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Abstract

Network representations of biological systems are widespread and reconstructing unknown networks from data is a focal
problem for computational biologists. For example, the series of biochemical reactions in a metabolic pathway can be
represented as a network, with nodes corresponding to metabolites and edges linking reactants to products. In a different
context, regulatory relationships among genes are commonly represented as directed networks with edges pointing from
influential genes to their targets. Reconstructing such networks from data is a challenging problem receiving much
attention in the literature. There is a particular need for approaches tailored to time-series data and not reliant on direct
intervention experiments, as the former are often more readily available. In this paper, we introduce an approach to
reconstructing directed networks based on dynamic systems models. Our approach generalizes commonly used ODE
models based on linear or nonlinear dynamics by extending the functional class for the functions involved from parametric
to nonparametric models. Concomitantly we limit the complexity by imposing an additive structure on the estimated slope
functions. Thus the submodel associated with each node is a sum of univariate functions. These univariate component
functions form the basis for a novel coupling metric that we define in order to quantify the strength of proposed
relationships and hence rank potential edges. We show the utility of the method by reconstructing networks using
simulated data from computational models for the glycolytic pathway of Lactocaccus Lactis and a gene network regulating
the pluripotency of mouse embryonic stem cells. For purposes of comparison, we also assess reconstruction performance
using gene networks from the DREAM challenges. We compare our method to those that similarly rely on dynamic systems
models and use the results to attempt to disentangle the distinct roles of linearity, sparsity, and derivative estimation.
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Introduction

Reconstructing Biological Networks
In living organisms, biological processes such as energy

metabolism or gene regulation occur through complex reaction

networks involving genes, proteins, metabolites and other

biochemical molecules. Understanding the mechanisms underly-

ing these processes and the specific pathways through which they

operate is of paramount interest in both basic and applied Biology,

with potential applications to disease treatment and diagnosis. Part

and parcel to understanding the underlying mechanisms is

determining the extant relationships among genes, proteins, and

metabolites. These relationships are often represented as edges in a

network whose nodes represent various biochemical entities [1].

For instance, metabolism involves the conversion of one chemical

into another through a series of enzyme-mediated reactions; any

sequence of such reactions comprises a metabolic pathway. This

pathway can be represented as a network in which the initial, final

and intermediate metabolites together with other chemicals

involved in the reaction sequence are represented as nodes while

edges connect reactants to products. Note that in the literature, the

term metabolic network is usually reserved for describing the

relations among various pathways in the cell; however, we use the

term as described above. In a gene regulatory network, the nodes

represent genes, while edges indicate regulatory relationships. In

both cases, the edges are directed to reflect the inherent

asymmetry of the relationships. For such networks, there is a

great deal of interest in using high-throughput data to discover

relationships (edges) that can later be validated through experi-

mental methods [2].

A number of formalisms have been proposed for learning

biological networks from data [2–4]. Among these are: conditional

independence models or Bayesian networks, direct cause-effect

methodologies, and regression-style formalisms including dynamic

systems models based on ordinary differential equations. As

previously described, in each case nodes correspond to biochem-

ical entities and edges to relationships among them, but the formal

meaning of an edge will depend on the mathematical formalism

employed.

As mentioned above, Bayesian Networks are a good model for

the directed biological networks considered here. In Bayesian

Networks edges correspond to statistical dependencies while nodes

not connected by an edge are conditionally independent given

their parents; i.e. expression levels for two genes are conditionally

independent given the expression levels of their direct regulators.

As another example, in a Bayesian Network for a metabolic
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process, the concentrations of any two metabolites might be

independent given the concentrations of their direct precursors

and any enzymes facilitating the formation reaction.

There are two drawbacks to conditional independence models

both stemming from the fact that the network being estimated is

represented as a directed acyclic graph (DAG). First, acyclic DAGs

cannot accomodate biologically relevant cycles such as feedback

loops [3]. Second, the number of potential DAGs grows

exponentially with the number of nodes in the network

necessitating approximate search strategies for even moderately

sized networks [5]. While the problem of cycles can be overcome

with time-series data by considering Dynamic Bayesian Networks

[6,7], this exacerbates the search problem due to the computa-

tional complexity involved for evaluating each potential network

structure [5].

Nevertheless, conditional independence models are particularly

well-suited for learning from gene knockout experiments. Indeed,

the DREAM competitions provide strong evidence that knockouts

are the most informative data type for reconstructing network

topologies [8]; also see discussion in [9]. However, in practice a full

suite of knockout experiments is unlikely to be available due either

to expense or to some knockouts being impossible to carry out.

There are a number of reasons why knockout may be infeasible;

among these are lethality to the organism, and the fact that, in

many cases, how to do the knockout is simply not known.

Furthermore, in cases where the nodes do not represent genes, as

in a metabolic pathway, there may be no logical equivalent to a

knockout experiment as one cannot, say, fix the concentration of

an intermediary metabolite to zero. Moreover, the most successful

methods for knockout data infer direct cause effect relationships

without necessarily making use of the conditional independence

formalism, i.e. [10]. which tend to have difficulty distinguishing

direct (i?k) and indirect regulation (i?j?k) [11]. Consequently,

these methods perform well when the influence and adjacency

matrices are similar, but performance falls off when the adjacency

matrix is much sparser than the influence or disruption matrix; i.e.

when the network contains many chains of length two or more.

Network reconstruction methods utilizing time-course data have

the potential to avoid some of the limitations of both conditional

independence models and direct cause-effect methodologies. For

the former, dynamic versions of conditional independence models

can accomodate feedback loops by allowing cycles to unfold over

time. For instance, reconstruction methods based on statistical

time series models such as (sparse) vector autoregression [12,13] or

state space models [14] fit into this framework, although they are

not usually viewed this way [5]. Time-course data can also be used

to orient edges after estimating an undirected network from

perturbation experiments [15]. Moreover, time-course experi-

ments under global perturbations, including environmental

stressors such as heat shock, as well as changes in initial

concentrations, are generally easier to carry out than knockouts

and, though requiring a greater number of measurements, have

lower setup costs. Finally, time-course methods are potentially

useful not only for network reconstruction, but also for predicting

the response of the system to yet to be observed perturbations.

Network formalisms for time-course data are closely related to

regression-style methods of network reconstruction in that both

treat the latter as a feature selection problem. In the generic case,

regression-based formalisms seek models that express the obser-

vations associated with each node in terms of functions of observed

values on other nodes. The edges of the network are determined

by the variables these functions depend on. For time-course data,

the regression model often take the form of a dynamic system

expressed using ordinary differential equations (ODEs),

_xx(t)~f (x(t)), ð1Þ

where the rate of change in system components _xx(t) is a function,

f , of the component trajectories, x(t). In this case, network

reconstruction is a matter of finding the nonzero elements in the

Jacobian J~½Lfi
Lxj
�. Depending on the parametric form of f , finding

the nonzero elements of J may reduce to finding nonzero

parameters. A similar formulation is possible when (1) is replaced

with a stochastic differential equation appropriate for single cell

dynamics [16]. Though our focus is on time-course experiments,

for completeness we note that nonlinear ODE models can

sometimes also be fit by solving a related linear systems using

data from perturbed steady states, potentially reducing the number

of measurements required [17]. In the following subsection, we

discuss ODE models for time-course data in greater detail.

Differential Equation Models
Due to their long history of successful application in modeling

physical phenomena, ODEs provide an attractive class of models

for time-course data. There are three main decisions to be made

when developing and fitting an ODE model for network

reconstruction from time-course data: the model class, an

approach to parameter estimation, and finally a variable selection

method for the actual network reconstruction. For instance the

well-known Inferelator tool employs linear models, uses a

(modified) gradient-matching approach, and in its original form

employs ‘1 regularization for variable selection [18–20].

The first decision in developing an ODE model for time-course

data is its parametric form. Typically the right-hand-side function

(also called the slope function) is taken to be linear [21] or

sigmoidal [10]. Linear ODE models are attractive because they

allow one to use a number of specialized techniques, like the ability

to combined multiple time-series from different experimenters

[22]. While linear models also offer computational advantages and

inferential simplicity, most biological processes are highly nonlin-

ear. Nevertheless, as first-order approximations, linear models

offer some protection against model misspecification. Alternative-

ly, one can take a nonparametric approach in which the right-

hand-side function is subject only to smoothness conditions. This

flexible approach guards against model misspecification while

allowing for nonlinearities. Other choices of models can be found

in [23], though many of these have not been specifically applied to

the network reconstruction task.

Approaches to estimating parameters in ODE models fall into

two broad categories: trajectory matching and gradient matching.

These two approaches differ in how they deal with the challenge of

having equations describing the derivatives, but observations on

the trajectories. The trajectory-matching approach involves

choosing parameters minimizing some loss function, such as the

sum of squared errors, measuring the discrepancy between a

computed trajectory and the observations. If the trajectories—

solutions to the initial value problem— are not available

analytically, they can be found using numerical integration. The

other approach, gradient-matching, instead first estimates the

unobserved derivatives and then selects parameters minimizing a

loss function measuring the discrepancy between the estimated

derivatives and the right-hand-side function. An important feature

of a gradient-matching procedure is how the derivatives are

estimated. While trajectory matching is known to be statistically

efficient [24] (the parameter estimates achieve a lower bound on

the asymptotic variance) it can be computationally intractable for

large networks. This often remains true even after one takes
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advantage of techniques such as differential elimination [25] for

reducing the dimensionality of the system. Consequently, most

ODE methods for network reconstruction employ a gradient-

matching estimation scheme. Fortunately, recent statistical work

shows some gradient-matching procedures are also statistically

efficient [26,27] or nearly so [28].

The final and arguably most important decision in ODE-based

network reconstruction is feature (variable) selection. After all,

feature selection— deciding which components should appear in

each of the right-hand-side functions— ultimately determines the

estimated network. Feature selection often begins with a

prescreening step in which the pool of potential regulators is

reduced using an information measure [19,20]. Others choose

edges using a threshold on the minimum of the objective function

achieved at the parameter estimates [10]. Despite many practical

successes, statistical methodology for feature selection in ODE

models is an underdeveloped area. As a result, feature selection in

ODE-based network reconstruction proceeds through a mixture of

experience, convenience, and analogy.

Our approach, called Network Reconstruction via Dynamic

Systems (NeRDS), differs from existing ODE-based methods in

the following respects. To begin, we model the right-hand-side

function using nonparametric, additive models which are both

flexible and data-adaptive. Like other approaches, NeRDS

employs a gradient-matching procedure, but differs in that the

derivatives are estimated using smoothing-splines rather than finite

differences. Finally, we define a novel coupling metric to measure

the effect of one component on another allowing us to rank

potential edges based on their estimated coupling.

The remainder of the paper proceeds as follows. The Methods

section provides both an overview and details of our estimation

procedure. Next, we report numerical results on in silico data

comparing the NeRDS methodology to other ODE-based

methods for network reconstruction. In the Discussion Section,

we synthesize the evidence these performance comparisons

provide on the distinct roles of linearity and sparsity, discuss the

tradeoffs that accompany the flexibility of the method presented,

and point to directions for future work.

Methods

Overview
Consider time-course data (Y r(tk),k~1,:::,n) from experiments

r~1,:::,R. Suppose the system of interest has d components

(metabolites/genes) so that there are also d nodes in the network to

be reconstructed. Thus, each Y r(tk)[Rd is a (random) vector of

observations on these d components at time tk. The data are taken

to be noisy observations of an underlying dynamic system,

_xxr(t)~f (xr(t))zur(t); xr(0)~xr
0, Process Model

Y r(tk)~xr(tk)zEr
k, Observation Model:

�
ð2Þ

The (known) inputs ur(t) and the (possibly unknown) initial

conditions xr
0 are assumed to vary across experiments so that each

trajectory is independently informative of the underlying dynam-

ics. Finally, the measurement errors fEr
k; k~1,:::,n; r~1,:::,Rg are

assumed to be independent, but not (necessarily) identically

distributed.

We take a nonparametric approach in which the right-hand-

side function f is subject only to smoothness conditions with f [C2

and the second derivative having bounded L2 norm (see below for

additional details). In contrast, other ODE-based methods treat f
as known up to some parameters— often assuming a linear or

sigmoidal function. The authors in [29] also model f nonpar-

ametrically but their approach differs from ours in other respects.

Modeling f nonparametrically allows the model to adapt to

arbitrary (smooth) nonlinear functions and offers robustness

against model mis-specification. However, this also increases the

difficulty of the estimation problem. A useful compromise for

managing this trade-off is to assume that f is additive so that each

component is decomposed as the sum of d univariate functions,

fi(x)~
Xd

i~1

fij(xj): ð3Þ

Since we do not expect the network to contain edges from all d
nodes to node i, the method allows for these additive models to be

sparse in the sense that for each i several of the fij may be

equivalently zero. With the additive structure in place, we can

state the smoothness conditions precisely as follows. Each of the

univariate functions fij is assumed to belong to the Sobolev space

W 2
2 ½0,1� consisting of twice differentiable functions such that f and

_ff are continuous while
Ð 1

0
½€ff (x)�2dxv?.

A second feature of the NeRDS methodology is its use of a

gradient-matching approach for fitting an ODE to the data. This

approach is a straightforward extension of the parametric methods

in [28,30]. One challenge in ODE estimation comes from the fact

that while the trajectories are directly observed with error, only

indirect information is available on the derivatives. Traditionally

this has necessitated computationally expensive numerical inte-

gration at each step in the optimization procedure used for

parameter estimation.

Gradient-matching approaches avoid this difficulty by first

estimating the derivatives on the left-hand side of (2) and then

using these plug-in estimates to simplify the parameter estimation.

This not only avoids costly numerical integration, but also

decouples the parameter estimation allowing each component in

(2) to be learned separately. While gradient-matching approaches

have a long history in applied work [23,31], theoretical guarantees

on their performance are quite recent [28].

Most ODE approaches to reconstructing regulatory networks

take a gradient-matching approach in which the derivatives are

estimated using finite difference approximations [18]. However, in

the presence of measurement noise, derivative estimates based on

finite differences are inefficient compared to smoothing-based

estimates. Smoothing also allows us to estimate the entire

derivative, making use of the implicit information between the

observation times [28]. Moreover, the additional assumption of

smoothness of the underlying trajectories (specifically the conti-

nuity of €xx) is not overly cumbersome considering the smoothness

required of f , and hence of _xx, needed to ensure the existence of a

unique solution to the initial value problem (2) [32]. By using

smoothing splines, we improve on existing gradient-matching

procedures in the network reconstruction literature by leveraging

smoothness to estimate the derivatives more efficiently.

To summarize, NeRDS is a nonparametric gradient-matching

procedure consisting of three stages: normalize and smooth, fit an

additive ODE, and estimate coupling metrics. Details of each stage

appear below.

Details of the Estimation Procedure
In this section we supply details for a gradient-matching

procedure for estimating the right-hand-side function f nonpar-

ametrically and using this estimate for network reconstruction.

This procedure consists of three stages: 1) smoothing; 2) fitting and

additive ODE; and 3) using the estimated ODE to compute the
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coupling between each pair of nodes. See FIGURE 1 for a schematic

overview, FIGURE 2 for a graphical overview, and ALGORITHM S1

for a high-level description in pseudo-code.

Briefly, the three stages are as follows. In the first stage, we

normalize the data and then smooth using splines to obtain

estimates of the trajectories and derivatives. Normalization is done

within each component across experiments, while smoothing treats

each of the d components and R experiments separately so that

there are dR distinct smoothing problems to be solved. The second

stage consists of solving d additive regression problems treating the

estimated derivatives _̂xx_xxi as response variables and the smoothed

trajectories x̂xi as predictors. As with other approaches based on

regression, this limits attention to marginal relationships to avoid

the combinatorial explosion that would otherwise occur as the

number of system components d grows. Finally, in the third stage

we compute the pairwise couplings using a normalized version of

the L2 norm of the estimated functions. These couplings allow for

ranking potential edges or estimating a network using a threshold.

Due to the modularity of the algorithm, adjustments can be made

to stage 1 to account for changes to the measurement model

without subsequently affecting stages 2 or 3.

Stage 1: Normalize and Smooth
Normalization. We begin by normalizing the data to ensure

all components are on the same scale. In standard nonparametric

modeling, it is common to scale all variables to have standard

deviation one. This makes the resulting models invariant to scale

and allows regularization to proceed without additional weighting

schemes. However, since our observations are functional, we scale

instead by the maximum observed value for each component

across experiments. This serves a similar purpose and is also the

approach taken in the DREAM competitions [8].

Using smoothing to estimate the trajectories and

derivatives. The purpose of the first stage is to obtain estimated

time derivatives, _̂xx_xxi(t); smoothed trajectory estimates x̂xi(t) are a

welcome byproduct. Beginning with the trajectories, for each

component i and experiment r the estimated trajectories satisfy,

x̂xr
i (t)~arg min

x[W2
2
½0,1�

Xn

k~1

½yr
i (tk){x(tk)�2zlr

0,i

ð1

0

½€xx(t)�2dt, ð4Þ

where yr
i (tk) is the (normalized) observation of component i at

time tk in experiment r and W 2
2 ½0,1� is the Sobolev space discussed

in the overview. The solution is a natural cubic spline with knots at

the unique time points [33]. The estimated trajectories are given

by the basis function expansion x̂xr
i (t)~b(t)ĉcr

i where

b(t)~(b1(t),:::,bn(t)) is the (row) vector of smoothing-spline basis

functions evaluated at time t and ĉcr
i are the coefficients solving a

finite-dimensional version of (4),

ĉcr
i ~arg min

c[Rn

Xn

k~1

½yr
i (tk){b(tk)c�2zc’Vc, V‘m~

ð1

0

€bb‘(t)€bbm(t)dt:

ð5Þ

Derivatives estimates are obtained by differentiating the estimated

trajectories,

_̂xx_xxr
i (t)~

d

dt
x̂xr

i (t)~
_bb(t)ĉcr

i : ð6Þ

Both the trajectories and derivatives are easily computed using

standard software which also allows for efficient estimation of

tuning parameters flr
i0; i~1,:::,d; r~1,:::,Rg by cross validation

or generalized cross validation.

Stage 2: Fit an Additive ODE
The second stage involves finding an additive nonparametric

model relating the estimated derivatives _̂xx_xx(t) to the estimated

trajectories x̂x(t). Specifically, if ur
i (t)~0 the second stage

minimizes,

M̂Mn,r(f )~

ð1

0

_̂xx_xxr
i (t){

Xd

j~1

fij(x̂x
r
j (t))

" #2

dtzl1i

Xd

j~1

ð
Rj

½€ff ij(x)�2dx, ð7Þ

Figure 1. Schematic overview of the NeRDS workflow. The workflow is split into three stages. The first stage involves normalizing and
smoothing the data to obtain estimates of the trajectories and derivatives. In this stage each component within each experimental run is smoothed
separately. In the second stage, for each component an additive model expressing the derivative function in terms of the trajectory functions is fit
using the first stage estimates. In the second stage information is combined across experiments, but the models for each component remain
separate. Finally, the third stage computes pairwise couplings between components to yield a single ranked list of potential edges. FIGURE 2 provides a
more detailed graphical overview, while the full details of each stage can be found in the Methods section.
doi:10.1371/journal.pone.0094003.g001
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so that the estimator is,

f̂fi~arg min
fi[D

R{1
XR

r~1

M̂Mn,r(f ), ð8Þ

with D~ff : f ~
Pd

j~1 fj ,fj[W 2
2 ½Rj �g and Rj~½mint,r x̂xr

j (t),

maxt,r x̂xr
j (t)� an interval covering the estimated range of compo-

nent j over all experiments. If ur
i (t)=0 it should be subtracted

from _̂xx_xxi(t) before solving the optimization problem above.

Figure 2. Methodological overview. This panel serves to illustrate the high-level steps in the NeRDS methodology. Panel A shows (simulated)
data (Y r

i (tk))n
k~1 (depicted as filled circles) that are noisy measurements of the underlying trajectory (dashed black line) for P3G (i = 3) in experiment 2

(r = 2). Step 1: Smooth the data to obtain an estimate of the trajectory (solid green line). Panel B Step 2: Estimate the derivative (dashed black line)
using the derivative of the estimated trajectory (solid green line). Step 3: Aggregating estimates across experiments, use backfitting to fit an additive
nonparametric function (dot-dash orange line) expressing the (estimated) derivative in terms of the (estimated) trajectories. Panel C shows the
components of the additive function, each of which is a univariate function of a single trajectory, fit to the (estimated) derivatives of P3G. Specifically

shown here are ff̂f3j(x̂x
2
j (t))g6

j~1 plotted against time. Panel D shows the component functions ff̂f3jgx
j~1 plotted over their doman (i.e.

½min
t,r

xr
j (t), max

t,r
xr

j (t)�). Step 4: Estimate the coupling using an L2 norm of the estimated component functions. In panels C and D, regulators of P3G

in the underlying network are shown as solid lines, while non-regulators are shown with dashed lines.
doi:10.1371/journal.pone.0094003.g002
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The objective function (7) is minimized using sparse backfitting

[34], see Algorithm S2. Backfitting is a technique for fitting

nonparametric additive models by iteratively applying univariate

smoothers [35,36]. In our case this involves first centering the

estimated derivatives about the component mean and then

successively solving univariate smoothing-spline problems. For

instance, to update the jth component in the ith model, solve,

f
^

ij~

arg min
f [W2

2
½Rj �

R{1
XR

r~1

ð1

0

~_xx_xxr
i (t){

X
‘=j

~ff i‘(x̂x
r
‘(t))

 !
{f (x̂xr

‘(t))

" #2

dt

zli1

ð
Rj

½€ff (x)�2dx,

ð9Þ

where ~ffi‘ are the current estimates and ~_xx_xxr
i are the centered

derivatives. In practice, the integrals are approximated using

quadrature and the above can be accomplished by premultiplying

the residual vector by a smoothing matrix Sj . Although this is a

useful simplification, rather than premultiplying by Sj we solve the

corresponding linear system using a QR decomposition to obtain

updated estimates of the basis expansion coefficients ci. The f
^

ij

are next centered for identifiability. Finally, in order to induce

sparsity, a soft-threshold is applied after solving the smoothing

problem, so that the update is,

~ffij~(1{li2=DDf
^

DD2)z f
^

ij : ð10Þ

Tuning the smoothing parameters l1 and the sparsity
parameters l2

The estimators f̂fi from stage two depend on tuning parameters

li~(li1,li2). These tuning parameters depend on i because each

of the d submodels is fit separately. The smoothing parameter

could be allowed to vary by component, li1~(li1j)
d
j~1, but at the

cost of greatly expanding the computational cost required for

tuning. In our experience this additional flexibility does not lead to

significant improvement in terms of network reconstruction. The

smoothing parameter li1 controls the roughness of the individual

functions fij while the sparsity parameter li2 induces sparsity by

setting some of the fij to zero. These tuning parameters are

selected by minimizing the generalized cross validation score

suggested by [34],

GCV (li)~
(nR){1PR

r~1

Pn
k~1 ½ _̂xx_xxr

i (tk){f̂f i(x̂x
r(tk); li)�2

(1{df (li)=n)2
, ð11Þ

where df (li)~
Pd

j~1 dfj(li)1½fij=0� and

dfj(li)~tr(Bj(B’j Bjzli1Vj)
{1B’j ) is the trace of the hat matrix

projecting onto the span of the b-spline basis for the jth

component.

While GCV allows for automatic selection of tuning parameters,

overfitting— selecting l1 or l2 too small so the resulting model is

overly complex— is always a concern. In fact, it is our experience

from simulation studies that overfitting is the norm when using

GCV with our methodology. As a first pass, one may choose to

select l1 fairly large, say, l1~1, or reduce the number of knots

employed, so that the resulting additive functions are nearly linear.

One can then decrease l1 toward the value selected by GCV or

increase the number of knots until an appropriate balance between

flexibility and complexity is achieved, with the ‘appropriate’

balance depending on context.

Likewise, the search range for l2 should be chosen large enough

to ensure convergence of sparse backfitting in a reasonable

number of iterations, yet small enough to ensure a meaningful

model. Within this range GCV can serve as an objective guideline

from which to justify specific departures.

Model diagnostics are an important tool for balancing

complexity and flexibility. Plots overlaying estimated derivatives

with linear and selected additive fits can be used to discover places

where the additional flexibility is needed to achieve an adequate fit

or where the complexity can be restricted without undue loss of fit.

In TEXT S1, we illustrate use of these diagnostics for select terms

from the mouse system explored in the Results section.

Identifiability Issues
Given the complexity of the model class, it is natural to wonder

about the identifiability of the additive model. To this end it is

relevant to note that the smoothing matrices, Sj used to solve (7),

are symmetric linear smoothers with eigenvalues in [0,1]. Hence,

the backfitting procedure will converge to a minimizer of (7) (cf.

[35], pg. 122).

However, this minimizer need not be unique despite the

identifiability requirement
Ð
Rj

f̂fij(x)dx~1. The uniqueness will

depend on the concurvity space of the smoothers [35]. Namely, let

M1(Sj) be the space spanned by the first eigenvector of Sj .

Concurvity can be thought of as the functional analog to

collinearity. Then the concurvity space is,

M~f(g1,:::,gd ) : gj[M1(Sj),
Xd

j~1

gj~0,g=(0,:::,0): ð12Þ

If M is empty then the solution to (7) will be unique. If not, the

backfitting algorithm will still converge, but the solution will

depend on the initial estimates of the fij .

In practice, we computationally check the identifiability of our

fitted model in the following way. Since we always initialize at

fij:0, the initial estimates of the fij depend on the order in which

the backfitting is carried out. Thus, to check for identifiability we

permute this order a number of times (say 10) and compute the

resulting backfitting estimators, f̂f a
ij ,a~1,:::,10. We then compute

pairwise L? distances between the estimates,

dab~ sup
x[Rj

Df a
ij (x){f b

ij (x)D: ð13Þ

When these distances are of the order of the threshold E used to

define convergence we take this as evidence of identifiability.

Otherwise, the larger these distances the stronger the evidence

against the uniqueness of each fit is. In practical terms, it also helps

to overlay plots of the resulting fits and observe the extent to which

they agree.

Often, when the model is not identified, it is the result of the

data being insufficient for the complexity of the model fitted.

Hence, reducing this complexity by increasing l1 or l2 until the

model becomes identified is an attractive option that we have had

success with. From extensive simulation studies we find that having

R§d, at least as many experiments as system components,

generally suffices for identifiability.
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Stage 3: Coupling
The process model in (2) is specified by a set of coupled ODEs.

The link between the dynamic system (2) and the target network is

formalized by defining edges based on the relevant variables in the

right-hand-side function f . Specifically, component j regulates

component i if the ith component of f explicitly depends on xj ,

j?iu
Lfi

Lxj

=:0: ð14Þ

In the general case, the partial derivative
Lfi

Lxj
(x(t)) is a function

of x(t)— the concentrations of all components at time t. Since our

working models are additive, fiz~
Pd

i~1 fij , the partial derivatives
Lfiz

Lxj
(xj) depend at most on xj . Moreover,

Lfiz

Lxj

(xj)~0ufij:0, ð15Þ

allowing us to use the coupling metric,

rij : ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
Rj
½f̂f ij(z)�2dz

DRj D

vuut
, ð16Þ

with Rj the observed range of xj and DRj D its length.

The coupling metrics are used to rank potential edges based on

the strength of their regulatory influence. If desired, a single

estimated network can be obtained by choosing a threshold for the

coupling; only edges with coupling above this threshold are

included in the estimated network. Strategies for choosing this

threshold are a subject of ongoing research.

For recovering signed edges— corresponding to, say, promotion

and inhibition— we define signed coupling metrics,

rz
ij : ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
Rj
½( _̂ff_ff ij(z))z�

2
dz

DRj D

vuut
, r{

ij : ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
Rj
½( _̂ff_ff ij(z)){�

2
dz

DRj D

vuut
, ð17Þ

by taking the positive (:)z~maxf:,0g and negative

(:){~minf:,0g parts, respectively.

Results

We evaluate the performance of our method in silico using

simulated data from a variety of computational models for real

biological systems. In each case, the computational model is

specified by a highly nonlinear ODE with the collection of systems

chosen to reflect a representative cross-section of canonical

functional forms. Specifically, we choose examples from: the S-

system formalism [37], sigmoidal dynamics popular with compu-

tational modelers [38], as well as the thermodynamics-based

models used in the DREAM competitions [8].

Within each system, we apply the NeRDS methodology for

estimating the coupling by constructing a nonparametric additive

ODE and compare it to three standard parametric alternatives:

linear ODEs, linear ODEs plus ‘1 regularization (Lasso), and

Inferelator 1.0 [18]. Inferelator 1.0 also employs linear ODEs and

the Lasso, but takes a slightly different approach to estimation.

The key differences are: 1) estimation of derivatives by finite

differencing rather than smoothing splines; 2) construction of a

response variable for each node combining the estimated

derivative and trajectory at each time point; and 3) use of the

raw observations rather than smoothed estimates of trajectories as

covariates. All methods in the comparisons employ gradient-

matching and use (misspecified) ODE models to estimate the

network connections from time course data.

The models resulting from each method are used to rank

potential edges in terms of their coupling. For the linear models,

the estimated coupling is simply the appropriate coefficient in the

transfer matrix. The methods’ utility for network reconstruction

are then compared in terms of the areas under the precision recall

(AUC PR) and receiver operating characteristic (AUC ROC)

curves. In sparse models the order of potential edges at the bottom

of the ranked lists (corresponding to zero estimated coupling) is

arbitrary. To account for this we approximate the expected AUC

under random orderings of the remaining edges.

Metabolic Pathway in Lactocaccus Lactis
We begin by evaluating our methodology on an S-system

developed to describe the conversion of glucose to lactate via an

Embden-Meyerhof glycolytic pathway in the Lactocaccus Lactis

bacterium [39]. The system consists of nine metabolites of which

three (glucose, ATP, and phosphate) are offline variables not

explicitly modeled. See FIGURE 3 for the network topology. For

evaluation purposes we aim to reconstruct only the subnetwork

among the six online variables for which the network formalism

(14) makes sense.

Data for the reconstruction were obtained by simulating a suite

of six experiments using the model in [39]. This suite was designed

to induce curvature in the trajectories sufficient to make the

nonparametric additive model identifiable. Moreover, the exper-

iments compliment one another by ramping up the coupling

among targeted subsets of edges. Specifically, this was accom-

plished by altering the initial abundance of each metabolite in

turn,

Figure 3. Network topology for the Lactocaccus Lactis system.
The dark nodes with light text (glucose, ATP, and phosphorus)
correspond to offline variables not explicitly modeled. We focus on
reconstructing the subnetwork among the online variables (light nodes
with dark text). The (simulated) data consists of vector-valued time-
series of the metabolites represented by the nodes. The network,
computational model and data for offline variables are taken from [39].
doi:10.1371/journal.pone.0094003.g003
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xr
i (0)~x0i, i=r

xr
i (0)~Mx0i, i~r:

�
ð18Þ

The magnitude, M, of the simulated perturbations is a simulation

parameter loosely corresponding to how substantially the six

experiments differ from one another.

Noiseless trajectories for each simulated experiment were

computed via numerical integration. The trajectories were

sampled at n~100 times ftk~
k{1

n
49,k~1,:::,ng with noise

added to simulate measurement error,

Y r(tk)~xr(tk)zErk, Er
ki *

indp:
N(0,sxr

i (tk)): ð19Þ

We carried out simulations for s[f:02,:05g and

M[f15,10,5,2,1:5g with 500 repetitions for each (s,M) pair.

The simulated data from each repetition were normalized as

described in the Methods section and then used as input to four

network reconstruction algorithms: 1) a NeRDS additive ODE

with four interior knots, l2~0 and l1 selected by GCV searching

over the grid f:05z,z~1,:::,10g; 2) a linear ODE fit by gradient

matching; 3) a sparse linear ODE fit using gradient matching and

lars [40]; and 4) Inferelator 1.0 [18]. All simulations were done

using R [41].

Each of the first three methods utilize smoothing splines to

smooth the trajectories and estimate the derivatives, as described

in Methods. For the additive ODEs the sparsity parameter l2 was

set to 0 due to the small size of the system while the number of

knots and search-range for l1 were selected by examining

diagnostic plots as discussed in Methods. Moreover, following

the estimation of ODE parameters using each algorithm, we

ranked potential edges using the coupling metric introduced in

Methods. For the three approaches employing linear ODEs, this

reduces to ranking edges by the magnitude of estimated entries in

the transfer matrix.

The mean area under the precision-recall and ROC curves

from the Lactocaccus simulations appear in TABLE 1 and TABLE 2,

respectively. The dispersion of these measures among the 500

repetitions can be seen in the boxplots of FIGURE 4. Additional

results using reduced sampling densities, n[f25,50,75g, appear in

FIGURE S3. In terms of ROC scores, the additive ODEs used by

NeRDS outperformed the competitors with the exception of low-

signal (M~2,1:5) high-noise (s~:05) settings. Evaluated on the

basis of precision-recall scores the additive ODEs performed best

in high-signal settings (M§5), but dropped off considerably under

more modest perturbations. Taken together, these results indicate

that moving from linear to additive ODEs takes better advantage

of sufficiently strong signals. In low-signal settings (Mƒ2) focused

on precision-recall, the sparse methods, linear ODEs z Lasso and

Inferelator, outperformed the methods not utilizing sparsity.

Gene Regulatory Network in Mouse Embryonic Stem
Cells

Our second example for evaluating the NeRDS methodology is

a computational model for a six-gene regulatory network

developed to explain lineage determination of embryonic stem

cells in mice [38]. See FIGURE 5 for the network topology. The

system of ODEs describing the network is based on a thermody-

namic model for gene regulation resulting in sigmoidal functional

forms involving two- and three-way interaction terms. The setup

for the simulations was nearly identical to that used for the

Lactocaccus system described previously, with the exception that the

n~100 observation times ftk~
k{1

n
30,k~1,:::,ng span a lesser

duration. While the additive ODEs again used four interior knots

and fixed l2~0, l1 was chosen by GCV searching over the grid

f10z,z~{2,{1:5,{1g. The number of knots and search range

were selected to be as close to linear as possible while providing

adequate fit as assessed by examining diagnostic plots from a

representative dataset. See FIGURE S1 for an example and TEXT S1

for more on this point.

Simulation results for reconstructing the mouse network appear

in TABLE 3 and TABLE 4, showing mean areas under, respectively,

the precision recall and ROC curves from 500 repetitions at a

variety of settings. The results are also presented graphically using

boxplots in FIGURE 6 giving a sense of each method’s variability.

Performance using reduced sampling densities, n[f25,50,75g, can

be found in FIGURE S4.

For this network, the additive and linear ODEs were clearly the

best performers overall. As with the Lactocaccus network, additive

ODEs were the best performers in high-signal settings (M§5).

Linear ODEs had a slight advantage in low-signal (Mƒ2) high-

noise (s~:05) settings, while the two methods are virtually

indistinguishable in low-signal (Mƒ2), low-noise (s~:02) settings.

Looking at the boxlots in FIGURE 6, we see that in low-signal

(Mƒ2), high-noise (s~:05) settings additive and linear ODEs

both occasionally achieved perfect reconstructions, but that linear

ODEs performed slightly better on average due by having higher

worst-case performance.

To some extent the lack of robustness displayed may be an

artifact of the simulation setting as the need to do 500 Monte

Carlo repetitions precluded us from checking the stability of each

model as discussed in the section Identifiability Issues above. In

practice, these stability checks should suggest higher values of l1 so

that the additive ODESs of NeRDS become more similar to their

linear counterparts. This also suggests that, all else equal, users of

NeRDS should favor higher values of the smoothness parameter

l1 and also consider using fewer knots; see the discussion section

for more on this point.

Both linear and additive ODEs outperformed Inferelator as did

linear ODEs z Lasso implying that this difference can not be

attributed solely to sparsity. The observed differences between

linear ODE z Lasso and Inferelator likely reflect the additional

stability of the former due to the way in which the derivatives are

estimated; in most cases, smoothing splines provide better

derivative estimates than finite differencing. Nevertheless, sparsity

clearly did play a role as the two methods not employing sparsity

(NeRDS and linear ODEs) performed better than those that did

(linear ODEs z Lasso and Inferelator). Note that NeRDS did not

employ sparsity because we fixed l2~0.

DREAM 3 10- and 100-Node Networks
In addition to the computational models described above, we

also evaluated the NeRDS methodology on the 10- and 100-node

networks from DREAM 3, challenge 4 [8,42,43]. This provides

performance comparisons on a premier evaluation model and

including the 100-node networks allows us to demonstrate that

NeRDS is scalable despite its complexity relative to parametric

models.

While the DREAM 3 networks represent an important point of

comparison an observation is in order. Unlike the Lactocaccus and

Mouse examples in which the time evolution of the system is fully

observed, the DREAM 3 dynamics are only partially observed.

This is due to the dynamic system generating the data involving

unobserved proteins. The presence of unobserved variables adds

an additional layer of approximation for the working models to
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accomodate. Including unobserved variables in the generating

model has the advantage of being more faithful to the underlying

science but makes de novo exploration more difficult. For this

reason, we should not expect general exploratory models, such as

linear ODEs or the additive nonparametric ODEs used by

NeRDS, to perform as well as methods that take full advantage of

prior scientific knowledge.

We used GeneNetWeaver [42] to generate, respectively, 10 and

100 multifactorial time series for each of the five DREAM 3 10-

and 100-node networks. As discussed in [8], GeneNetWeaver

generates multifactorial time series by integrating the in silico

model from various initial conditions. These multifactorial time

series are meant to simulate the networks’ response to global

perturbations. Here ‘global’ signifies that the targets of the

perturbations are unknown, so that one can neither employ direct

cause-effect methodologies, nor incorporate such cause-effect

information into a dynamic model. Similar to the competition

settings, these time series were generated using ODEs and adding

Gaussian measurement error with standard deviation.025 to the

n~21 observation times on each time-series. As before, we applied

each of the four methods under consideration to reconstruct these

networks on the basis of these time series. We look at mean

performance in terms of AUC PR and AUC ROC over 500

realizations of the measurement error for the 10-node networks,

and 10 realizations of the noise for each 100-node network. The

results, displayed in TABLE 5 and TABLE 6 indicate that the additive

ODEs we employ compare favorably with other methods.

For the additive ODEs on the 100-node networks, we first

computed GCV over a range of l1 and l2 values for a single

repetition from the Ecoli1 100-node network with knots at all

unique data points. To improve stability and limit complexity, we

fixed l1~:1 and l2~:001 across all nodes in the 100-node

networks because these values most frequently minimized GCV on

the network examined. This has the effect of eliminating variability

Figure 4. Performance evaluation on the Lactocaccus Lactis system. Upper row: Boxplots showing area under the precision-recall curves from
500 Monte Carlo simulations reconstructing the Lactocaccus network. Bottom Row: Boxplots showing area under the ROC curves. Each plot in the row
corresponds to a different value of the perturbation parameter M (high to low from left to right). Within each plot, boxplots are arranged according
to reconstruction method; from left to right these are: additive ODEs (NeRDS), linear ODEs (LM), linear ODEs plus a Lasso penalty (Lasso), and
Inferelator. For each method a pair of boxplots are presented corresponding to low noise (s~0:02, left) and moderate noise (s~:05, right).
doi:10.1371/journal.pone.0094003.g004
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due to tuning parameter selection. For the 10-node networks, we

used 4 knots and fixed l2~0, but allowed l1 to be selected by

GCV from the sequence l1[f10z,z~{1,{:8,{:6,:::,:6,:8,1g.
Unlike the DREAM 3 competition, in the comparison just

discussed we did not assume access to any knockdown or knockout

data in accordance with our goal of improving methodology for

time-course data. However, for the sake of completeness, we also

provide performance comparisons on the actual data from

challenge 4 of the DREAM 3 competition. Due to the small

number of time series available (4 and 46, respectively, for the 10-

and 100-node networks), methods not utilizing the knockout

data— known to be most informative [8]— will not be

competitive. For a fair comparison, we first used the knockout

data to estimate an influence matrix for each network. Using this

estimated influence matrix, we limited the pool of potential

regulators for each submodel when fitting additive ODEs to the

time series data. In summary, we screened potential regulators

using the knockout experiments, and then ranked those remaining

in terms of the estimated coupling.

Our approach to estimating the influence matrix was similar to

that used by the top performers in the competition for estimating

the first batch of edges [10]. Briefly, the idea is to use t-tests to

determine which genes in a particular knockout strain have

expression levels significantly different from wild-type expression.

The t-tests rely on a pooled estimate of the standard deviation of

the measurement noise as well as estimates of the mean wild-type

expression for each gene. To improve the power of the tests, one

iterates between estimating the downstream effects of each

knockout and updating the estimates of the means and standard

deviation based until the influence matrix is left unchanged.

Means are initialized to the wild-type observations and the

Table 1. Area under the precision-recall curve for the
Lactocaccus Lactis system.

s~:02 s~:05

M = 15, Additive ODE .87 (.865,.867) .88 (.881, .886)

M = 15, Linear ODE .82 (.819, .821) .81 (.812, .815)

M = 15, Linear ODE + Lasso .65 (.650, .659) .64 (.632, .642)

M = 15, Inferelator 1.0 .76 (.761, .769) .73 (.722, .731)

M = 10, Additive ODE .92 (.918, .920) .91 (.909, .912)

M = 10, Linear ODE .84 (.840, .841) .83 (.832, .835)

M = 10, Linear ODE + Lasso .65 (.650, .657) .67 (.669, .677)

M = 10, Inferelator 1.0 .75 (.741, .750) .74 (.734, .741)

M = 5, Additive ODE .88 (.881, .883) .86 (.859, .862)

M = 5, Linear ODE .80 (.802, .804) .78 (.776, .781)

M = 5, Linear ODE + Lasso .71 (.710, .715) .73 (.723, .729)

M = 5, Inferelator 1.0 .78 (.778, .787) .77 (.764, .772)

M = 2, Additive ODE .55 (.549, .553) .49 (.490, .498)

M = 2, Linear ODE .57 (.567, .569) .57 (.567, .572)

M = 2, Linear ODE + Lasso .56 (.556, .559) .61 (.605, .612)

M = 2, Inferelator 1.0 .62 (.618, .624) .60 (.592, .599)

M = 1.5, Additive ODE .43 (.426, .428) .41 (.403, .410)

M = 1.5, Linear ODE .47 (.464, .466) .44 (.439, .445)

M = 1.5, Linear ODE + Lasso .49 (.490, .493) .57 (.568, .572)

M = 1.5, Inferelator 1.0 .57 (.563, .568) .56 (.556, .562)

Performance comparison in terms of area under the precision recall curve of four
methods for reconstructing the Lactocaccus network. The figures given are aver-
ages from 500 Monte Carlo repetitions along with confidence intervals for the
mean. The parameter M corresponds to the size of the perturbation used in
generating the time series while the standard deviation of the noise is propor-
tional to s. Six time series, each with n~100 observations, are used in the
reconstruction.
doi:10.1371/journal.pone.0094003.t001

Table 2. Area under the receiver operator characteristic for
the Lactocaccus Lactis system.

s~:02 s~:05

M = 15, Additive ODE .86 (.863, .864) .88 (.874, .877)

M = 15, Linear ODE .84 (.836, .838) .82 (.822, .825)

M = 15, Linear ODE + Lasso .65 (.650, .659) .64 (.632, .642)

M = 15, Inferelator 1.0 .76 (.755, .764) .72 (.716, .727)

M = 10, Additive ODE .91 (.904, .906) .90 (.895, .897)

M = 10, Linear ODE .83 (.826, .828) .82 (.815, .820)

M = 10, Linear ODE + Lasso .65 (.650, .657) .67 (.669, .677)

M = 10, Inferelator 1.0 .75 (.744, .753) .74 (.733, .742)

M = 5, Additive ODE .87 (.871, .874) .85 (.852, .856)

M = 5, Linear ODE .78 (.781, .783) .73 (.726, .731)

M = 5, Linear ODE + Lasso .71 (.710, .715) .73 (.723, .729)

M = 5, Inferelator 1.0 .77 (.764, .774) .76 (.751, .759)

M = 2, Additive ODE .66 (.663, .666) .59 (.584, .591)

M = 2, Linear ODE .57 (.572, .574) .54 (.537, .542)

M = 2, Linear ODE + Lasso .56 (.556, .559) .61 (.605, .612)

M = 2, Inferelator 1.0 .61 (.612, .618) .59 (.586, .597)

M = 1.5, Additive ODE .60 (.596, .599) .50 (.499, .506)

M = 1.5, Linear ODE .50 (.499, .502) .45 (.450, .457)

M = 1.5, Linear ODE + Lasso .49 (.490, .493) .57 (.568, .572)

M = 1.5, Inferelator 1.0 .56 (.552, .559) .54 (.531, .540)

Performance evaluation for the Lactocaccus network using area under the ROC
curve.
doi:10.1371/journal.pone.0094003.t002

Figure 5. Network topology for the mouse embryonic stem cell
system. This six-gene regulatory network consists of 14 edges
(regulatory relationships) which we wish to discover from time-series
observations of the gene expressions. The network and the computa-
tional model used to generate these observations are taken from [38].
doi:10.1371/journal.pone.0094003.g005
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standard deviation is initially based on all but the direct targets of

each knockout. After each update of the influence matrix, the

means and standard deviation were updated using the observa-

tions estimated to be unaffected by the knockouts.

Estimating the influence matrix using t-tests required specifying

a nominal significance level, a. To do so, we plotted the estimated

number of potential regulators for several values of a. We then

chose a by looking for an ‘elbow’ where the slope of the curve

sharply increases; see FIGURE S2 to see the values selected. After

choosing a, additive ODEs were fit to the time-series and used to

rank the potential edges. We set l2~0 due to the sparsity already

introduced using the knockouts and chose l1 by GCV, searching

l1[f10z,z~{2,{1:5,{1,:::,:5,1g for the 100-node networks and

l1[f10z,z~{2,{1:8,{1:6,:::,:8,1g for the 10-node networks.

The results are in TABLE 7, and include comparisons to teams

315, 304, 256 from the competition for comparison. Again, the

results compare favorably particularly considering we made no

attempt to optimize the unranked edges eliminated by the

prescreening step. We present these comparisons because team

315 was the top performer overall, while teams 304 and 256 were

the top performers among those whose methods primarily made

use of dynamic models. For this subset of teams, Team 304 was the

top performer (fifth overall) on the 100-node networks and Team

256 was the best performer (third overall) on the 50-node

networks. Team 304 included the developers of Inferelator, which

was a primary component in their larger network reconstruction

pipeline [19]. Notably, Team 256 also took a nonparametric

approach and utilized ODEs albeit using Bayesian estimation and

a different strategy for reconstructing the network from the fitted

model [29]. Despite these similarities, our approach offers the

advantage of being scalable.

Figure 6. Performance evaluation on the mouse embryonic stem cell system. Upper row: Boxplots showing area under the precision recall
curves from 500 Monte Carlo simulations reconstructing the Mouse network. Bottom Row: Boxplots showing area under the ROC curves. Each plot in
the row corresponds to a different value of the perturbation parameter M (high to low from left to right). Within each plot, boxplots are arranged
according to reconstruction method; from left to right these are: additive ODEs (NeRDS), linear ODEs (LM), linear ODEs plus a lasso penalty (Lasso),
and Inferelator. For each method a pair of boxplots are presented corresponding to low noise (s~0:02, left) and moderate noise (s~:05, right).
doi:10.1371/journal.pone.0094003.g006
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Discussion

This paper introduces a novel technique, NeRDS, for

reconstructing biological networks from time-series data. Unlike

other ODE-based approaches which assume a parametric model,

we take a nonparametric approach utilizing additive rather than

linear approximations. We also introduce a coupling metric that

can be used as a general tool for measuring the direct influence of

one component on another in nonlinear ODE models. The

flexibility of the nonparametric approach allows researchers to

proceed with minimal assumptions other than the underlying

smoothness inherent to ODE models.

While our approach is flexible, like any nonlinear approach it

comes at the price of large data requirements. Specifically, for

NeRDS to perform well we require as many time series as network

components and that these time series be sufficiently informative.

At a minimum, the trajectories of each component must exhibit

enough curvature for its regulatory effects to be disambiguated

from others on at least some of the time-series experiments.

However, in general the number and quality of the time series is

much more important than the frequency at which these time

series our sampled, provided the sampling is sufficient to capture

the system dynamics and maintain some signal amidst the noise.

Moreover, time-series data tend to be more readily available then

the more informative direct perturbation experiments, such as

gene deletion.

Indeed, network reconstruction methods for time series

currently lag techniques based on direct perturbations experi-

ments. However their ability to make use of more readily available

data is a major advantage, particularly in the early stages of

understanding a system— precisely when network reconstruction

is most relevant. Given the limitations of current time-series

approaches, our method adds to the toolkit for network

reconstruction and system identification. No single reconstruction

method will be best in all cases. In fact, community network

reconstructions that combine information from a variety of

algorithms are often superior [44]. Further it expands the class

of models available for time-course data to include additive ODEs,

thus enriching the collection of methods available for community-

based reconstructions.

The flexibility of our method must be balanced against both

model and computational complexity. Central to managing these

tradeoffs are the tuning parameters: l1 for controlling the

smoothness of the additive functions and l2 for managing

network-level sparsity. Larger choices for these parameters lead

to simpler models, smaller choices to additional complexity. For

instance, as l1?? our additive model subsumes a linear models

as a special case. The model complexity can also be reduced by

limiting the number of interior knots in the basis expansions for

the additive functions. While the GCV criterion offers an option

for automatic tuning, it tends to err on the side of complexity.

Diagnostic plots such as described in the supplement are an

invaluable tool in making these selections subjectively. In practice,

especially in an exploratory context, we recommend researchers

start near the linear case and add additional complexity by

decreasing l1 or adding knots as needed. Indeed, early simulation

studies on the systems studied in this paper demonstrated that

allowing too much complexity (using too many knots or allowing

l1 to be too small) significantly reduced performance of the

additive ODEs.

Table 3. Area under the precision-recall curve for the mouse
system.

s~:02 s~:05

M = 15, Additive ODE .96 (.961, .962) .96 (.958, .960)

M = 15, Linear ODE .96 (.959, .960) .95 (.944, .948)

M = 15, Linear ODE + Lasso .74 (.742, .746) .74 (.739, .743)

M = 15, Inferelator 1.0 .65 (.640, .654) .61 (.604, .618)

M = 10, Additive ODE .98 (.980, .981) .98 (.977, .978)

M = 10, Linear ODE .96 (.963, .963) .96 (.953, .957)

M = 10, Linear ODE + Lasso .75 (.744, .746) .74 (.736, .741)

M = 10, Inferelator 1.0 .66 (.655, .668) .62 (.615, .629)

M = 5, Additive ODE .98 (.984, .985) .98 (.979, .981)

M = 5, Linear ODE .97 (.969, .970) .96 (.963, .965)

M = 5, Linear ODE + Lasso .75 (.751, .753) .74 (.740, .745)

M = 5, Inferelator 1.0 .70 (.696, .708) .65 (.641, .656)

M = 2, Additive ODE .98 (.977, .979) .94 (.935, .941)

M = 2, Linear ODE .98 (.976, .978) .96 (.953, .958)

M = 2, Linear ODE + Lasso .76 (.758, .762) .74 (.741, .748)

M = 2, Inferelator 1.0 .70 (.700, .707) .61 (.601, .614)

M = 1.5, Additive ODE .97 (.966, .970) .88 (.873, .883)

M = 1.5, Linear ODE .97 (.971, .974) .90 (.899, .908)

M = 1.5, Linear ODE + Lasso .76 (.757, .763) .73 (.730, .740)

M = 1.5, Inferelator 1.0 .66 (.651, .661) .55 (.548, .562)

Performance comparison using area under the precision-recall curve for
reconstructing the mouse network.
doi:10.1371/journal.pone.0094003.t003

Table 4. Area under the receiver operator characteristic for
the mouse system.

s~:02 s~:05

M = 15, Additive ODE .96 (.961, .962) .96 (.957, .959)

M = 15, Linear ODE .93 (.929, .930) .92 (.914, .919)

M = 15, Linear ODE + Lasso .74 (.742, .746) .74 (.739, .743)

M = 15, Inferelator 1.0 .59 (.587, .600) .56 (.559, .570)

M = 10, Additive ODE .98 (.979, .980) .98 (.974, .976)

M = 10, Linear ODE .94 (.936, .938) .93 (.926, .930)

M = 10, Linear ODE + Lasso .75 (.744, .746) .74 (.736, .741)

M = 10, Inferelator 1.0 .60 (.598, .611) .57 (.567, .579)

M = 5, Additive ODE .98 (.982, .983) .98 (.975, .977)

M = 5, Linear ODE .96 (.956, .958) .95 (.946, .949)

M = 5, Linear ODE + Lasso .75 (.751, .753) .74 (.740, .745)

M = 5, Inferelator 1.0 .65 (.644, .655) .60 (.588, .602)

M = 2, Additive ODE .97 (.969, .972) .93 (.925, .932)

M = 2, Linear ODE .97 (.968, .971) .95 (.943, .949)

M = 2, Linear ODE + Lasso .76 (.758, .762) .74 (.741, .748)

M = 2, Inferelator 1.0 .66 (.658, .665) .58 (.577, .589)

M = 1.5, Additive ODE .96 (.958, .962) .87 (.861, .872)

M = 1.5, Linear ODE .96 (.962, .967) .89 (.886, .896)

M = 1.5, Linear ODE + Lasso .76 (.757, .763) .73 (.730, .740)

M = 1.5, Inferelator 1.0 .63 (.630, .638) .54 (.534, .547)

Performance comparison using area under the ROC curve for reconstructing the
Mouse network.
doi:10.1371/journal.pone.0094003.t004
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Despite the relative complexity of NeRDS we were able to scale

to the 100-node networks because the methodology is both

modular and easily parallelized. A key reason for the latter is the

marginal nature of the reconstruction method. Regression-based

approaches such as the current one construct the network by

combining the incoming edges selected (ranked) for each node

individually. For a network with d nodes this allows the model

fitting to be split into d separate tasks. Likewise, the most

computationally intensive portion of our methodology— selecting

tuning parameters— is trivially parallelized by splitting along each

value of the tuning parameter considered in the grid search.

Moreover, by employing basis expansions the nonparametric

method allowed us to expand the model class while still only

needing to solve linear systems. In addition, since the submodels

for all d nodes share a single feature space we need to compute

only once the matrices defining these linear systems and the

decompositions needed to efficiently solve them. Thus while tens

of thousands of linear systems were solved in fitting our additive

nonparametric models, only a few hundred matrix decompositions

were required (d~100 for each value of the smoothing parameter

l1 considered).

In relatively small systems, such as the Mouse Embryonic Stem

Cell and Lactocaccus Lactis systems serving as our primary examples,

it appears preferable to fix the sparsity parameter l2 at zero in

advance. In contrast, the role of sparsity becomes increasingly

important as the number of network nodes grows into the tens and

beyond. Moreover, inducing sparsity through l2 offers the

potential to skirt the requirement of as many time series as nodes

but at the expense of discovering fewer true edges.

Many of the tradeoffs discussed above are inherent in the

problem of reconstructing biological networks and are by no

means unique to our method. Generally, there is a continued need

for theory to better understand the tradeoffs and how best to

manage them. Theory is needed not just for managing tradeoffs

within a modeling paradigm, but also for experimental design.

Network reconstruction methods based on time series offer two

advantages in this regard. First, they rely on the easiest to obtain

data and so offering early insight on how to proceed with future

experiments. Also, time series methods yield dynamic models

useful for estimating the likely information gain from potential

experiments.

In order to move toward genome-scale network reconstruction,

further work will also be needed to explore how the method

presented here fits in with efforts toward data integration. For

instance, within the additive framework it is not obvious how to

combine multiple time-series datasets not emanating from a single-

lab or experimental setup as has been done for linear systems [22].

Determining how to integrate sources of data other than time

series, including prior information, network motifs from homol-

ogous systems, and steady-state data from perturbation experi-

ments, among others, is a promising direction for further research

[6,45,46].

By rooting our methodology in statistically-motivated tools we

hope in the future to make further theoretical and practical

Table 5. AUC-PR and AUC-ROC for DREAM3 10-node
networks.

Network Method AUC PR AUC ROC

Ecoli 1 Additive ODE 0.16 (0.154, 0.163) 0.53 (0.519, 0.532)

Ecoli 1 Linear ODE 0.20 (0.189, 0.200) 0.60 (0.594, 0.608)

Ecoli 1 Linear ODE + Lasso 0.15 (0.150, 0.159) 0.46 (0.449, 0.461)

Ecoli 1 Inferelator 1.0 0.15 (0.146, 0.154) 0.49 (0.480, 0.494)

Ecoli 2 Additive ODE 0.20 (0.197, 0.204) 0.54 (0.537, 0.549)

Ecoli 2 Linear ODE 0.25 (0.238, 0.253) 0.58 (0.569, 0.583)

Ecoli 2 Linear ODE + Lasso 0.23 (0.229, 0.238) 0.50 (0.498, 0.506)

Ecoli 2 Inferelator 1.0 0.21 (0.207, 0.213) 0.52 (0.511, 0.520)

Yeast 1 Additive ODE 0.10 (0.102, 0.106) 0.45 (0.445, 0.456)

Yeast 1 Linear ODE 0.11 (0.110, 0.115) 0.45 (0.442, 0.452)

Yeast 1 Linear ODE + Lasso 0.12 (0.114, 0.119) 0.44 (0.434, 0.446)

Yeast 1 Inferelator 1.0 0.22 (0.211, 0.220) 0.56 (0.554, 0.565)

Yeast 2 Additive ODE 0.31 (0.307, 0.314) 0.53 (0.526, 0.536)

Yeast 2 Linear ODE 0.36 (0.358, 0.367) 0.59 (0.583, 0.593)

Yeast 2 Linear ODE + Lasso 0.27 (0.270, 0.278) 0.40 (0.397, 0.405)

Yeast 2 Inferelator 1.0 0.33 (0.325, 0.330) 0.45 (0.446, 0.453)

Yeast 3 Additive ODE 0.23 (0.228, 0.234) 0.48 (0.470, 0.481)

Yeast 3 Linear ODE 0.31 (0.308, 0.319) 0.56 (0.558, 0.571)

Yeast 3 Linear ODE + Lasso 0.28 (0.271, 0.279) 0.47 (0.463, 0.473)

Yeast 3 Inferelator 1.0 0.29 (0.290, 0.300) 0.48 (0.472, 0.484)

Performance comparisons are for a single dataset generated using GeneNet-
Weaver. The simulated data set contains 10 multifactorial perturbations with 21
observed time points on each. The trajectories were simulated using ODEs only.
Gaussian noise with standard deviation .025 was added prior to normalization.
Figures shown are means with 95% confidence intervals computed from 500
realizations of the measurement noise.
doi:10.1371/journal.pone.0094003.t005

Table 6. AUC-PR and AUC-ROC for DREAM3 100-node
networks.

Network Method AUC PR AUC ROC

Ecoli 1 Additive ODE .109 (.106, .113) .639 (.627, .650)

Ecoli 1 Linear ODE .020 (.016, .023) .540 (.533, .547)

Ecoli 1 Linear ODE + Lasso .022 (.018, .026) .547 (.538, .556)

Ecoli 1 Inferelator 1.0 .067 (.059, .074) .622 (.611, .634)

Ecoli 2 Additive ODE .038 (.036, .040) .658 (.646, .670)

Ecoli 2 Linear ODE .021 (.014, .027) .525 (.516, .534)

Ecoli 2 Linear ODE + Lasso .020 (.017, .023) .533 (.523, .543)

Ecoli 2 Inferelator 1.0 .060(.051, .069) .599 (.589, .609)

Yeast 1 Additive ODE .085 (.084, .087) .615 (.611, .620)

Yeast 1 Linear ODE .053 (.047, .059) .609 (.601, .617)

Yeast 1 Linear ODE + Lasso .045 (.040, .051) .536 (.523, .549)

Yeast 1 Inferelator 1.0 .100 (.094, .105) .582 (.57, .594)

Yeast 2 Additive ODE .072 (.070, .074) .572 (.565, .579)

Yeast 2 Linear ODE .048 (.048, .049) .568 (.563, .573)

Yeast 2 Linear ODE + Lasso .045 (.044, .046) .518 (.510, .526)

Yeast 2 Inferelator 1.0 .066 (.064, .067) .517 (.513, .520)

Yeast 3 Additive ODE .109 (.106, .111) .613 (.608, .619)

Yeast 3 Linear ODE .094 (.092, .097) .611 (.605, .618)

Yeast 3 Linear ODE + Lasso .089 (.087, .092) .575 (.564, .587)

Yeast 3 Inferelator 1.0 .118 (.115, .122) .579 (.572, .587)

Performance comparisons are for a single dataset generated using GeneNet-
Weaver. The simulated data set contains 100 multifactorial perturbations with
21 observed time points on each. The trajectories were simulated using ODEs
only. Gaussian noise with standard deviation .025 was added prior to normali-
zation. The top performer(s) in each column are bolded. Figures shown are
means with 95% confidence intervals computed from 10 realizations of the
measurement noise.
doi:10.1371/journal.pone.0094003.t006
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contributions to balancing flexibility and complexity, experimental

design for network reconstruction, and data integration.

Supporting Information

Algorithm S1 NeRDS W orkflow.
(PDF)

Algorithm S2

(PDF)

Figure S1 Diagnostic plots for component 3 (Nanog)

Panel A: Each plot show the normalized

observations from one the six simulated experiments as grey dots

and the stage-1 smooth as a solid black line. Experiments 4 and 5

appear to carry minimal information for fitting a model to Nanog

and are not considered in stage-2 diagnostics. Panel B: For each of

four relevant experiments, the solid black line is the estimated

derivative of Nanog, the dashed red line the unregularized linear

fit, and the dot-dash cyan line the additive fit with l1~:01, l2~0.

The additive model provides a better fit on the non-dominant

experiments.

(EPS)

Figure S2 Plotting the number of potential edges versus
a.

expression levels in each gene deletion mutant significantly differ

from their wild-type expressions. The plots show the number of

potential regulators versus the nominal significance level, a, used

in these t-tests. We chose a by looking for an ‘elbow’— a location

where the slope of the curve sharply increases. The locations

indicated by the dashed vertical lines were used for the results

presented in TABLE 6; from left to right these are .03, .02, .015,

.025, .015 for the 10-node networks and 10z,z~{3,{3,{3:5,
{2:5,{2:5 for the 100-node networks. For the 100-node

networks both the number of potential regulators and a are on

the log10 scale. Top Row: 10-node networks. Bottom row: 100-node

networks.

(EPS)

Figure S3 Reconstruction performance on the Lactocaccus

Lactis network for varied sample Using th ee xperimental

setupfor described in the Results sectionof the main paper,

we repeated the simulations with reduced sampling densities. The

number of observations per time series, n, is on the horizontal axis

of each plot. Solid, black lines show the performance of the

additive ODEs introduced in the paper while dashed, red lines

indicate the performance for linear ODEs. The two noise levels,

s[f:02,:05g, are respectively indicated by round and square

symbols. For n~100 these are the same results presented in

TABLE 1 and TABLE 2.

(EPS)

Figure S4 Reconstruction performance on the mouse
network for varied sample si z e. Using the experimental setup

number observations per time series, n, on the horizontal axes.

Solid, black lines indicate the performance of the additive ODEs

while dashed, red lines show the performance for linear ODEs.

The two noise levels, s[f:02,:05g, are indicated by round and

square symbols, respectively. For n~100 these are the same results

presented in TABLE 3 and TABLE 4.

(EPS)

Text S1 Diagnostics for tuning parameter selection.
(PDF)

Author Contributions

Conceived and designed the experiments: JH GM. Performed the

experiments: JH. Analyzed the data: JH. Wrote the paper: JH GM.

References

1. Michailidis G (2012) Statistical challenges in biological networks. Journal of

Computational and Graphical Statistics 21: 840–855.

2. Lee WP, Tzou WS (2009) Computational methods for discovering gene

networks from expression data. Briefings in Bioinformatics 10: 408–423.

3. Markowetz F, Spang R (2007) Inferring cellular networks|a review. BMC

Bioinformatics 8: S5.

4. De Jong H (2002) Modeling and simulation of genetic regulatory systems: a

literature review. Journal of Computational Biology 9: 67–103.

Table 7. Results on the DREAM 3 competition data.

E1 E2 Y1 Y2 Y3

PR ROC PR ROC PR ROC PR ROC PR ROC

Team 256, 10-Node .396 .720 .258 .622 .258 .591 .481 .591 .434 .625

Team 304, 10-Node .193 .697 .377 .791 .468 .909 .332 .554 .388 .658

Team 315, 10-Node .710 .928 .713 .912 .897 .949 .541 .747 .627 .714

Additive ODEs, 10-Node .875 .976 .632 .885 .558 .906 .491 .673 .510 .654

Team 304, 100-Node .132 .835 .154 .879 .159 .839 .179 .738 .161 .667

Team 315, 100-Node .694 .948 .806 .960 .493 .915 .469 .856 .433 .783

Additive ODEs, 100-Node .623 .867 .841 .953 .466 .820 .424 .787 .396 .734

Performance on the in silico data for challenge 4 of the DREAM 3 competition [8,42,43]. Team 315 was the top performer in the challenge [10], while teams 304 and
256 focused on time series and were among the top performers. Team 304 used Inferelator 1.0 as part of a larger reconstruction pipeline [19]. Team 256 also fit non-
parametric ODEs though their approach differed from ours [29]; team 256 did not participate in the 100-node reconstructions due to the complexity of their method.
The competition data includes observations for wild-type, knockouts of each gene, heterozygous knockdowns of each gene, and time series under multifactorial
perturbations. There are 21 observations on each of the 4 time series for the 10-node networks and the 46 time series for the 100-node networks. Our
reconstructions used knockout and time-series data only. PR and ROC values were computed using GeneNetWeaver.
doi:10.1371/journal.pone.0094003.t007

Network Reconstruction Using Nonparametric Additive ODE Models

PLOS ONE | www.plosone.org 14 April 2014 | Volume 9 | Issue 4 | e94003

WWW

Sparse WBackfitting. W

in the mouse system.
))((

The algorithm used to do this relies on t-tests to determine whichgene

knockout experiments to limit the number of potential regulators.

aa

zz zzzzz

Lffff actocaccus

siz e.zz zzzzz
LactocaccusLactocaccus

LactisLactis

For the DREAM 3, challenge 4, competition data we used

for the mouse network described in the Results section, we repeated

the simulations with reduced sampling densities indexed by the



5. Sima C, Hua J, Jung S (2009) Inference of gene regulatory networks using time-

series data: a survey. Current genomics 10: 416.
6. Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R (2009) Gene

regulatory network inference: Data integration in dynamic models|A review.

Biosystems 96: 86–103.
7. Ong IM, Glasner JD, Page D (2002) Modelling regulatory pathways in E. coli

from time series expression profiles. Bioinformatics 18: S241–S248.
8. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, et al. (2010)

Revealing strengths and weaknesses of methods for gene network inference.

Proceedings of the National Academy of Sciences 107: 6286–6291.
9. Shojaie A, Jauhiainen A, Kallitsis M, Michailidis G (2014) Inferring regulatory

networks by combining perturbation screens and steady state gene expression
profiles. PLoS ONE 9: e82393.

10. Yip KY, Alexander RP, Yan KK, Gerstein M (2010) Improved reconstruction of
in silico gene regulatory networks by integrating knockout and perturbation

data. PLoS one 5: e8121.

11. Pinna A, Soranzo N, de la Fuente A (2010) From knockouts to networks:
Establishing direct cause-effect relationships through graph analysis. PLoS ONE

5: e12912.
12. Shimamura T, Imoto S, Yamaguchi R, Fujita A, Nagasaki M, et al. (2009)

Recursive regularization for inferring gene networks from time-course gene

expression profiles. BMC Systems Biology 3: 41.
13. Fujita AE, Sato JAOR, Garay-Malpartida HM, Sogayar MC, Ferreira CE, et al.

(2008) Modeling nonlinear gene regulatory networks from time series gene
expression data. Journal of Bioinformatics and Computational Biology 6: 961–

979.
14. Yamaguchi R, Yoshida R, Imoto S, Higuchi T, Miyano S (2007) Finding

module-based gene networks with state-space models - mining high-dimensional

and short time-course gene expression data. Signal Processing Magazine, IEEE
24: 37–46.

15. Shojaie A, Michailidis G (2010) Penalized likelihood methods for estimation of
sparse highdimensional directed acyclic graphs. Biometrika 97: 519–538.

16. Oates CJ, Mukherjee S (2012) Network inference and biological dynamics. The

Annals of Applied Statistics 6: 1209–1235.
17. Meister A, Li YH, Choi B, Wong WH (2013) Learning a nonlinear dynamical

system model of gene regulation: A perturbed steady-state approach. Annals of
Applied Statistics 7: 1311–1333.

18. Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, et al. (2006) The
inferelator: an algorithm for learning parsimonious regulatory networks from

systems-biology data sets de novo. Genome Biology 7: R36.

19. Madar A, Greenfield A, Vanden-Eijnden E, Bonneau R (2010) DREAM3:
network inference using dynamic context likelihood of relatedness and the

inferelator. PLoS ONE 5: e9803.
20. Greenfield A, Madar A, Ostrer H, Bonneau R (2010) DREAM4: combining

genetic and dynamic information to identify biological networks and dynamical

models. PLoS ONE 5: e13397.
21. Madar A, Greenfield A, Ostrer H, Vanden-Eijnden E, Bonneau R (2009) The

inferelator 2.0: A scalable framework for reconstruction of dynamic regulatory
network models. In: Engineering in Medicine and Biology Society, 2009. EMBC

2009. Annual International Conference of the IEEE. pp. 5448–5451.
22. Wang Y, Joshi T, Zhang XS, Xu D, Chen L (2006) Inferring gene regulatory

networks from multiple microarray datasets. Bioinformatics 22: 2413–2420.

23. Chou IC, Voit EO (2009) Recent developments in parameter estimation and
structure identification of biochemical and genomic systems. Mathematical

Biosciences 219: 57–83.
24. Bard Y (1974) Nonlinear parameter estimation. New York: Academic Press.

25. Nakatsui M, Horimoto K, Okamoto M, Tokumoto Y, Miyake J (2010)

Parameter optimization by using differential elimination: a general approach for
introducing constraints into objective functions. BMC Systems Biology 4: S9.

26. Ramsay JO, Hooker G, Campbell D, Cao J (2007) Parameter estimation for
differential equations: a generalized smoothing approach. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 69: 741–796.

27. Qi X, Zhao H (2010) Asymptotic efficiency and finite-sample properties of the

generalized profiling estimation of parameters in ordinary differential equations.
The Annals of Statistics 38: 435–481.

28. Gugushvili S, Klaassen CA (2012) pn-consistent parameter estimation for
systems of ordinary differential equations: bypassing numerical integration via

smoothing. Bernoulli 18: 1061–1098.
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