, and
lenses

Biocompatibility;
High hydrophilicity;
Nontoxicity;
Elasticity;
Anti-inflammatory

Low mechanical
properties;
Rapid enzymatic
degradation

Collins and Birkinshaw (2013),
Gupta et al. (2019), Li L. et al.
(2019), Zheng et al. (2019)

Gelatin Obtained from native collagen via
hydrolysis;
An ideal carrier of proteins, growth
factors, and so on

Biocompatibility; Biodegradability;
High water-solubility;
Cell adhesion

Poor mechanism
properties

Larsen et al. (2006), Li F. et al.
(2017), Echave et al. (2019)

Platelet-rich fibrin Derived from platelet-rich plasma;
Second-generation platelet concentrate
containing abundant growth factors

Greater quantities of growth factors;
Outstanding handling and storage
traits;
Low prices;
Easy preparation

Poor mechanism
properties

Miron et al. (2017), Wong et al.
(2017), Wu et al. (2017),
Barbon et al. (2019)

Cellulose Durable, fibrous, and water-insoluble
substance from plant cell walls

Biodegradability;
Biocompatibility;
Outstanding mechanical properties;
Non-toxic
Low prices;
Natural abundance

Poor mechanism
properties

O’Sullivan (1997), Hubbe et al.
(2017), Isobe et al. (2018),
Tayeb et al. (2018), Dutta et al.
(2019)
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following implantation of CS-based scaffolds (Keller et al., 2017).
Due to the existence of free amine groups in its backbone
chain, CS can be further modified chemically to introduce useful
properties for biomaterial development (Sultankulov et al., 2019).
Its hydrophilic structure promotes cell adhesion, proliferation,
and differentiation, while its polycationic structure at mild acidity
allows for gene delivery through the immobilization of negatively
charged DNA, proteins, and enzymes (Sultankulov et al., 2019).

Chitosan is a linear natural carbohydrate biopolymer with
configurational similarity to glycosaminoglycans of the ECM
for cell–cell adhesion (Rodriguez-Vazquez et al., 2015). CS can
present a similar microenvironment, allowing for chondrocyte
proliferation and thus inducing chondrogenesis and ECM
synthesis (Liu et al., 2017). Its chemical name is (1,4)-2-
amino-2-deoxy-beta-D-glucan, a copolymer of randomly located
(1→4)-2-amino-2-deoxy-d-glucan (d-glucosamine) and (1→4)-
2-acetamido-2-deoxy-d-glucan (N-acetyl d-glucosamine) units
(Sultankulov et al., 2019). CS degrades at a slower rate
compared to other natural polymers, such as fibrin, gelatin,
and collagen (Sultankulov et al., 2019). The physical properties
of CS are dependent on its the molecular weight, degree of
polymerization, and purity of the product (Tharanathan and
Kittur, 2003). Shortcomings of pure CS, especially its mechanical
strength, can be rectified by the formulation of CS-based
nanocomposite scaffolds, mainly with tricalcium phosphate,
collagen, hydroxyapatite, and synthetic polymers (Bharadwaz
and Jayasuriya, 2020).

Chondrocytes cultured in CS-alginate beads were shown
to express lower levels of inflammatory cytokines (IL-6 and
IL-8) and higher levels of cartilage matrix component genes
(hyaluronan and aggrecan) in vitro when compared to alginate
beads alone (Bhattacharjee et al., 2016). The addition of
hyaluronic acid-CS nanoparticles (NPs) to a pellet co-culture
of human infrapatellar fat pad (IPFP)-derived MSCs with
osteoarthritic chondrocytes led to greater levels of chondrogenic
differentiation (Datta et al., 2001). Human IPFP-MSCs seeded
on 3D-printed CS scaffolds in chondrogenic media containing
TGF-β3 and BMP-6 attached, proliferated, and differentiated
into chondrocyte-like cells in the formation of cartilaginous
tissue in vitro (Patra et al., 2012). Chitosan was shown
to induce human bone marrow MSCs to differentiate into
chondroid spheres by activating mTOR/S6K (Li S. et al., 2019).
A chitosan–hyaluronic acid-based biometric matrix was shown
to provide an appropriate environment, allowing adipose-derived
stem cell (ASC) differentiation into cartilage matrix producing
chondrocytes (Huang et al., 2019).

Chitosan (CH), poly (L-lactide) (PLLA), and pectin (PC)
compositions have been adapted using the freezing drying
method to create polyelectrolyte complex-based porous scaffolds,
then crosslinked using 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC) and a N-hydroxysuccinimide (NHS)
solution containing chondroitin sulfate (CS) to mimic the
composition and architecture of the cartilage ECM (Mallick
et al., 2018). This type of scaffolds exhibited a satisfactory
swelling profile and moderate biodegradation, as well as
being hemocompatible with sufficient mechanical strength
for applications in cartilage tissue regeneration. In order to

investigate whether the chitosan gel can adhere to cartilage and
bone in various animal bone defects, the a space-filling and
cyto-compatible chitosan gel solution was designed and shown
to adhere to cartilage and bone in situ, a property that indicated
high potential for its use as an arthroscopically injectable vehicle
for cell-assisted cartilage repair (Hoemann et al., 2005).

Collagens
Collagens (COL) are one of the most abundant proteins
in humans and a major component of the ECM and have
superb biocompatibility, low immunogenicity, interactivity with
growth factors and cell adhesion molecules, biodegradability, and
facilitation of cell ingrowth and remodeling (Lee et al., 2001).
The ECM of articular cartilage is composed of approximately
90% type II collagen (Spratt and Haycock, 1988). Collagens are
comprised of polypeptide chains composed of various amino
acids, typically in the tripeptide sequence glycine X-Y (X and Y
are frequently proline and hydroxyproline) (Marques et al., 2019),
forming a triple helix structure promoting collagen’s structural
stability and excellent mechanical properties (Silva et al., 2014).

Collagens are found in abundant quantities from fish waste,
such as skins, scales, and bones (Senaratne et al., 2006; Ge et al.,
2012). Aquatic sources, such as cuttlefish (Nagai et al., 2001),
jellyfish (Song et al., 2006), the skin and muscles of oceanic
animals, and fish waste (Mahboob, 2015) are regarded as superior
to bovine sources (Silva et al., 2014), as there is less concern
over the potential transmission of spongiform encephalopathy
(Senaratne et al., 2006). Nonetheless, the rapid biodegradation
rate of pure collagen scaffolds, their low mechanical strength,
and their tendency to cause frequent swelling incentivizes
the use of collagen-based composite biomaterials for CTE
(Turk et al., 2018).

Collagen-based materials support chondrocyte differentiation
and are frequently used in the repair of articular cartilage (Li Y.Y.
et al., 2014). When rabbit MSCs and collagen were encapsulated
as microspheres, and implanted into the osteochondral defects
in an animal model the scaffold promoted spontaneous
differentiation of endogenous MSCs into chondrocytes
(Yamagata et al., 2018). The implantation of collagen gel
and MSCs into an athlete suffering from knee pain resulted
in hyaline-like tissue formation and functional recovery of the
articular cartilage (Kuroda et al., 2007). The mixture of rabbit
chondrocytes with rabbit and rat collagen scaffolds to form
neo-RBT (neo-rabbit cartilage) and neo-RAT (neo-rat cartilage)
constructs featured cartilage-like repair tissue covering the
5-mm circular, 4-mm deep defects created in the rabbit condyles
(Wang et al., 2018).

Collagens exhibit several advantageous characteristics for drug
delivery, including high biodegradability and biocompatibility,
low toxicity, high efficiency, and a long period of effectiveness
(Li L. et al., 2019). However, the interaction level between
enzymes and other bioactive substances is weaker in collagen
than in hydrophobic polymers (Li L. et al., 2019). Chondrocytes
embedded in the hydrogel with type I and II collagens maintained
their natural morphology and secreted cartilage-specific ECM,
which could be altered by changing the amount of type I collagen
(Yuan et al., 2016). Hydrogel formed from HA and type II
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collagen are also able to form in situ scaffolds. Chondrocytes and
TGFβ1, encapsulated in the scaffold, maintained chondrocyte
viability and stimulated glycosaminoglycan production,
gene expression, and cell proliferation and morphology
(Kontturi et al., 2014).

Collagen can also be used as a bioink component of 3-D
bio-printing for CTE applications (Kim et al., 2016; Lee et al.,
2018; Yang X. et al., 2018). When three different combinations
using 3D bioprinting: alginate (SA), alginate/agarose (SA/AG)
and alginate/collagen (SA/COL), were tested, the SA/AG bioinks
achieved superior tensile strength and compressive modulus,
while the SA/COL bioinks featured the best cell viability of the
three, as indicated by higher levels of several specific cartilage
gene markers (Yang X. et al., 2018). The collagen-based bioinks
also led to significantly higher expression levels of specific
osteogenic gene markers for human adipose stem cell (hASC)
differentiation (Kim et al., 2016). Similarly, Lee et al. (2018)
investigated the production of cell-laden collagen structures with
a bioink container, and did not find any problems associated
with collagen printing when using the most optimal parameters
described in the previously mentioned work.

Silk Fibroin
Silk fibroin (SF) is one of the oldest natural polymers
and considered an enticing polymer for various biomedical
applications, with an evolutionary history spanning over 380
million years (Ma et al., 2018). Extracted from Bombyx mori
cocoon, a mulberry source, SF is a biocompatible material
found at the core of a structural protein fiber that is coated
with sericin, and has been used in several tissue engineering
applications (Bharadwaz and Jayasuriya, 2020). SF extracted from
non-mulberry sources, such as the tasar silkworm (Antheraea
mylitta), has improved mechanical properties compared to SF
isolated from mulberry sources (Kundu et al., 2012). SF-based
biomaterials have several advantages over other natural polymers
derived from tissues of allogeneic or xenogeneic origins. SF-
based biomaterials have a lower infection risk and lower costs
due to less complex processing procedures (Ma et al., 2018).
Silk fiber purification is typically performed with a simple alkali
or enzyme-based degumming protocol, which results in fibrin
without sericin (Ma et al., 2018). SF also benefits from the large-
scale processing infrastructure already established by traditional
silk textile industries, further lowering costs (Kundu et al., 2013).

However, certain foreign body responses can be triggered
by SF, reminiscent of non-autologous biomaterials of non-
mammalian origin (Giesa et al., 2011). It has been suggested the
delayed hypersensitivity of silk sutures may relate to the presence
of sericin (Du et al., 2011). Nonetheless, further studies must
be done to identify the specific source(s) of any immunogenic
remnants in silk (Zhang et al., 2010). The biocompatibility
of SF-based materials has been well tested when applied in
musculoskeletal tissue engineering (MTE) (Meinel and Kaplan,
2012). It was reported that SF 3-D scaffolds activated very mild
immune responses after subcutaneous implantation in rats over a
period of 1 year; and all genes associated with immune response,
including TNF-α, IFN-δ, IL-4, IL-6, and IL-13, were held at
undetectable expression levels for most types of silk sponges
(Wang et al., 2008).

A proper balance of mechanical properties such as breaking
strength, modulus, and elongation can make silk a tough, ductile,
and attractive material (Vollrath and Knight, 2001). Silk has
a strength-to-density ratio up to ten times higher than steel
(Gellynck et al., 2008). Such outstanding mechanical qualities
provide many potential applications of SF-based materials: its
high tensile strength makes it applicable for sutures, while its
flexibility is suitable for creating loadbearing scaffolds (Altman
et al., 2002). In addition to its good extensibility range, elasticity,
strength, and strain hardening, silk’s mechanical behavior can
also be modified and tuned by altering the protein concentrations
and the size and density of pores (Nazarov et al., 2004;
Kim et al., 2005).

When implanted, SF products have variable degradation
rates determined by the secondary structure of silk formed
during regeneration (Wang et al., 2011). Wang et al. (2008)
found that water based porous SF scaffolds implanted in rats
disintegrated and completely disappeared after 1 year. They
also reported silk was bio-resorbable in addition to being
biodegradable, suggesting that the host immune system causes
degradation of silk and silk material-based scaffolds (Wang
et al., 2008). Sengupta et al. (2010) detailed that osteoclasts
and osteoblasts were able to invade SF films by expressing
metalloproteinases (MMPs). Unlike synthetic biomaterials with
faster degradation and less desirable mechanical properties, SF
systems are better suited for TE because of their ability to
retain strength over extended periods of time in vivo, a trait
that is essential given the need for slow degradation and load
bearing capacity in TE (Ma et al., 2018). Nonetheless, a truly
comprehensive understanding of degradation and the clearing
mechanisms of silk prescribes additional investigation, which
may benefit the continued development of SF as biomaterial
scaffolds (Ma et al., 2018).

Alginate
Alginate is a natural polysaccharide composed of 1,4-linked
D-mannuronic acid (M-block) and L-guluronic acid (G-block)
residues (Li L. et al., 2019). It can be harvested from the cell
wall of brown algae, and is widely used in TE due to its low
immunogenicity, high biocompatibility and availability, and cell-
friendly gelation (Rehm and Valla, 1997). Due to these traits,
along with its efficient complexation with divalent cations and
highly hydrated viscoelastic properties, alginate has been widely
implemented to enfold various types of cells into hydrogels (Cho
et al., 2009). It has been approved by the US Food and Drug
Administration (FDA) for human use as a food additive and
wound dressing material. Alginate has a low cost, no cellular
toxicity, and easy fabrication of 3D porous scaffolds or cell
immobilized beads. However, alginate-only scaffolds showed
poor adhesion to anchor-dependent cells (Zehnder et al., 2015).
Furthermore, it retains long-term in vivo stability since mammals
do not express alginate lyases or other known enzymes with
homologous functions, and thus cannot degrade alginate (Lee
and Mooney, 2012).

The sulfation of alginate increases its negative charge,
promoting electrostatic interactions typical of sulfated GAGs
(Arlov et al., 2014). From a biochemical perspective, sulfated
alginate is a heparin/heparan sulfate analog, which interacts
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with heparin-binding proteins to inhibit both inflammatory
pathways and complement activation (Kerschenmeyer et al.,
2017). Moreover, sulfated alginate hydrogels were used
as a mitogenic signaling scaffold to induce chondrocyte
expansion, while preserving the native cartilage phenotype
(Kerschenmeyer et al., 2017).

Alginate is a propitious biomaterial for scaffold-based
approaches, possessing good chondrogenic potential and
superb biocompatibility (Filardo et al., 2018). Alginate
is also dimensionally stable and supports chondrogenic
differentiation due to the absence of adhesive domains that
may inhibit chondrogenesis (Ma et al., 2012). Alginate gel
can be chondroinductive following the embedding of hMSCs
(Diduch et al., 2000). Alginate can undergo gentle gelation
with multivalent cations like Ca2+, producing hydrogels that
showed excellent biocompatibility (Ko et al., 2010). When
combined, alginate microspheres and HA hydrogel serve as
a composite carrier of MSCs as well as transforming growth
factor (TGF) and retains its bioactivity in the scaffold, promoting
chondrogenesis of MSCs (Bian et al., 2011). Although it possesses
a lower elastic modulus than normal alginate-based hydrogel, the
oxidized alginate hydrogel has a higher capability for cartilage
repair (Bouhadir et al., 2001). Blending the arginine-glycine-
aspartic acid (RGD)-modified oxidized alginate, hyaluronate and
chondrocytes formed an injectable hydrogel, which expressed
the chondrogenesis-related protein and chondrogenic marker
gene at 6 weeks after injection (Park and Lee, 2014).

Hyaluronan Acid/Hyaluronan
Hyaluronan, also known as hyaluronic acid (HA), is a
disaccharide unit composed of N-acetylglucosamine and D-
glucuronic acid (Li L. et al., 2019). It is abundant in the human
body, present in the ECM of the skin, cartilage, and lenses.
HA does not contain sulfur like other mucopolysaccharides,
and the molecular weight varies widely in different tissues. As
a major component of the ECM, HA supports cell migration,
proliferation, and morphogenesis (Collins and Birkinshaw,
2013). HA can also provide cells with a 3D microenvironment
closely resembling natural conditions (Li L. et al., 2019), and plays
a significant role in wound healing and cell signaling (Toole,
2004). Chondrocytes can firmly attach to such hyaluronan-
based matrices (Mohammadinejad et al., 2020). HA also binds
to specific receptors expressed in many cells, triggering several
intracellular signal events (Cao et al., 2005).

Hyaluronic acid has been used since the 1970s in humans to
treat joint pain and other health conditions (Gupta et al., 2019),
as well as in various applications such as tissue engineering,
regenerative medicine, and clinical practice (Li L. et al., 2019).
A chitosan–hyaluronic acid-based biomimetic matrix when used
in conjunction with ASC was shown to form articular hyaline
cartilage (Huang et al., 2019). It was reported that platelet-
rich plasma (PRP), rich in various cytokines, proteins, and
growth factors, was combined with HA hydrogel to repair
critical-size focal cartilage defects in porcine condyles (Yan
W. et al., 2020). Exogenous HA prevents the degradation
of cartilage while promoting its regeneration and enhancing
chondrocyte HA synthesis, reduces proinflammatory mediator

production, and suppresses matrix metalloproteinases involved
in OA pathogenesis (Li L. et al., 2019). HA gels combined with
proteoglycan may be suitable for use as an injectable therapeutic
agent, delaying or inhibiting OA onset following knee injuries
(Srinivasan et al., 2012). HA possesses several advantages such
as high hydrophilicity, nontoxicity, and biocompatibility (Zheng
et al., 2019). Under typical shear rates across two sliding surfaces
of articular cartilage, HA viscosity decreased dramatically and
became comparable to water due to the shear-thinning effect,
ruling out its application for joint lubrication (Jahn et al., 2016).
HA degrades in vivo due to it being a natural polymer and also
displays variable lubrication and anti-inflammatory capability
based on molecular weight (Zheng et al., 2019).

Gelatin
Gelatin is a fibrous protein composed of a unique sequence of
amino acids obtained from native collagen via hydrolysis. Gelatin
exhibits good biodegradability and biocompatibility (Aldana
and Abraham, 2017), and possesses the ability to create poly-
ionic complexes with charged therapeutic compounds such
as polysaccharides, growth factors, proteins, and nucleotides
(Larsen et al., 2006), which make gelatin an idea delivery vehicle
for a variety of biomolecules (Echave et al., 2019). When MSCs
were implanted into rabbit osteochondral defects, gelatin and
MSCs were found to be highly biocompatible, without evidence
of immune response or lymphocytic infiltration at the site
(Yamagata et al., 2018). Gelatin can be used in the construction
of scaffolds to improve cell adhesion, infiltration, spread, and
proliferation (Sajkiewicz and Kolbuk, 2014).

Gelatin methacryloyl (GelMA) is produced through the
reaction of gelatin with methacrylic anhydride (MA) (Van den
Bulcke et al., 2000). GelMA hydrogels are notably similar
to the ECM, and the mechanical, swelling, and lubricating
properties of GelMA hydrogels are reminiscent of natural
cartilage (Spiller et al., 2011). Microporous GelMA hydrogels
displayed higher rates of proliferation, while GelMA hydrogels
without a microporous structure possessed significant advantages
in the cartilaginous phenotype (Li X. et al., 2017). A study
over the impact of spatial chondrocyte distribution on cartilage
defect repair indicated that spatial chondrocyte distribution
indeed served an important role in the repair process
(Mouser et al., 2018).

Gelatin-based 3D microgels can be utilized to stimulate cell
proliferation and bolster the differentiation of encapsulated
cells such as stem cells (Li F. et al., 2017). These microgels
are capable of shielding the cells from shear-force associated
mortality during injection and provide them with a milieu that
enhances cell retention within the targeted site (Nichol et al.,
2010). Injectable covalently cross-linked gelatin hydrogels have
been created recently with the assistance of pendant tetrazine or
norbornene click chemistry pairs in modified polymers (Koshy
et al., 2016). These gelatin polymers rapidly crosslink together
and begin to degrade after injection in vivo, while they facilitate
cell viability and transform encapsulated cells into 3D elongated
morphologies (Echave et al., 2019). A thermoresponsive gelatin,
poly(N-isopropylacrylamide)-grafted gelatin (PNIPAAm–
gelatin) was found suitable as in situ formable scaffold for
cartilage repair (Ibusuki et al., 2003).
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Natural and synthetic polymeric electrospun scaffolds have
recently gained attention due to their ability to mimic the ECM.
One pertinent electrospun fibrous membrane is a hybrid of
gelatin and polycaprolactone (GT/PCL), a versatile biomimetic
substrate for soft tissue engineering including cartilage (Xue
et al., 2013; Zheng et al., 2014). Xue et al. (2013) and Zheng
et al. (2014) developed a sandwich model, in which cells
were seeded on acellular cartilage sheets layer-by-layer over
a titanium alloy mold to generate ear-shaped cartilage. The
engineered 3D cartilage using the sandwich model and GT/PCL
70:30 electrospun fibrous membranes proved to be effective
(Xue et al., 2013; Zheng et al., 2014). Scaffolds produced
using this method also possess superb in situ space-filling
qualities in both air and aqueous solutions, without the use
of protective barriers. In a separate study, Lin et al. (2019)
supplemented mGL scaffolds with bioactive polymers like HA
to further optimize them. The ideal ratio was 9:1 of mGL:mHA,
generating the best cartilage with high levels of chondrogenesis.
The mGL/mHA (9:1) scaffolds also induced bone and cartilage
generation after 12 weeks following implantation into rabbit
osteochondral defects, highlighting potential future clinical
applications (Lin et al., 2019).

Platelet-Rich Fibrin
Autologous platelet concentrates allow high local concentrations
of growth factors while remaining low in cost and complexity.
Derived from PRP, platelet-rich fibrin (PRF) is a second-
generation platelet concentrate containing abundant growth
factors such as fibroblast growth factors (FGFs), platelet-derived
growth factors (PDGFs), epidermal growth factor (EGF), insulin-
like growth factors (IGFs), TGFs, and vascular endothelial growth
factors (VEGFs) Wu et al. (2017). Kobayashi et al. (2016)
compared the release of growth factors for PRF, PRP, and
advanced platelet-rich fibrin (A-PRF), finding that PRP exhibited
significantly higher release levels at earlier time points. PRF
exhibited a steady release over a 10-day period. A-PRF released
significantly greater quantities of growth factors than traditional
PRF (Miron et al., 2017). Thus, PRP is optimal for fast delivery of
growth factors while PRF and A-PRF are best used when long-
term release is desired (Grecu et al., 2019). PRF is composed
of leukocytes, cytokines, platelets, and adhesive proteins such
as fibronectin, fibrinogen, vitronectin, and thrombospondin-1
(Miron and Zhang, 2018). This blood-derived membrane is also
enriched with leukocytes that play a key role in antibacterial
immune responses, contributing to wound healing (Dohan et al.,
2006; Fioravanti et al., 2015).

Platelet-rich fibrin has drawn attention due to its potential
benefits for tissue injury and would healing (Barbon et al., 2019).
The affordability, low risk to patients, and ease of preparation
all contribute to PRF’s status as an ideal scaffold for tissue
healing (Maia et al., 2018). Fibrin polymerization results in a
3D cross-linked fibrin matrix (Fioravanti et al., 2015) that can
serve as a binding site for growth factors and platelets (Caloprisco
et al., 2010; Caloprisco and Borean, 2011). Thus, PRF enhances
tissue regeneration by raising growth factor concentration and
mimicking the natural process of tissue repair over time (Di
Liddo et al., 2018; Miron and Zhang, 2018).

Platelet-rich fibrin was shown to augment proliferation,
chemotaxis, and viability of chondrocytes, and induced
chondrogenic differentiation in cultured chondrocytes as the
expression of markers such as aggrecan and type II collagen
was detected (Wong et al., 2017). PRF improved formation and
deposition of cartilaginous matrix by cultured chondrocytes
(Wong et al., 2017). Spreafico et al. (2009) found that human
platelet releasates bolstered ECM synthesis and deposition
while maintaining the normal phenotype of chondrocytes. PRF
releasate (PRFr) was recently derived from human bloods (Su
et al., 2009), and the concentrations of lipids, proteins, and
growth factors were higher in PRFr compared to supernatant
serum (Burnouf et al., 2012). PRFr was found to upregulate the
expressions of aggrecan and type II collagen, heightening the
production of proteoclycan and glycosaminoglycan in human
OA chondrocytes (Wu et al., 2017). PRF generated a favorable
environment for stem cell differentiation and proliferation due
to the release of endogenous growth factors (Kazemi et al., 2017).

Platelet-rich fibrin has emerged as a promising biological
tool for cartilage regeneration as it carries supraphysiological
levels of cytokines and growth factors to injury sites (Barbon
et al., 2019). The in situ administration of PDGFs was shown to
stimulate in vitro chondrocyte differentiation and proliferation
(Brandl et al., 2010), along with promoting in vivo cartilage
healing (Fortier et al., 2011). Gaissmaier et al. (2008) reported
higher human chondrocyte proliferation rates resulting from
the addition of 1% and 10% human platelet supernatant in
culture, and Akeda et al. (2006) reached a similar conclusion
regarding the stimulating effect of 10% PRP-enriched medium
on porcine chondrocyte proliferation (Akeda et al., 2006). Since
PRF also contains a multitude of platelet-derived cytokines and
growth factors, PRF may be capable of promoting articular
cartilage regeneration, providing suitable mechanical properties
(Barbon et al., 2019).

Platelet-rich fibrin has recently emerged as a promising non-
surgical means to treat cartilage injuries. Chien et al. (2012) were
among the first to demonstrate PRF inclusion in biodegradable
fibrin scaffolds as a regeneration matrix to support chondrocyte
proliferation and redifferentiation. A culture-free, single-stage
approach has been developed, combining PRF with autologous
cartilage grafts and negating the need for complex procedures
involving in vitro chondrocyte expansion (Wu et al., 2017). In
a clinical study, a polymer-based implant was combined with
PRF glue and used to treat patients (McDermott, 2019). The
procedure was safe and suitable for patients suffering from
full-thickness chondral lesions on the patella resulting from
microfractures (McDermott, 2019). Thus, PRF prepared from
autologous origins to reduce pathogen transmission and immune
rejection risks may open the door for its use in regenerative
medicine (Barbon et al., 2019).

Cellulose
Cellulose is a durable, fibrous, and water-insoluble substance
from plant cell walls (Dutta et al., 2019), although it can be
also produced by some animals (e.g., tunicates), fungi, and
bacteria (O’Sullivan, 1997; Eichhorn et al., 2005). Some bacterial
genera, such as Pseudomonas, Agrobacterium, Gluconacetobacter,
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Sarcina, and Rhizobium can synthesize bacterial cellulose (BC)
from glucose and other carbon sources (Dutta et al., 2019).
Bacterial cellulose has been tested as naturally occurring
‘nanomaterial’ scaffolds (Dutta et al., 2019). The micro-crystalline
structure and natural synthesis of cellulose as an individual
molecule are critical for forming as a linear chain of glucosyl
molecules and self-assemble at the biosynthesis site (McNamara
et al., 2015). BC did not solicit the activation of pro-
inflammatory cytokines during in vitro macrophage screening,
while stimulating type II collagen biogenesis (Svensson et al.,
2005). BC was indeed found to be a novel in vivo degradable
scaffold for chondrogenesis (Yadav et al., 2015).

Two distinguished regions of cellulose fibrils are the crystalline
and amorphous parts. The chemical processes can be used to
produce cellulose nanocrystals (CNCs) by isolating crystalline
regions (Tayeb et al., 2018), although mechanical treatments
produce cellulose nanofibrils (CNFs) (Moon et al., 2011). Recent
use of CNFs and CNCs with nanoscale lateral dimensions has
drawn attention, due in part to their natural abundance and
biodegradability along with unrivaled flexibility and stiffness,
low density, unique rheology, and large aspect ratio (Moon
et al., 2011; Lavoine et al., 2012; Hubbe et al., 2017). Cellulose
nanoparticles (CNs) refers to all types of cellulose nanomaterials
collectively, and are beneficial as substitutes for synthetic
petroleum-based adhesives and binders due to their special
physiochemical features (Tayeb et al., 2018).

Three-dimensional structuring of bacterial cellulose in an
interwoven, translucent, gelatinous, nano-fibrous network of
linear polysaccharide polymers occurs at static conditions, as
displayed in Gorgieva and Trcek (2019). Compared to cellulose
from vegetal sources, bacterial cellulose exhibits extraordinary
mechanical characteristics, such as flexibility (Sriplai et al.,
2018) and soft-tissue-like stress-strain behavior (Morseburg and
Chinga-Carrasco, 2009), along with high levels of crystallinity
and water-holding capacity. However, bacterial cellulose is unable
to trigger cell attachment or control porosity, and degrades
very slowly (Gorgieva and Trcek, 2019). To counteract these
drawbacks, chemical and physical modification have been applied
both in situ and ex situ (Gorgieva and Trcek, 2019). Changes to
culture media, carbon sourcing, and the inclusion of additional
materials occurred in situ; physical and chemical treatment of
formed BC occurred ex situ (Gorgieva and Trcek, 2019). Bacterial
cellulose also features high-purity and net-like morphologies akin
to human collagen, benefitting applications in artificial skin,
vascular grafts, dental implants, tissue-engineering scaffolds,
medical pads, drug delivery, and artificial bone and cartilage
creation (Gorgieva and Trcek, 2019).

Cellulose can be used to produce hydrogels with diverse
structures and properties due to its abundance of hydroxyl groups
(Isobe et al., 2018). Cellulose gel benefits greatly from favorable
mechanical properties, thermostability, and biocompatibility,
all of which combine to provide it with stiffness (Kobayashi
et al., 2014), thermostability (Tsudome et al., 2009), medical
applicability (Klemm et al., 2011), and high resistance upon
solvent exchange of medium (Isobe et al., 2011). BC is a gel-like
substance known as “pellicle,” synthesized by Gluconacetobacter
xylinus. Despite its excellent mechanical properties (Nakayama

et al., 2004) and biocompatibility (Klemm et al., 2011), BC
suffers from poor moldability as a result of biological synthesizing
activity, restricting it solely to either tube-form or plate-form. In
contrast, regenerated cellulose (RC) retains high moldability due
to its preparation using a molecular dissolution and coagulation
process (Isobe et al., 2018).

SYNTHETIC POLYMERS AS SCAFFOLDS
FOR CARTILAGE TISSUE ENGINEERING

Synthetic polymers degrade slower than natural polymers due
to their higher chemical strength derived from hydrolysable
moieties, leading to an extended lifespan in the human body
(Table 2) (Hoshikawa et al., 2006). Synthetic materials allow
for improved control over mechanical and structural features
(Alkaya et al., 2020), and can be easily formed into desired
shapes. In fact, synthetic materials such as polyurethane (PU),
polylactic acid (PLA), polycaprolactones (PCL), and poly(lactide-
co-glycolide) (PLGA) all have high utility as a result of
their special properties (e.g., plasticity, degradation rate, and
mechanical characteristics) (Ma et al., 2018). Another benefit
to synthetic polymers is their immunological inertia, reducing
the risk of pathogen transmission (Wang et al., 2011; Yang
et al., 2014). These features, combined with their capacity for
chemical and mechanical modification and their low degradation
rate, pose a significant benefit (Zylinska et al., 2018). However,
their use is limited by their harmful acidic degradation products
(Lee and Shin, 2007; Camarero-Espinosa et al., 2016; Liu et al.,
2016). Other drawbacks include weaker cellular interactions and
inadequate intercellular signal transmission compared to natural
media (Ge et al., 2012). The polyacid breakdown products also
pose a risk of local pH increases at implantation sites (Stoop,
2008). The most commonly used synthetic polymers are currently
polyglycolic and PLAs, which are especially commonplace in
medical applications (Hoshikawa et al., 2006; Ma et al., 2018).

Polyglycolic Acid (PGA)
Polyglycolic acid (PGA) is a linear, crystalline hydrophobic
polyester (Zwingmann et al., 2007). Naturally, hydrolysis of PGA
causes its bulk degradation to glycolic acid (Athanasiou et al.,
1996). This type of polymer includes poly(hydroxyortho esters)
like PLA, PGA, and their copolymers (PLGAs). PGA nonwoven
fiber scaffold became widely used to engineer various types of
soft tissues, including cartilage (Schaefer et al., 2000), tendon
(Deng et al., 2009), blood vessel (Zhang et al., 2007), peripheral
nerve and skin (Suzuki et al., 2016). However, the released acidic
degradative products of these scaffolds are a major disadvantage
that could affect their biocompatibility with seeded cells and
host tissues once they are implanted in vivo (Lin et al., 2017).
MSCs cultured on PGA scaffolds under the effect of LE135, a
low molecular weight synthetic inhibitor of the retinoic acid
receptor, generated dose-dependent cartilage formation (Ahmed
and Hincke, 2014). A composite scaffold composed of PGA-
hydroxyapatite (PGA-HA) and autologous MSCs was tested in a
rabbit model, resulting in hyaline cartilage and subchondral bone
formation (Zhou et al., 2008).
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TABLE 2 | Characteristics of the outlined synthetic polymers for CTE.

Biomaterials Symbol Characteristics Advantages Disadvantages References

Poly(glycolic acid) PGA Linear, crystalline
hydrophobic polyester;
Semicrystalline polymer;
Insoluble in most organic
solvents

Biocompatibility;
Availability;
Easy processing;
Composited with other biomaterials

Release of acidic
degradation products;
Poor cell adhesion;
Fast biodegradability;
Low mechanical
properties

Klein et al. (2005), Zwingmann
et al. (2007), Nakao et al.
(2017), Birru et al. (2018)

Poly(lactic acid) PLA Polyesterification reaction
production of lactic acid;
Lower crystallinity and
hydrophilicity than PGA;
Four different forms

Biocompatibility, controllable
biodegradability;
Low toxicity and viscosity;
Favorable mechanical properties;
Thermostability;
Thermoplasticity

Poor cell adhesion Li et al. (2006), Zwingmann
et al. (2007), Lopes et al.
(2012), Revati et al. (2017),
Smieszek et al. (2019), Szyszka
et al. (2019), Marycz et al.
(2020)

Poly(ethylene glycol) PEG An amphiphilic polymer that
cannot be recognized by
the immune system

Biocompatibility;
Biodegradability;
Non-immunogenic;
Promoting chondrogenesis;
Great flexibility;
Low polydispersity

Poor cell adhesion Karim et al. (2016), Ding and Li
(2017), Cheng et al. (2018),
Cheng H. et al. (2019), Li et al.
(2018), Wang et al. (2019)

Poly-ε-caprolactone PCL Semi-crystalline;
A synthetic polyester
polymer

Biocompatibility;
Biodegradability;
Elasticity;
Excellent mechanical properties;
Thermoplastic

Poor hydrophilicity;
Poor cell adhesion

Ousema et al. (2012), Sousa
et al. (2014), Theodoridis et al.
(2019), Venkatesan et al. (2020)

Polyglycolic acid has been successfully used in auricular
and laryngotracheal cartilage repair (Klein et al., 2005; Nakao
et al., 2017). In a three-PGA-layer construct sandwiched around
polypropylene, simulating a 3-D auricular structure, greater
cartilage regeneration and angiogenesis were found around the
implant (Klein et al., 2005; Nakao et al., 2017). These composite
scaffolds were demonstrated to guide MSCs toward cartilage
repair, an improvement over microfracturing alone (Erggelet
et al., 2009). Klein et al. analyzed the chondrogenic potential
of freeze-dried polyglycolic acid-hyaluronan (PGA-HA) implants
with preloaded MSCs in vitro using a rabbit model and found that
MSC-laden PGA-HA scaffolds possess chondrogenic potential
and hold promise for stem cell-mediated cartilage regeneration
(Klein et al., 2005).

One major shortcoming of PGA materials is the release of
acidic degradation products that weaken biocompatibility and
trigger inflammatory response. To overcome these shortcomings,
PLA/PGA composites have been featured in multiple studies,
generating general (Saroia et al., 2018) or anatomic shapes (Lam
et al., 2020), and were created by coating fibrous PGA meshes
with solutions of PLA in methylene chloride, then evaporating
the solvent to deposit PLA on the meshes (Lam et al., 2020).
Scaffolds created using this method have been proven to be
conducive to cartilage generation both in vitro and in vivo
(Birru et al., 2018).

Polylactic Acid (PLA)
Polylactic acid is a linear polyester with lower crystallinity
and hydrophilicity than PGA (Zwingmann et al., 2007). PLA
fibrous scaffolds showed a robust structure and supported
the highest proliferation rate of seeded MSCs in physiological
solutions (Li et al., 2006). Constructs of MSCs seeded into
PLA were investigated in a rabbit model and were shown to

form hyaline-like cartilage tissue (Ahmed and Hincke, 2014).
Biomaterials composed of PLA polymers are suggested as
an engineered scaffold for a variety of medical applications
(Marycz et al., 2020), such as bone, cartilage, and peripheral
nerve regeneration (Grzesiak et al., 2015; Marycz et al., 2016;
Smieszek et al., 2019).

Polylactic acid benefits from its thermostability, slow
degradation, good biocompatibility, and low toxicity (Lopes
et al., 2012; Li et al., 2015). Furthermore, PLA is known for
its low viscosity and good thermoplasticity, making it an
outstanding material for 3D printing (Coppola et al., 2018; Dizon
et al., 2018). PLA has been approved by the US FDA for clinical
use to treat multiple medical conditions, including several
orthopedic conditions (Tyler et al., 2016). PLA-based composites
with nanohydroxyapatite (nHAp) are highly cell-compatible
and are excellent scaffolds for modulating proliferation,
viability and differentiation of progenitor cells (Smieszek
et al., 2019; Szyszka et al., 2019). The use of P. purpureum in
PLA matrices as a reinforcement filler offers many benefits.
It leads to the production of biocomposites with favorable
mechanical characteristics and controllable biodegradability
(Revati et al., 2017).

Poly(Ethylene Glycol) (PEG)
Poly(ethylene glycol) (PEG) is a water soluble polymer that
cannot be recognized by the immune system (Cheng et al., 2018),
and exists in a variety of structures, including dendritic-like,
comb-like, linear, 3-arm, and 4-arm (Karim et al., 2016; Ding and
Li, 2017). PEG is typically used to label polymer chains with a
molecular weight <20000, while poly(ethylene oxide) (PEO) is
the term used for polymers with a higher molecular weight (Li
et al., 2018). PEG clears from the body rapidly and has been
approved for a myriad of biomedical applications. Furthermore,
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PEG is capable of transferring these traits to other molecules it is
covalently bound to, reversing their toxicity or solubility (Cheng
et al., 2018; Li et al., 2018). Cryogelation methods can also be used
to create macroporous networks of PEG with interconnected
pores in CTE (Cheng H. et al., 2019).

Edward Semple et al. (2016) carried out a large-scale
synthesis of linear heterobifunctional PEGs through ring-
opening polymerization (ROP) of ethylene oxide (EO) from
four initiators composed of azide, alkyne, protected alcohol (O-
trityl), and protected amine (N-dibenzyl). Amphiphilic PEG-
based films produced from crosslinking pure amphiphilic PEG
copolymers can be modified to alter their mechanical properties
by changing the type and quantity of soft and hard segments and
adjusting the hydrophilic/hydrophobic ratio (Ji D. et al., 2018;
Liu et al., 2018). Soft segments are usually polyesters like PLA
and PCL or polyethers such as PEG, which exhibit low glass
transition temperatures. Hard segments are typically composed
of a chain extender, which links soft and hard segments together
by hydrogen bonding (Ji D. et al., 2018).

Poly(ethylene glycols) are hydrolytically non-degradable
polymers (Janda and Han, 1996; Gravert and Janda, 1997). and
thus minimally metabolized in the body with most polymer
chains cleared by the liver (>30 kDa) or kidneys (<30 kDa).
PEGs can be readily altered by adding various terminal end
groups, such as vinyl ether, allyl ether, or acrylate methacrylate,
forming PEG networks. These networks can be made degradable
by inserting degradable blocks or crosslinkers (Jain et al., 2017).
As such, the degradability and hydrophilicity of polymers can be
enhanced via inclusion of PEGs. Because degradation is driven
by hydrolysis, hydrophilic PEG content and degradation rate are
directly linked (Kutikov et al., 2015).

The fabricated PCL-PEG-PCL (PECE) films seeded with
ASCs were able to trigger cell adhesion and proliferation
for cartilage formation (Fu et al., 2016). After implanting
ASC/PECE films in rats, satisfactory tissue formation was
observed (Fu et al., 2016). Saghebasl et al. (2018) developed
the thermosensitive and injectable hydrogel PNIPAAm-PECE-
PNIPAAm/gel. In comparison to PECE/gel, the inclusion of
PNIPAAm raised porosity and increased the swelling ratio,
benefitting cell attachment into the scaffold. The PNIPAAm-
PECE-PNIPAAm/gel composite is suitable for in vivo use at
physiological temperatures (37◦C) and also found to induce
chondrocyte cell growth, expressed cartilage-specific ECM genes,
and provided a higher cell survival rate than the PECE/gel
composite (Wang et al., 2019).

Polycaprolactone (PCL)
Synthetic semi-crystalline PCL has recently gained significant
attention due to its mechanical strength, elasticity,
biodegradability, and biocompatibility (Theodoridis et al., 2019).
The FDA approved aliphatic polyester poly(ε-caprolactone)
(PCL) presents significant advantages, as the low immunogenic
biodegradable compound can mimic the anisotropic and
viscoelastic biomechanical features of the articular cartilage
(Venkatesan et al., 2020). PCL is also easily processed and
chemically versatile, with high structural and thermal stability
(Domingos et al., 2012). Its degradation products are also

harmless to the human body because they can be metabolized in
the tricarboxylic acid cycle (Moura et al., 2020).

While PCL scaffolds can support stem cell differentiation and
proliferation, its hydrophobic profile inhibits cellular attachment
and thus hurts its suitability in tissue engineering (Sousa et al.,
2014). Researchers have attempted to use chemical and plasma
treatments together with blending of hydrophilic materials and
the ECM to increase the PCL’s hydrophilicity (Sousa et al., 2014;
Chen et al., 2016; Silva et al., 2017). PCL-based fibrous scaffolds
exhibit high structural integrity following incubation in a
physiological solution, and support desirable cell responses of the
seeded MSCs (Liu et al., 2006). Chondrogenic differentiation of
MSCs on oriented nanofibrous PCL scaffolds was explored in an
in vitro study. MSCs cultured onto electrospun and oriented PCL
scaffolds (500 or 3000 nm fiber diameter) induced chondrogenic
markers and enhanced the chondrogenic differentiation of MSCs
(Wise et al., 2009).

A 3D woven PCL scaffold seeded with MSCs was fabricated
and found to promote chondrogenesis while maintaining
favorable mechanical characteristics, without eliciting pro-
inflammatory cytokine (Ousema et al., 2012). A biodegradable
PCL nanofibrous scaffold seeded with MSCs successfully
repaired a swine model of full-thickness cartilage defects (Li
et al., 2009). Poly(vinyl alcohol)/polycaprolactone (PVA/PCL)
nanofiber scaffolds seeded with BM-MSC were found to
support MSC chondrogenic differentiation and proliferation
in vitro and repaired rabbit full-thickness cartilage defects
(Shafiee et al., 2011).

DECELLULARIZED EXTRACELLULAR
MATRIX (dECM) MAY PROVIDE
SUPERIOR TISSUE-SPECIFIC MATRIX
MICROENVIRONMENT FOR TISSUE
ENGINEERING

Cartilage features chondrocytes and extracellular fibers
embedded in a matrix, providing strength and acute pliability.
The ECM therefore serves as a microenvironment for
chondrocytes, and the preservation of stable cellular phenotypes
depends on the interaction of cartilage with their pericellular
matrix (Gentili and Cancedda, 2009). ECM metabolism also
plays an essential role in skeletal tissue development and
regeneration/repair, especially in orthopedic diseases and trauma
(Gentili and Cancedda, 2009). Its biophysical and biochemical
properties are also responsible for the adhesion, nutrition,
integrity, migration, and differentiation of individual cells
(Ostadal et al., 1995).

Extracellular Matrix (ECM)
Extracellular matrix is a complex macromolecule network that
can undergo self-assembly, and serves as both a reservoir for
cytokines and growth factors, as well as a scaffold for tissue and
cells (Kresse and Schonherr, 2001). Articular cartilage matrix
consists of a strong, dense network of collagen fibers (60% dry
weight), primarily type II collagen (80% of the total collagen)
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interwoven with proteoglycan (PG) (25–35% dry weight) and
other non-collagenous proteins (15–20% dry weight) (Azhim
et al., 2011). Aggrecan is the largest component of cartilage
by percent composition and attracts water molecules, and is
responsible for the high shock absorbance of cartilage under load
(Gentili and Cancedda, 2009; Maldonado and Nam, 2013).

Extracellular matrix derived from human dermal fibroblasts
was found to improve chondrogenesis and stem cell proliferation
versus tissue culture plastic (TCP) (Zhou et al., 2016).
MSCs-derived ECM (MSC-ECM) was employed as a culture
substrate to rejuvenate aged mouse stem cells and enhance
their lineage differentiation capacity (Li J. et al., 2014).
Porcine synovium-derived stem cell deposited ECM was proven
to increase chondrocyte proliferation and delay chondrocyte
dedifferentiation (Pei and He, 2012). Cell-derived decellularized
extracellular matrix (dECM) has been used as a culture
substrate for MSCs to improve cell proliferation and lineage-
specific differentiation, and DECM-expanded chondrocytes with
enhanced anti-inflammatory properties hold great potential in
clinical ACI-based cartilage repair (Yan J. et al., 2020). The
chondrocytes seeded onto decellularized human bone marrow
derived MSC-ECM (hBMSC-ECM) displayed a significantly
greater proliferation rate, maintaining improved chondrocytic
phenotype in comparison to the TCP group (Yang Y. et al.,
2018). As synovium-derived stem cells (SDSCs) were proposed
as tissue-specific stem cells for chondrogenesis, decellularized
ECM deposited by SDSCs (SECM) provided an appropriate
tissue-specific matrix microenvironment encouraging adult
SDSC rejuvenation and improving the regeneration of cartilage
(Li et al., 2020).

Decellularized Extracellular Matrix (dECM)
Using dECM as a scaffold presents several major advantages
since the scaffold maintains its original geometry, unlike other
processing methods where the dECM is totally pulverized
(Kim Y.S. et al., 2019). Depending on the desired topography,
composition, and mechanical properties, dECM can be formed
from different types of tissue (Yin et al., 2013). However, to
achieve these benefits: (a) the dECM must be thoroughly
recellularized and; (b) cell debris must be removed from
the tissue without destroying collagen fibers, GAGs, and
other essential ECM components (Kim Y.S. et al., 2019).
dECMs from cartilage tissues (T-dECMs) and cartilage-
forming cells (C-dECMs) can be fabricated using enzymatic,
chemical, and/or physical methods (Figure 2) (Sun et al.,
2018). Both dECM types possess biocompatibility and are
able to support chondrogenesis. Notably, cartilage T-dECMs
supported chondrogenic differentiation at a higher likelihood
than C-dECMs, which more effectively support proliferation and
overall chondrogenic differentiation (Sun et al., 2018).

Cartilage T-dECMs with a 3D interconnected porous
environment may contribute toward cell proliferation during
chondrogenesis and support cellular infiltration. Hyaline
and cartilage T-dECMs, both alone (Chang et al., 2014;
Rothrauff et al., 2017) or in conjunction with pro-chondrogenic
factors (Yang et al., 2008; Schwarz et al., 2012; Rowland
et al., 2016), bolstered in vitro chondrogenesis of reseeded

FIGURE 2 | Schematic representation of the use of decellularized biomaterials
for cartilage tissue engineering. The cells or tissue-derived biomaterials (A) are
subjected to decellarization through physical, enzymatic, or chemical methods
(B). The resultant dECM biomaterials can be used to produce scaffold,
hydrogel, particle forms, or used as bioinks for 3D printing (C).

chondrocytes/stem cells. When implanted in vivo, they also
led to the repair of cartilage defects and formation of cartilage
tissues (Yang et al., 2008, 2010; Kang et al., 2014). Surprisingly,
new hyaline cartilage formation also occurred following the
in vivo implantation of cartilage T-dECMs that had not been
supplemented with chondrocytes/stem cells (Grevemeyer et al.,
2014; Novak et al., 2016).

Recellularizing dECM
Scaffolds may increase cartilage regeneration ability if cells
are reseeded on decellularized cartilage scaffolds (Xia et al.,
2019). Different types of cells have been investigated for
cartilage recellularization, including infrapatellar fat pad derived
stem cells, bone marrow mesenchymal stem cells (BMSCs),
chondrocytes, ASC, and synovium-derived MSCs (Xia et al.,
2019). Nonetheless, the decellularization of cartilage and ensuing
seeding of cells has proven challenging due to the density
of the ECM. Luo et al. (2015) created a channel system in
porcine cartilage disks, allowing much improved fluid and
cell penetration. Because proteoglycans in cartilage impair
cell adhesion (Rich et al., 1981; Yamagata et al., 1989),
scientists have also attempted to improve cell adhesion by
removing GAGs from cartilage tissue (Elsaesser et al., 2014).
For instance, Bautista et al. (2016) incorporated chondroitinase
ABC during decellularization with the intent of removing GAGs
from porcine articular cartilage. While successful in enhancing
decellularization, the treatment did not improve recellularization
rates. Furthermore, dECM scaffolds cannot be readily scaled
despite their strengths and ability to sustain a native architecture
although highly porous dECM scaffolds with different geometries
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have been produced with methods such as freeze-drying in order
to overcome this barrier (Chen et al., 2015; Gawlitta et al., 2015).

Hydrogels (HG)
Hydrogels (HG) are a class of soft materials comprised of
crosslinked polymer chains arranged in a porous 3D network,
which are known for their ability to hold up to 99.9%
water by weight. They are fabricated from either synthetic or
natural sources and possess good mechanical properties together
with unique biocompatibility (Curvello et al., 2019). Several
hydrogels have been utilized extensively in recent decades, with
varying composition, structures, and properties. HGs have been
introduced in medical applications such as biosensors, contact
lenses, drug delivery devices, and artificial implant linings (Meng
et al., 2019), as well as wound dressings, scaffolds, and hygienic
products (Alves et al., 2016; Jung et al., 2017).

Hydrogel scaffolds exhibit compressive strength and allow
load transfer from the environment to chondrocytes (Spiller et al.,
2011). Hydrogels mimic the physical and chemical conditions
of the extracellular matrix, promoting cell differentiation and
multiplication along with bolstering integration with trauma sites
(Arakaki et al., 2010). Combinatorial hydrogels are a class of
hydrogels that allow for the study of cellular responses to multiple
biophysical (e.g., crosslink density) and biochemical (e.g., ligand
tethering) signals (Benmassaoud et al., 2020).

Natural hydrogel constructs are often composed of
polysaccharide or protein chains. Polysaccharides have beneficial
hydrophilic structures that enable the creation of hydrogels
from many different biomaterials, such as dextran, chitin,
alginate, chitosan, cellulose, starch, pectin, xanthan gum, and
HA. Synthetic polymers such as polyacrylamide, PVA, PEG,
and PEO have all been used for hydrogel formation. While
synthetic photopolymerizable hydrogels are cell-compatible, the
presence of long-lasting polymer components compromises their
mechanical performance and hinders cell migration (Lee et al.,
2006; Roberts and Bryant, 2013).

Hydrogels can promote chondrogenic potential and allow
for in situ scaffold formation without open surgery. Solutions
can be injected intra-articularly without affecting chondrocyte
colonization or cartilage differentiation (Li S. et al., 2019).
Solid supporters can be added to boost the mechanical stability
of hydrogels (Huang et al., 2014). Hydrogels produced with
artificial polymers, such as PCL, PLGA, PEG, and polymethyl
methacrylate (PMMA), can reach mechanical strengths of 20–
120 MPa (Pahlevanzadeh et al., 2018). Polymeric blending of
natural and synthetic polymers can produce hydrogels with
differing chemical and physical properties for various biomedical
applications (Li L. et al., 2019).

FABRICATIONS AND PREPARATION
TECHNIQUES OF BIOLOGICAL
SCAFFOLDS

Scaffolds are clinically superior to scaffold-free environments,
forgoing invasive surgical procedures for tissue extraction from
patients. Additionally, scaffolds provide increased control over

the filling of cartilage defects and can reduce patient recovery
times (Caron et al., 2012). Cell migration and adhesion are
influenced by the microarchitecture and geometry of scaffolds
(Oh et al., 2010) as well as pore size. Pores should be small enough
to give cells a sufficient surface area for adhesion, yet large enough
to enable ECM production and cell migration (Chen et al., 2006).
Porous 3D scaffolds are a prominent option for tissue engineering
because they mimic in vivo physiological microenvironments
closely. Their excellent porosity also enables cell growth,
migration, and adhesion by providing necessary nutrition and
transporting metabolic waste (Ma et al., 2018). As a result,
the selection of a 3D scaffold is important when determining
how the scaffold will behave in different tissue engineering
applications (Ko et al., 2010). The differences between scaffold
preparation processes have significant influence on the shape,
size and porosity of the hole in the support, which may directly
affect the migration, differentiation and proliferation of seed cells
(Fu et al., 2018). Advances in manufacturing have resulted in 3D
printing as a leading technology for producing tunable scaffolds
in the field of TE (Cheng A. et al., 2019).

Three-Dimensional (3D) Bioprinting
Techniques
Cartilage is an avascular, alymphatic, and aneural tissue
with limited self-renewal, which makes cartilage a relatively
simple tissue for regenerating damaged cartilage through
bioprinting approaches. Moreover, its organized zonal cell matrix
distribution and density makes it suitable for duplication by 3D
bioprinting (Figure 3) (Ji X.F. et al., 2018). Bioprinting offers
great prospects of printing tissue analogs through the delivery
of live cells with suitable material in a defined and organized
manner (Derby, 2012). The concept of bioprinting is essentially
an extension of the idea that uses additive manufacturing
(AM) methods for building up 3D tissue structures layer-
by-layer (Kundu et al., 2015), from the bottom up, with
high-resolution deposition of materials and cells as well as a
customized inner structure, with the aim of duplicating the
complexity of native tissues or restoring damaged structure and
functionality (Ji X.F. et al., 2018). This advancement has made
custom patient-tailored product fabrication possible as MRI and
CT images can now be used to create personalized solutions
(Roseti et al., 2017).

Three-dimensional bioprinting is a modern method for
3D living tissue/organ structure fabrication using “bioinks”
(Buckwalter et al., 2004; Levingstone et al., 2016). A wide range
of bioinks have been developed for micro-extrusion and inkjet
bioprinting, including agarose, GelMA, alginate, silk, collagen,
fibrin, and forms of poly(ethylene) glycol (PEG) and HA (Daly
et al., 2017). The two primary bioink categories are scaffold-
based and scaffold-free. Scaffold-based bioinks include cells and
biomaterials, creating a scaffold with structural support for
cell differentiation and growth (Roseti et al., 2017). Scaffold-
free bioinks are composed of aggregates such as tissue strands,
cell pellets, and spheroids that secrete ECM (Gruene et al.,
2011). Scaffold-based bioinks are more common, although both
types can complement the other’s strengths and weaknesses
(Ozbolat, 2015).
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FIGURE 3 | Schematic representation of 3-D bioprinting technology-based cartilage tissue engineering.

Conventional “subtractive methods” remove materials from
an initial block using a top-to-bottom approach, in which cells
are seeded onto the finished scaffold at a later time (Bishop
et al., 2017; Ngo et al., 2018). Due to the intrinsic nature
of bioprinting, finer control over cell spatial distribution can
be achieved, producing more homogenous scaffolds that better
support cell viability (Roseti et al., 2018).

3D bioprinting typically begins with a computer-assisted
design/model for depositing live cells and biomaterials onto a
new 3D biostructure, after which post-processing results in the
maturation of these cell-laden constructs (Murphy and Atala,
2014). A chondro-inductive bioink was created by combining
alginate, gellan, and cartilage ECM particles (Kesti et al., 2015).
The ink was capable of printing highly accurate anatomical
shapes, and matrix components were produced successfully (Daly
et al., 2017). In a novel scaffold-free bioprinting method, modular
cartilage tissue strands generated by fusing tissue spheroids in a
confining mold were capable of being printed into 3D constructs
using a robotic dispensing system (Yu et al., 2016).

The most prevalent scaffold-based 3D bioprinting
technologies today are based on laser technology, extrusion,
and jetting (Table 3) (Roseti et al., 2018). Jetting-based 3D
bioprinting can be conducted using either a continuous
inkjet or using specifically distributed deposition of single
droplets (drop-on-demand) (Irvine and Venkatraman, 2016).
The drop-on-demand method includes three distinct droplet
generation strategies: electrostatic, piezoelectric, and thermal
(80–90%) (Roseti et al., 2018). A novel bioprinting approach
was developed to print ovine MSC constructs submerged in oil
(Roseti et al., 2018).

Laser-based 3D bioprinting is a complex, expensive technique
involving the use of pulsed laser energy to transfer materials to
a receiving substrate (Roseti et al., 2018), which can initiate a
two-layer droplet release (Dhawan et al., 2019). The top layer
comprises an energy absorbing donor layer, whereas the bottom
layer is the selected bioink. Bioink droplet release occurs after
emission of the laser pulse onto the top donor surface layer,
producing a bubble at the interface between the layers and

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 14 March 2021 | Volume 9 | Article 603444

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-603444 March 19, 2021 Time: 12:34 # 15

Zhao et al. Cell-Friendly Scaffolds for Cartilage Engineering

TABLE 3 | Comparison of the three types of 3-D bioprinting techniques.

Jetting-based Extrusion-based Laser-based

Printer cost Low Moderate High

Biomaterial viscosity Medium High Medium to high

Print speed Fast (1–10,000 droplets/s) Slow (10–50 µm/s) Medium-fast (200–1,600 mm/s)

Cell viability (%) 80%–90% 40%–95% 95%

Resolution High (up to 50 µm) Moderate (100 µm to millimeters) High (10–50 µm)

Cell densities Low (≤106 cells/ml) High (cell spheroids) Medium (≤108 cells/ml)

Quality of vertical
structure

Poor Good Fair

Advantage High cell viability;
High printing speeds;
Low cost;
Wide availability;
Easy operation

High cell densities;
High cell viability;
Broad selection of biomaterials;
High deposition rates;
High print speeds;
Anatomically correct porous construct
generation

Nozzle free;
Fast and accurate fabrication;
High resolution;
High precision;
High cell viabilities

Disadvantage Low droplet directionality;
Nozzle clogging;
Limited biomaterials selection;
Low cell density and concentration of the
ink;
Heat and sheer stresses induced damage
to cells

Low resolution;
Deformation;
Encapsulated cell apoptosis;
Low cell viability

High cost;
Low speed;
Low built capability;
Possible cytotoxicity;
UV induced DNA damage;
Low stability and scalability;
Limited printing directionality

Tissue engineering
application

Blood vessel, bone, cartilage, neuron, liver Blood vessel, bone, lungs, liver,
cartilage, neuron, muscle, ear, skin, lipid
bilayers

Blood vessel, bone, skin, adipose, cardiac
tissue

References Irvine and Venkatraman (2016), Roseti et al.
(2018), Roseti et al. (2017)

Cole et al. (2009), Hasan et al. (2014),
Daly et al. (2016), Pillai et al. (2018),
Dhawan et al. (2019)

Roseti et al. (2018), Dhawan et al. (2019),
Irvine and Venkatraman (2016)

propelling the droplet onto the substrate (Dhawan et al., 2019).
This method avoids mechanical stress from direct contact with
the printer and has greater resolution and precision than other
options. The biggest obstacle is the cost of laser-based systems
(Dhawan et al., 2019). The size and complexity of the required
equipment also limits its usage, along with its inferior cell viability
relative to inkjet mechanisms (Irvine and Venkatraman, 2016).

Extrusion-based bioprinting is a pressure-based bioprinting
method currently employed in the fabrication of heterogenous
scaffolds for osteochondral regeneration (Dhawan et al., 2019).
This technology is the basis for most commercial bioprinters, and
uses a micro-nozzle to dispense bioink filaments via pneumatic
or piston pressure. This system is run by mechanical, solenoid,
or pneumatic control. A wide variety of bioinks, such as tissue
spheroids, hydrogels, tissue stands, and microcarriers, can be
used due to the large, flexible nozzle size. This technique has been
applied successfully to print several types of tissues, such as lungs,
cartilage, liver tissue, and lipid bilayers (Hasan et al., 2014; Pillai
et al., 2018). This technique can release highly viscous bioinks
with the micro-nozzle, raising deposition rates and printing speed
and enabling the use of synthetic polymers (Dhawan et al.,
2019). Other strengths include production scalability, high cell
viability, and anatomically correct porous construct generation
(Dhawan et al., 2019). However, high pressure associated with
mechanical extrusion poses drawbacks such as low resolution,
deformation, and encapsulated cell apoptosis (Cole et al., 2009;
Daly et al., 2016). Nonetheless, the mechanical qualities of

bioprinted constructs are subpar compared to those of the native
tissue and require further optimizations.

CONCLUSION AND FUTURE
DIRECTIONS

Effective repairing of damaged cartilage tissues caused by high
impact sports or diseases remain a major clinical challenge.
CTE provides a promising avenue to this unmet challenge.
Significant progresses have been made in CTE, including
the identification and the use of chondrogenic biofactors,
the isolation and characterization of chondrogenic progenitors
from various sources, and the development of cell-friendly,
biocompatible scaffold materials. The rapid advance of 3D-
bioprinting techniques further facilitates the clinical realization
of CTE. Nonetheless, many hurdles remain ahead of successful
and effective CTE. At the basic research front, we need
a better understanding of cartilage biology, including the
layered/zoned structures with different organization, and the
distinct morphologies and functionalities of chondrocytes in
different layers/zones. Efforts have to be devoted to the
characterization and optimization of efficacious chondrogenic
biofactors. Another challenge is to establish reliable techniques
to generate sufficient chondrogenic progenitor cells from
various cell sources, including MSCs from different tissues or
effectively directed chondrogenic differentiation from iPSCs.
As discussed above, many biocompatible scaffold biomaterials
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have been developed; but vast majority need to be rigorously
tested in pre-clinical studies and clinical trials. Ultimately,
a 3D-bioprinting fabrication may offer the opportunity to
assemble chondrogenic factor-stimulated and progenitor cell-
loaded scaffold biomaterials to accomplish effective regeneration
and repair of injured cartilage.
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