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Introduction
Cancer is characterized by the disruption of molecular 
pathways that control proliferation, growth, cell death, and 
energy metabolism and the acquisition of functions that lead to 
replicative immortality, angiogenesis, metastasis, and evading 
immune destruction.1 Cancer prognosis, or the problem of pre
dicting the likely course of disease with or without treatment, is 
critically important in the treatment of cancer, and particularly 
difficult given the personalized nature of this disease.

Early tools for cancer prognosis relied primarily on histo
pathological and morphological features of tissue samples. 
However, it was soon realized that samples with similar histo
pathological appearance may correspond to remarkably dis
tinct clinical courses and responses to therapy.2,3 Beginning 
in the 21st century, the biomedical community witnessed 
an explosive success in new technologies that capture the 
molecular profile of thousands of genes on a single chip, thus 

facilitating the use of machine learning methods to identify 
genomic signatures.4–7

In 2011, Janet Woodcock, the Director of the FDA 
Center for Drug Evaluation and Research, estimated that “as 
much as 75% of published biomarker associations are not repli
cable.”8 She stated, “This poses a huge challenge for industry 
in biomarker identification and diagnostics development.” 
Many similar critiques of the current state of affairs have been 
published in the literature.9–14 Two potential limitations are 
small sample size and large measurement noise. Although 
these problems are beginning to diminish in recent times,15 
there has been little work addressing data requirements 
or the accuracy of prediction. More fundamentally, progress 
has been impeded by the complex nature of cancer, namely, 
the dynamics and uncertainties involved in cell functioning, 
and the diversity of mechanisms that may drive healthy cells 
toward a diseased state.16–18
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The key to progress in precise and personalized diagnosis, 
prognosis, and treatment strategies for cancer may lie in model
ing the topology and dynamics of signaling/regulatory net
works and the processes they control, their differences across 
a population of patients (or cells), responses to intervention, 
and fully leveraging the vast existing biological prior know
ledge and data to build and characterize uncertainty in these 
models.19–23 At this time, efforts toward dynamical models for 
cancer at a generegulatory level have only begun to emerge in 
the computational medicine community.23,24 A few prognostic 
and predictive tools have been developed using subnetwork 
markers that integrate known signaling pathways, gene co
expression networks, protein–protein interaction networks, 
or somatic mutation profiles.25–34 However, works in this 
vein only consider molecular markers with known associa
tion, rather than taking full advantage of network topology 
or regulatory relations. Furthermore, indepth analysis of 
these approaches revealed that most do not necessarily out
perform traditional tools or provide consistent gene signatures 
across various studies.35–37 Recent work38 provides some hope, 
concluding that the best performing methods for prognosis 
prediction in breast cancer incorporate molecular features 
selected with expert knowledge, as well as both molecular and 
clinical data.

Our approach to cancer prognosis is illustrated in 
Figure 1. We assume that an uncertainty class of disease mod
els is available, which is a set of models representing plausible 
variants of aberrant cell functioning. For example, available 

regulatory pathway knowledge could be used to construct this 
uncertainty class of models, as proposed in Refs. 39–41. We 
further assume that gene regulation in each individual in the 
population is wellmodeled by a member of this uncertainty 
class. There has been some work on gene regulatory models 
that take into account the stochastic nature of cellular pro
cesses, observational noise, and approximation error due to 
imprecise modeling, model reduction, and latent variables.42–47 
The current work focuses on Boolean network models,48,49 and 
to construct the uncertainty class, we optimistically assume 
that (1) a small set of predictive genes or markers has been 
identified, (2) there exists a unique healthy network on these 
genes, which is perfectly known from available prior knowl
edge, (3) the effect of mutations and abnormalities of this net
work is perfectly known, and (4) all parameters governing gene 
interactions are perfectly known. These assumptions are not 
fundamental to the paradigm in Figure 1 and can be relaxed at 
the expense of increasing complexity or the size of the uncer
tainty class. For instance, assumption (2) may be addressed 
by accounting for incomplete or imperfect knowledge of gene 
functions and interactions, as in Refs. 39, 41, and 50–54. In 
general, we only require that the uncertainty class captures the 
inherent heterogeneity of cancer in the population, including 
all somatic gene mutations and aberrant pathway functions 
that may arise in a cancer patient.

For each network in the uncertainty class, we assign one 
or more prognostic metrics, which should reflect (genotypic or 
phenotypic) disease behavior with and without treatment. In 
our implementation, we assume a treatment strategy has been 
specified, the resulting network dynamics for each model in the 
uncertainty class under the influence of the drug is known, and 
we define prognosis to quantify certain behavior in the gene 
expression states of a network with and without intervention. 
This modeling approach was taken in Refs. 55 and 56, where 
we additionally assumed that a probability distribution of net
works in the population is known, eg, that the frequency of com
mon somatic mutations is known. We then formulated optimal 
Bayesian classification of several prognosis classes based on a 
single sample of a patient’s gene activity profile (GAP). It was 
shown that accurate prognosis prediction depends greatly on 
the networks in the uncertainty class and that typically a single 
sample is not sufficient for accurate prediction.

In this work, we study what experimental measurements 
are sufficient to predict prognosis reliably. We use population 
data and a prior to estimate the distribution of networks in 
the population, patient data to update this to a personalized 
distribution for the patient, and formulate optimal Bayesian 
regression of prognosis metrics given this distribution. We 
address how much data, and what type of data (independent 
static versus timeseries data, and population versus patient 
data) are needed to predict prognosis. We will show that, 
under small samples, independent static data is sometimes 
superior to timeseries data for accurate prognosis prediction. 
Furthermore, although population data is helpful to estimate 
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figure 1. Dynamical modeling for prognosis prediction.
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network probabilities, performance is not sensitive to inaccu
racies in these probabilities.

systems and Methods
Gene regulation model. In this work, we model gene 

expression (or gene product) levels as binary, where 0 represents 
inactivation and 1 represents activation of a gene. A Boolean 
network (BN) is a dynamical model for gene regulation, which 
is characterized by a set of n nodes, vi ∈ {0, 1} for i = 1, …, n, 
representing the expression level of each gene, and a set of n 
Boolean predictor functions, fi  : {0, l}n → {0, 1} for i = 1, …, n, 
representing gene regulatory relationships. Letting vi

k ∈{ }0 1,  
be the value of node i at time k = 0, 1, …, a GAP is a lengthn 
binary vector, v k k k

n
kv v v= 



1 2, , ..., , containing the expression 

level of all n genes at time k. Let xk ∈ S = {0, 1, …, 2n – 1} be the 
integer representation of vk given by x vk

i
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i
k= ∑ =

−
1 2 . We call 

S the state space of the network and xk the state of the network 
at time k. Biologically, a state can be viewed as representing 
patient phenotype.21

Given the current GAP, vk, the function fi determines the 
next value of gene i by v fi

k
i

k+ =1 ( )v . To incorporate known 
biological regulatory relationships into our gene regulation 
model, let R be a regulatory matrix with (i, j) entry equal 
to 1 if gene j activates gene i, –1 if gene j suppresses gene i, 
and 0 otherwise. We construct predictor functions, fi, using a 
“majority voting” rule as follows52:
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Typically, R is sparse, so fi depends on a small set of predictor 
nodes rather than the full GAP.

To account for withinmodel stochasticity, after each 
time epoch, we assume the current state of each gene in 
the BN is flipped with probability p. We call this a Boolean 
network with perturbation (BNp). Any BNp can be repre
sented by a homogeneous Markov chain. In particular, the 
stochastic process of state transitions is denoted by {Zk ∈ S: 
k = 0, 1, …}, and the transition probability matrix (TPM) is 
denoted by P, where the (x, y) entry of P, P(x, y): = P(Zk+1 = y 
| Zk = x), is the probability of transitioning to successor state 
y ∈ S when originating from state x ∈ S for all time.49 Gene 
perturbation in BNps ensures that every state can transition to 
every other state with positive probability, thus resulting in an 
ergodic Markov chain with a steady-state distribution (SSD), 
π, representing the long run probability of residing in each 
state of the network. The probability mass of π at state x ∈ S 
is denoted by by π (x).

Network uncertainty class. The precise regulatory 
network in a patient must be initially unknown due to 

the personalized nature of cancer. We model this with an 
uncertainty class of possible “cancer” networks that are the 
products of one or more detrimental, random, and com
pounding mutations of a nominal “healthy” network, rep
resenting normal cell functioning. We also assign prior 
probabilities to each network in the uncertainty class, Θ, 
where networks known to occur rarely in the population 
are assigned lower probability. Thus, we arrive at an uncer
tainty class, Θ, and probabilities, Λ, where each network R 
∈ Θ models a cancer subtype and Λ(R) models its frequency 
in the population.

In our implementation, we build Θ by constructing a 
healthy network from a known healthy regulatory matrix, RH, 
and cataloging mutated regulatory networks, each based on 
one or more modifications of RH. We require that (1) members 
of Θ are constructed with a limited number of mutations, and 
(2) members of Θ must have an undesirable steadystate mass 
(defined in the “Optimal Bayesian inference with Λ known” 
section) greater than some threshold. In this way, we ensure 
Θ has a manageable size and that it contains only mutations 
with detrimental effects. We also assume that all networks 
in Θ with i mutations are equally likely and that the sum of 
their probabilities is proportional to γ i for some 0 , γ # 1. 
Normalizing this distribution to sum to 1, we obtain a valid 
probability distribution, Λ.

Our prognosis inference methodology does not depend 
on the method of constructing Θ or Λ. For instance, one 
might set Λ by drawing from established mutation probabili
ties in the literature. In the “Optimal Bayesian inference with 
Λ unknown” section, we discuss the methods of estimating or 
refining Λ using population data.

Model-constrained bayesian robust intervention. In 
practice, the timing and design of intervention are deter
mined by the physician based on experience, knowledge, 
and data collected from the patient. There may be multiple 
drugs with many possible effects and sideeffects that vary 
patient to patient. Given an intervention scheme, to infer 
prognosis we only require that the effects of each drug are 
known when the network is known, in the sense that the 
druginduced dynamics (TPMs or SSDs) are all known. 
Our analysis is then not particular to the specific inter
vention strategy used, but for the sake of simulation and 
illustration, we will employ an optimal robust intervention 
scheme based on a single idealized drug that affects only a 
single gene. This is generalized in Ref. 57, which addresses 
unpredictable effects of a drug on multiple offtarget genes, 
and in Refs. 58 and 59, which address alternate notions of 
“robust” intervention.

We assume that the expression level of some control gene 
can be altered according to an external input. Let a denote an 
input taken from a set of actions, A = {0, 1}, where a = 0 models 
nointervention and a = 1 models toggling the control gene, 
vc, corresponding to a node c ∈ {1, 2, …, n}. Let {(Zk, Ak)  
∈ S × A: k = 0, 1, …} denotes the joint stochastic process of 

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Dalton and Yousefi

126 CanCer InformatICs 2015:14(S5)

both states and actions taken. The TPM for the controlled BNp 
under action a, P a, with (x, y) entry P a(x, y) = P(Zk+1 = y | Zk = x, 
Ak = a), can be easily derived from the TPM of the uncontrolled 
network, P. In particular, when a = 1, each row of the controlled 
TPM, corresponding to a state x, is found from the row of the 
uncontrolled TPM corresponding to state x with gene vc flipped. 
It is also immediate from the ergodicity of the uncontrolled 
TPM that the controlled TPM for each a ∈ A is also ergodic.

The objective of therapy is to alter the behavior of a can
cerous cell with a program of treatments that are designed to 
achieve some desirable effects. To model the effect and per
formance of therapeutic intervention, let D and U be disjoint 
subsets of S, which we call desirable and undesirable states, rep
resenting desirable and undesirable phenotypes, respectively. 
An intervention strategy is a sequence of rules, or a control 
policy, for applying control actions at each time epoch, k = 0, 
1, …, N, while taking into account previously observed states 
and actions. The set of all previous states and actions up to 
time k is denoted by hk = (z0, a0, z1, a1, …, zk, ak). After observ
ing hk–1, and the current state, zk, we allow a control policy to 
implement action a ∈ A with some prescribed probability µk(a 
| hk–1,zk). We wish to design an intervention strategy that opti
mizes the health of the patient by minimizing the longrun 
average occupation of undesirable states.

This optimization problem has been solved in the frame
work of optimal Markov decision processes,60,61 and here we 
present the salient points. Given a BNp with initial state Z0 = x, 
and any policy, µ = {µ0, µ1, …, µN}, we may characterize the 
full joint stochastic process of states and actions for the con
trolled system, {(Zk, Ak): k = 0, 1…}, with a unique probability 
measure over the space of all trajectories of states and actions, 
Px

µ .60 Minimizing the longrun average occupation of undesir
able states is equivalent to minimizing

J x
N

Z U
N

x
k

k

N
, limsup ,µ µ( ) =

+
∈( )









→∞ =
∑E I1

1 0

(1)

where Ex
µ is an expectation relative to the probability measure 

Px
µ , and I(A) is an indicator function equal to 1 if A is true 

and 0 otherwise.61 Under initial state x ∈ S, let J*(x) = infµ∈Μ 
J(x, µ). By definition, a policy µ* is optimal if J*(x) = J(x, µ*) for 
all x ∈ S. Not only can one show that an optimal control policy 
exists, but also it has been shown that an optimal deterministic 
and stationary policy exists, which means that at each time 
epoch, the optimal decision on whether to apply intervention 
(based on all observed data) can be made deterministically 
using a fixed rule based on only the current observed state. 
Moreover, for any stationary policy, µ, J(x, µ) is invariant to x, 
and in particular, we may write J*(x) = J* for all x ∈ S.60 The 
optimal policy can be found using dynamic programming or 
linear programming.60,61

Since the underlying network is not known, we employ 
Bayesian robust intervention.51 Using the above theory, we 
first design an optimal policy for each individual network in 

the uncertainty class, R ∈ Θ, and let M be the set of all optimal 
control policies. We then evaluate the longrun average occu
pation of undesirable states, J

r
(x, µ), for all combinations of 

control policies, µ ∈ M, and networks in the uncertainty class, 
R ∈ Θ. Since all policies in M are stationary, as in Eq. (1) we 
may write Jr(x, µ) = Jr(µ) for all x ∈ S. Finally, we define the 
model-constrained robust (MCR) policy, µ•, to be the policy in 
M having optimal average performance relative to the prior 
across the uncertainty class of networks. That is, µ• minimizes 
EΛ [JR(µ)] over all µ ∈ M, where EΛ is an expectation relative 
to the prior, Λ.

optimal bayesian inference with Λ known. Assuming 
the population model to be correct, in this section, we address 
how one can make optimal inferences regarding prognosis. We 
will utilize two models for patient data, drawn from the indi
vidual we wish to prognose: (1) independent observations of 
the patient’s GAP without control, representing sample points 
of the network state at sufficiently sparse time points to be well 
modeled as independent and (2) timeseries observations of 
the GAP without control, consisting of sequential observa
tions of the state. In all cases, we denote data of length l by 
x = [x1, …, xl], with data points xi ∈ S, i = 1, …, l. This data 
may be based on, for instance, binarized gene expression mea
surements from microarray or RNAseq technologies.

The steadystate mass of a network at state x is the long
term probability of visiting state x as the network transitions 
between states over time. For a given network, R ∈ Θ, let πr(x) 
denote the steadystate mass at state x without control. Under 
independent observations, each GAP is independently drawn 
from the SSD. Thus, the distribution of x is:

f R xR i
i

l
x | π( ) = ( )

=
∏ .

1

(2)

Let PR denotes the TPM without control. Under timeseries 
observations, the probability of transitioning from one GAP 
to the next is found from the TPM, thus

f R x P x xR R i i
i

l
x | π( ) = ( ) ( )−

=
∏1 1

2

, . (3)

The prognosis prediction methodology in this study is not 
dependent on the particular form of the sampling distribution 
for each network, f (x|R), but only requires that this data model 
be specified. One may, for instance, collect observations of the 
GAP with control, allow for noise in the observed state, allow 
a continuum of gene expression values, or integrate multiple 
types of data.

Suppose the uncertainty class, Θ, and network prob
abilities, Λ, are known, but the specific network at work 
in a given patient, R ∈ Θ is unknown. We wish to estimate 
the patient’s undesirable steadystate mass without control, 
π πR x U RU x( ) = ∑ ( )∈ , based on available patient data. This 
quantity represents the severity of the patient’s condition 
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without treatment, where a higher value indicates a worse 
cancer phenotype. From classical estimation theory, an esti
mate having minimum meansquare error (MMSE), which 
we call an “MMSE estimate,” is equivalent to the condi
tional expectation given data. Thus, the MMSE estimate of  
πr(U) is

π π | π | U U U f RR R
R

( ) = ( )  = ( ) ( )
∈
∑E x x ,

Θ
(4)

where from Bayes rule, and either (2) for independent obser
vations or (3) for timeseries observations, 

f R R f R
R f R

R

|
|

|
x x

x
( ) =

( ) ( )
′( ) ′( )

′ ∈
∑

Λ
Λ

Θ

. (5)

The meansquare error (MSE) of π ( )U , defined to be MSE
π π π | ( )U U UR[ ] = ( ) − ( )( )



E x2 , is

MSE xπ = π π | U U U f RR
R

( )[ ] ( ) − ( )( ) ( )
∈
∑ 2

Θ
.  (6)

The rootmean square (RMS) is the square root of the MSE.
Let πR x• ( ) denote the steadystate mass at state x under

control policy µ•. The undesirable steady-state mass after con
trol, π πR Rx U

U x• •
∈

= ∑( ) ( ), represents the severity of a patient’s 
condition with treatment, where a lower value indicates 
a more effective treatment. The MMSE estimate of πR

• ( )U
given data is

π π | = π | • • •

∈
( ) =   ( ) ( )∑U U U f RR R

R
E ( ) x x

Θ
, (7)

where f (R|x) is found from Eq. (5). The MSE of π •( )U  is

MSE xπ π π | • • •

∈
( )[ ] = − ( )( ) ( )∑U U U f RR

R
( ) .2

Θ

 (8)

We may also be interested in the shift in undesirable 
steadystate mass before control to after control. This quantity 
represents the overall benefit of treatment, where a low value 
indicates that the drug is less effective. The MMSE estimate 
of S U U UR R R( ) ( ) ( )= − •π π  given data is

S U U U UR
  ( ) ( ) ( ).=   − •E S ( ) x| = π π (9)

The MSE of S(U) is 

MSE[ ( )] xS U S U S U f RR
R

 = |( ) ( ) ( ).−( )
∈
∑ 2

Θ
(10)

In this work, the prognosis of a patient associated with 
network R ∈ Θ is characterized by the values πR U• ( ) and SR(U), 
and the prognoses inferred from data are the values π •( )U  and  

S(U). If we are interested in other metrics for prognosis, for  
example, toxicity of treatment, side effects, survival time, and 
quality of life, we only require each network in the uncertainty 
class, R ∈ Θ, to be assigned a prognosis score, P

r
. Given patient  

data, the MMSE estimate of P
r
 becomes P P

R
= E[ x]| , and  

the MSE of P  is MSE P P P f R
RR

 [ = −
∈∑] ( ) ( )

Θ

2 | x .
The covariance between two prognostic metrics may also 

be found. Given data, the covariance between PR and QR is

Cov[ , ] E x

x

P Q P P Q Q

P P Q Q f R
R R R R

R
R

R

= − − |

= − − |

 

 
( )( ) 

( )( ) ( )
∈
∑

Θ
. (11)

For instance, it can be shown that Cov πR RU S U• ( ), ( )
= ( )•1

2
MSE[ ( )] MSE[ ( ) ] MSE[ ] .π − π −  U U US ( )

optimal bayesian inference with Λ unknown. In the 
previous framework with Λ known, uncertainty stems from 
patienttopatient variability in the population, and data from 
one individual is unhelpful for making inferences on another 
individual. If Λ is unknown, population data can be used to 
improve the population model, and therefore, may be indirectly 
useful to improve inferences about an independent patient.

Suppose the uncertainty class, Θ, is known, but popu
lation network probabilities, Λ, are unknown. We assume a 
Dirichlet prior distribution on Λ, where

f R R

R
( ) ( ( )) ,( )Λ Λ

Θ
|α α∝ −

∈
∏ 1

and α: Θ → [0, ∞) is a set of hyperparameters. This prior 
places the mean value for Λ(R) at

E[ ( )]Λ
Θ

R R
R

R

= α
α

( )
( )

.
∈∑

The prior is more peaked at the mean when α ( )R
R∈∑ Θ

 is 
large, and we obtain a uniform prior by assigning α(R) = 1 for 
all R ∈ Θ. We assume m population datasets are available, each 
dataset being drawn independently from an individual in the 
population operating under an unknown network drawn from 
the uncertainty class with unknown probability Λ. The same 
two models for patient data will be considered for population 
data. We denote a population dataset with xj , j = 1, …, m, where 
xj contains lj (independent or timeseries) points.

Updating the prior with data, from Bayes rule, we obtain 
a posterior on Λ given by

f f f xj j

m

j j

m
Λ Λ Λ| | |α α, x{ }



 ∝ ( ) { }



= =1 1

.

By enumerating all networks that may govern the population 
data and applying the law of total probability, we may also 
write this as
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| Λ ,

where the sum is over the product space, Θm. From our 
assumption of independence between population datasets, 

f R f Rj j

m

j j

m

j jj
mx{ } { }



 = ( )= = =∏

1 1 1
| |x , and from the  

definition of Λ |, f R Rj j

m

jj
m{ }



 = ( )

= =∏
1 1

Λ Λ . Applying 

our definition of the prior, f j j

m
Λ | α , x{ }



=1
 is also

proportional to

f R Rj j
R R

Rj

m

R
j

j j

m

j

x |( ) ′
′ { }



 −

′∈=∈
=

=∏∏ ( ( )) ,
* ;

, ...

Λ
ΘΘ

α
1

1

1
1 ,, m

∑  (12)

where

α α* ; ( ) .R R R R Rj j

m

j
j

m

{ }



 = + =( )

= =
∑1

1

I  (13)
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where the region of integration is the space of all valid dis
crete probability distributions on Θ. Note that since Λ is a 
valid density, Λ  is also a valid density. From Eq. (12), Λ ( )R  
is proportional to
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where Γ is the gamma function. Applying this and properties 
of Γ, Λ ( )R  is proportional to
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We may interpret m(R) as an effective number of popu
lation patients observed from network R. Evaluating m(R) 
exactly requires evaluating a sum with |Θ|m terms, where 
|Θ| is the size of the uncertainty class. To approximate m(R), 
note that
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where in this expectation, each Rj ∈ Θ is artificially drawn 
independently from the density
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This suggests a MonteCarlo approach to approxi
mate m(R), where we independently draw a large number of 
mtuples, R1, …, Rm, from the above density, and we evaluate

I(R R Rj
j

m

R= ′∈
∑ ∏=









 ′

1

) ( *( ))Γ
Θ

α

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Data for model based cancer prognosis

129CanCer InformatICs 2015:14(S5)

for each mtuple and each R. We then average across all 
mtuples for each R and normalize the resulting values to sum 
to m, giving approximations of m(R) for all R.

Returning to prognosis prediction, given patient data, 
x, and population data, x j j

m{ } =1
, we wish to obtain MMSE

estimates of the patient’s true prognosis metrics. The MMSE 
estimate of πR(U) is

π π |

π |
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which is analogous to Eq. (4) with the distribution of networks 
given patient and population data, f R j j

m
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, in
place of the distribution of networks given patient data and 
perfect knowledge of the population network probabilities, 
f(R|x). From Bayes rule and the law of total probability,
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This is analogous to Eq. (5), where estimates of the network 
probabilities, Λ ( )R  from Eq. (14), replace the unknown true 
network probabilities, Λ(R). To find the MSE,
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This is analogous to Eq. (6) with f R j j

m
| x, , xα { }



=1

 in place
of f(R|x). Similarly, the MMSE estimate of πR U• ( ), the MSE 
of this estimate, the MMSE estimate of SR(U), and the MSE 
of this estimate, are all found using Eqs. (7)–(10), respectively, 
with f R j j

m
| x, , xα { }



=1

 in place of f(R|x).

synthetic data simulations
In this section, we demonstrate prognosis prediction with syn
thetically generated networks and data. We begin by describ
ing our method of generating an uncertainty class of networks 
and associating each network with prognosis metrics. We 
show how network probabilities may be inferred from popula
tion data and show how one may estimate prognosis metrics 
given patient data.

Network uncertainty class generation. Gene regula
tory networks in our synthetic data simulations are based on 
n = 6 genes. To observe a variety of behaviors and results, we 
generated 100 uncertainty classes of networks, where each 

uncertainty class represents a different disease, and each 
network in an uncertainty class represents a subtype of dis
ease. To generate an uncertainty class of networks, we first 
generate a random seed regulatory matrix, RS, by drawing the 
number of predictors for each gene uniformly between 1 and 3, 
thus specifying the number of nonzero entries in each row of 
RS, drawing the predictor set for each gene uniformly from 
the set of all predictor sets of the given size (permitting auto
regulation), thus specifying the location of nonzero entries 
in each row of RS, and drawing the regulatory type for each 
predictor as –1 or 1 with equal probability, thus specifying 
the values of nonzero entries in each row of RS. We associate 
all regulatory matrices with a BNp having perturbation prob
ability p = 0.01.

Given RS, we find a healthy network, RH, by enumerat
ing all regulatory matrices with exactly one edge added or 
removed in RS, and selecting the regulatory matrix in this set 
corresponding to a BNp having minimal undesirable steady
state mass. The uncertainty class, Θ, is then constructed by 
enumerating all regulatory matrices, R, with one edge added, 
one edge removed, or one edge added and one edge removed 
from RH. We set a target gene to v1, and define undesirable 
states to be the set of all GAPs such that v1 = 0, corresponding 
to inactivation of the target gene. Thus, half of the states are 
undesirable. To ensure that networks in the uncertainty class 
model detrimental mutations of RH, we remove networks with 
undesirable steadystate mass less than that of RH, or less than 
the average undesirable mass of all networks with a single 
mutation, from the uncertainty class.

To set the true probability of each network in the uncer
tainty class, Λ(R) for R ∈ Θ, we set γ to 0.5. Thus, the sum 
of probabilities of networks with 1 mutation (one edge added 
or removed) is 0.5/0.75 = 2/3, and the sum of probabilities of 
networks with 2 mutations (one edge added and one edge 
removed) is 0.52/0.75 = 1/3. All networks with the same num
ber of mutations are equally likely.

We set the control gene to vn, and find the optimal MCR 
intervention policy for a given Θ and Λ. For a given uncertainty 
class, and a given patient known to belong to this uncertainty 
class, our objective is to estimate πR U• ( ) and Sr(U).

Population data. In this section, we evaluate how well 
Λ  estimates Λ based on population data, and how estimates 
of our prognosis metrics based on Λ  compare to optimal esti
mates based on Λ.

Consider an uncertainty class containing 20 networks. 
One of these networks corresponds to a single mutation, hav
ing probability 2/3, and the other 19 correspond to two muta
tions, each having probability 1/57. We observe population 
data consisting of m = 10, 50, 100, 500, or 1000 patients, each 
associated with a network drawn from the uncertainty class 
with the above probabilities. The data observed from each 
patient in the population data consists of either a contiguous 
block of l0 ≡ l1 = … = lm timeseries GAPs sampled from the 
true BNp without control, or l0 independent GAPs sampled 

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Dalton and Yousefi

130 CanCer InformatICs 2015:14(S5)

from the true SSD without control, where l0 = 10, 50, 100, 
500, or 1000. We assume the 20 networks in the uncertainty 
class are known, and impose a uniform Dirichlet prior on Λ 
with α(R) = 1 for all R ∈ Θ. We approximate Λ  based on 
Eq. (15) with k = 100 MonteCarlo iterations. This entire pro
cedure is repeated over 100 iterations.

Figures 2A and 2B provide the average of

Λ − ΛΛ Λ
Θ

 = −
∈
∑ ( ( ) ( ))R R
R

2

over simulation iterations with respect to m and l0. In 
Figure 2A, it was observed that the performance of Λ  initially 
improves as we increase m, until it saturates around m = 100. 
This suggests that for a fixed observation length, l0, beyond 
a point there is not much improvement in network inference 
when collecting more population data. In Figure 2B, observa
tion length appears to be a very important factor in estimat
ing Λ. In this example, it is better to have a large amount of 
data from a few patients, than a small amount of data from 
many patients. Also note that the estimation of Λ is generally 
not accurate, with Λ − Λ  over 0.35 even with m = 1000 and 
l0 = 1000.

In this uncertainty class, timeseries data is better than 
independent data for estimating Λ, except when l0 is very 
small. To understand this, Figure 3 shows the true network 
probabilities, Λ, and average estimated network probabili
ties, Λ , over simulation iterations for m = 1000 and various l0. 

Timeseries data of length l0 = 1000 appears to estimate the 
probability of most networks correctly, but some of the mass 
of network 1 has been spread to networks 3 and 18, indicating 
that networks 1, 3, and 18 are indistinguishable with this kind 
of data. Increasing l0 to 10,000 improves the estimation of Λ, 
with only networks 1 and 18 being slightly difficult to dis
tinguish. Independent data of length l0 = 1000 appears to be 
unable to distinguish between networks 1, 3, 4, 12, 18, and 
20, and increasing l0 to 10,000 helps, but networks 1, 3, and 
18 still cannot be distinguished. This identifiability problem 
may be caused by distinct networks in the uncertainty class 
having similar SSDs without control, thus data drawn from 
these networks come from similar distributions. This suggests 
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figure 2. estimating Λ and SR (U) with population data under an uncertainty class that favors time-series data. TS indicates time series, IS indicates 
independent data: (a) the average of || ˆ ||Λ Λ−  over simulation iterations with respect to m for l0 = 10, 100, and 1000, (B) the average of || ˆ ||Λ Λ−  over
simulation iterations with respect to l0 for m = 10, 100, and 1000, (C) the empirical RMS of Ŝ (U) with respect to m for l0 = 10, 100, and 1000, and (D) the 
empirical RMS of Ŝ(U) with respect to l0 for m = 10, 100, and 1000.
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figure 3. true network probabilities, Λ, for an uncertainty class with 
20 networks, and various estimates, Λ̂, for the same uncertainty class 
derived from m = 1000 simulated population data and averaged over 
100 simulation iterations.
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a tradeoff: inference with timeseries data requires more data 
points to estimate a large TPM, but may resolve identifiabil
ity problems between networks with similar SSDs. Note that 
under small l0, independent points may outperform because 
timeseries points are correlated and thus contain redundancy. 
A similar phenomenon was observed in Ref. 62, where the 
authors investigated prediction under independent and cor
related samples and concluded that a predictor trained with 
correlated points can perform either better or worse than with 
independent points depending on the settings.

Figures 2C and 2D provide the empirical RMS of S(U), 
found as the root of the average of

S SR
R

 ( ) ( )U U R−( ) ( )
∈
∑ 2

Θ
Λ

over simulation iterations, with respect to m and l0. Note that 
S(U) is computed without knowledge of Λ, while the empirical 
RMS uses Λ to evaluate the accuracy of S(U). The performance 
of S(U) appears to saturate when we fix m or l0, suggesting 
that both must increase for performance to improve. We nearly 
achieve the RMS of optimal prediction based on the true Λ 
without patient data, indicated by a horizontal dotted line, 
with timeseries data and m and l0 at least 100. Although it 
may not be possible to estimate Λ accurately for a given sample 
size, an inaccurate estimate of Λ may still carry information 
sufficient for prognosis prediction. To illustrate why, recall that 

networks 1, 3, and 18 are indistinguishable with timeseries 
data of length l0 = 1000, in the sense that the true mass of Λ at 
network 1 is spread to networks 3 and 18 in Λ . As long as these 
networks have similar shift (and other prognosis metrics), the 
estimated shift computed in Eq. (9) is accurate. In Figure 2D, 
it was also observed that for all m, the performance of time
series and independent data cross at a higher threshold than 
in Figure 2B, at around l0 = 50. Thus, the space of settings for 
which independent data outperform timeseries data is larger 
for prognosis prediction than network inference.

We repeat this with a second uncertainty class having 
230 networks and k = 50. In Figure 4A, as earlier, when l0 
is small, increasing m is not helpful, and independent data 
outperforms timeseries data when estimating Λ. However, 
when l0 is large, increasing m appears more helpful, and 
timeseries data appears to have less of an advantage. When 
inferring prognosis in Figures 4C and 4D, independent data 
is better than timeseries data, and RMS saturates around 
l0 = 100 with independent data for all m. This is an example 
where independent data may be superior to timeseries data, 
and there is not much improvement in prognosis prediction 
when collecting more than l0 = 100 points from each patient 
for any m.

Patient data. In this section, we focus on estimates of 
prognosis metrics based on patient data. For each uncer
tainty class, we draw 100 timeseries and 100 independent 
population datasets, with m = 1000 and l0 = 100. All networks 
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figure 4. estimating Λ and SR (U) with population data under an uncertainty class that favors independent data. TS indicates time series, IS indicates 
independent data: (a) the average of || ˆ ||Λ Λ−  over simulation iterations with respect to m for l0 = 10, 100, and 1000, (B) the average of || ˆ ||Λ Λ−  over
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figure 5. analytical and empirical rms with respect to l for independent and time-series data under the true Λ: (a) estimated undesirable mass with 
control and (B) estimated shift.

are drawn according to the true network probabilities, Λ. For 
each population dataset, we find Λ  with k = 100. We draw 
1000 timeseries and 1000 independent patient datasets. Each 
patient dataset is associated with a network drawn from the 
true network probabilities, Λ. Assuming the true Λ is known, 
for each patient dataset of the independent type, we find 
π •( )U , the analytical MSE of π •( )U , S(U) and the analyti
cal MSE of S(U) for different sizes of the data, l, constructed 
by starting with no data, and incrementally adding blocks of 
10 independent points until we reach l = 500 points. For each 
timeseries patient dataset, we incrementally add independent 
blocks of 10 timeseries points until we reach l = 500 points. 
Prognosis predictions are also found for all combinations of 
independent population data (for each we effectively substitute  
Λ  for the true network probabilities) and independent patient 
data, as well as all combinations of timeseries population and 
timeseries patient data. This entire procedure is repeated over 
100 uncertainty classes.

In Figure 5A, the analytical RMS of π •( )U , found as 
the root of the average of MSE [π •( )]U  from Eq. (8) over all 
uncertainty classes and iterations, and an empirical RMS of  
π •( )U , found as the root of the average of π π • •−( )( ) ( )U UR

2

over all uncertainty classes and iterations, were graphed with 
respect to l for independent and timeseries data assuming 
the true Λ is known. Figure 5B provides analogous graphs 
for the analytical and empirical RMS of S(U). Analytical 
and empiri cal RMS curves coincide, as they must when Λ is 
known. Independent data outperforms time series when the 
data size is small with l , 150, and time series outperforms 
when the data size is large with l . 200.

Figure 6 shows scatter plots of true prognosis metrics 
(vertical axis) versus their estimates (horizontal axis) over 100 
uncertainty classes and known Λ with no data, independent 
data of length l = 500, and timeseries data of length l = 500. 
Correlation coefficients for each scatter plot are provided in 
the captions. With no data, each point in the scatter plots 

represents one network in one uncertainty class. Since all 
networks in a given uncertainty class are assigned the same 
estimated shift, we observe a vertical “stripe” for each uncer
tainty class. With data, each point represents one of 1000 itera
tions for an uncertainty class. In all cases, the linear regression 
line, shown as a solid black line, coincides with the ideal 45° 
dashed red line. A plot of correlation coefficients with respect 
to data size, l, is provided in Figure 7. As in Figure 5, inde
pendent data outperforms timeseries data when l , 150, and 
timeseries outperforms when l . 200.

Next consider a fixed uncertainty class with 146 net
works. Figure 8 shows the analytical and empirical RMS of 
estimated prognosis metrics with respect to l for this uncer
tainty class, under independent and timeseries data. Values 
based on the true Λ are averaged over 1000 replications of 
patient data, and values based on estimated Λ are averaged 
over all combinations of 100 replications of population data 
with m = 1000 and l0 = 100, and 1000 replications of patient 
data. When Λ must be estimated, RMS increases. Further
more, independent data results in lower RMS than timeseries 
data in this uncertainty class.

Figure 9 shows correlation graphs across all patients in 
this uncertainty class, for true versus estimated prognosis 
metrics based on the true Λ, true versus estimated prognosis 
metrics based on estimated Λ, and estimated prognosis met
rics based on the true versus estimated Λ, all with respect to 
l under independent and timeseries data. As in the RMS 
curves, independent data results in higher correlation than 
timeseries data for this example. The correlation of estimated 
prognosis metrics based on the true versus estimated Λ is 
nearly 1 for almost all sample sizes considered.

Figure 10 illustrates the analytical RMS of our prognosis 
metrics for each patient with known Λ. Each row represents 
a patient, which have been grouped so that patients with the 
same underlying network are next to each other, each column 
represents a patient data size, l, and a darker color indicates a 
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lower sampleconditioned RMS. With no data (the leftmost 
column), all patients have the same analytical RMS. Estimated 
prognosis under certain networks tend to converge at a faster 
rate, whereas others tend to require more data. Also note the 
RMS of undesirable mass and shift have similar trends, but 
there are some networks for which one converges faster than 
the other.

In Figure 11, we present an example of the convergence 
of estimated prognosis metrics and their analytical MSE to 
the true prognosis metrics for a particular patient dataset in 
this uncertainty class. The horizontal axis represents undesir
able mass with control, and the vertical axis represents shift. 
The true network prognosis is indicated by a red dot. With no 
data, we obtain the mean, variance, and covariance of these 
prognosis metrics from our MMSE estimates, the analyti
cal MSE of these estimators, and the analytical covariance in 
Eq. (11). Our initial knowledge of the prognosis metrics is 
illustrated in the figure with a large ellipse, which is effectively 

the unitstandarddeviation level curve of a Gaussian distri
bution with the appropriate mean and covariance matrix. 
Smaller ellipses represent the same procedure with increasing 
data size, up to l = 200 in steps of 20. Knowledge converges to 
a near certainty around the true prognosis.

cell-cycle Network simulation
We use a mammalian cellcycle network to demonstrate the 
application of our approach to a biologically motivated exam
ple. This network models normal biological processes in mam
malian cells during the cell cycle, whose disruption can lead to 
uncontrolled cell proliferation.63 The network has 10 genes (or 
proteins), CycD, Rb, p27, E2F, CycE, CycA, Cdc20, Cdhl, 
UbcHIO, and CycB, where regulatory relationships in RH are 
illustrated in Figure 12. Three key elements in this network 
are Cyclin D (CycD), retinoblastoma (Rb), and p27. Extra
cellular signals, under normal conditions, coordinate cell 
division with overall growth by controlling the activation of 
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CycD. The tumor suppressor protein, Rb, plays a central role 
in the negative control of the cell cycle and in tumor progres
sion.64 Rb is active in the absence of certain cyclindependent 
kinases. When present, however, these cyclins inhibit Rb 
through phosphorylation. p27 is also active in the absence of 
the cyclins. An active p27 blocks the action of CycE or CycA, 
and hence, Rb can also be active even if the cyclins are present, 
resulting in a mechanism that stops uncontrolled cell division. 
On the other hand, simultaneous inactivation of CycD, Rd, 
and p27 may lead to cell proliferation, which is undesirable in 

the absence of any growth factor. This motivates us to define 
the set of undesirable states to correspond to the condition 
where CycD = Rd = p27 = 0.

Assuming the same majorityvoting rule and setting 
p = 0.01, we construct a BNp for the healthy network. The 
number of networks in the uncertainty class grows rapidly as 
we compound mutations, thus we only include regulatory net
works with one edge removed from RH in our uncertainty class. 
We also exclude from this set those networks that have a lower 
undesirable steadystate mass than either the healthy network 
or the average undesirable mass of all networks in the set. 
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The uncertainty class, Θ, resulting from this procedure contains 
21 mutated networks, each found by removing a single red edge 
in Figure 12. We set the true probability distribution, Λ, based 
on gene alteration rates in breast cancer as reported by TCGA 
data retrieved from cBioPortal.65,66 We find the MCR interven
tion policy, which maximally shifts the undesirable steadystate 
mass averaged across Θ, with E2F as the control gene. Our meth
odology can be implemented with any control gene, although in 
general this choice affects the particular intervention outcome, 
and thus the prognosis outcome. Simulation settings that are not 
specified are the same as in synthetic data simulations.

Table 1 provides Λ − Λ  for various l0 and m. In this 
parti cular uncertainty class, l0 appears to play a more impor
tant role than m in inferring Λ, although Λ − Λ  is larger than 
0.25 in all cases. Figure 13 shows the mean of true and esti
mated prognosis metrics, and Figure 14 shows the analytical 

and empirical RMS of prognosis metrics. Results with both 
timeseries and independent data, and both Λ known and Λ  
estimated with population data of size l0 = 1 and m = 1000, 
are shown in each figure. In this example, independent data 
is superior to timeseries data for the entire range of patient 
sample sizes shown. For instance, under independent data 
with only l = 100, the mean of estimated prognosis metrics 
have nearly converged to the mean of the true metrics. The 
RMS of independent data is about 0.01, while the RMS of 
timeseries data for the same sample size is at about 0.02. 
Prognosis prediction with Λ  is comparable to prediction with 
the true Λ, thus, the effect of increasing patient data size is 
much more profound than increasing population data size.

conclusion
We have outlined a general modelbased framework to opti
mally predict prognosis. Our work begins with many optimistic 
and simplifying assumptions, for instance that regulatory net
works are well modeled by BNps, and that a healthy BNp can 
be fully determined from available scientific knowledge. This 
reflects our belief that reliable cancer prognosis and prediction 
should begin with understanding and modeling healthy cell 
functioning (including accounting for incomplete knowledge 
of normal regulation), as suggested in Ref. 23. Once healthy 
gene regulation is understood, ie, once RH is known in our 

Table 1. || ˆ ||Λ Λ−  with time-series/independent data.

m = 10 m = 100 m = 1000

 l0 = 1 0.2964/0.2947 0.3020/0.3034 0.2933/0.2940

l0 = 10 0.2972/0.2930 0.2965/0.2848 0.2837/0.2737

l0 = 100 0.2867/0.2805 0.2653/0.2435 0.2551/0.2328
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modeling framework, population data is only helpful to inform 
about mutations and their frequencies, and as we have seen, 
prognosis prediction is not highly sensitive to the estimate of 
Λ. This is an intuitive result: cancer is a personali zed disease 
and inference for given patient rests critically on what data is 
available from the patient of interest. If prior knowledge of 
gene regulation is not available or only partially available, then 
population data may serve an important role in discovering 
new scientific knowledge, which may be used to construct an 
uncertainty class of gene regulatory models.

Although the performance of prognosis prediction 
depends on many factors, including the networks constituting 
the uncertainty class and the individual patient’s network, 
performance primarily depends on how much patient data is 
available, and the extent to which prognosis is identifiable with 
the available type of data. If one’s interest is in fully inferring 
the patient network, typically timeseries data is better than 
independent data, as it is possible that two networks in the 
uncertainty class have very similar SSDs, representing similar 
phenotypes, but very different TPMs, representing different 
regulatory connections. Even timeseries data may not be suf
ficient for network inference, since it is possible for two net
works to represent different mutations and yet have very similar 
dynamics. In this case, experiments specifically designed to 
identify mutations may be necessary to infer a network.

If one’s interest is in inferring prognosis, we have seen 
that independent data performs remarkably well, particu
larly under small samples. This is partly because our met
rics for prognosis, πR U• ( ) and Sr(U), depend only on the 
undesirable mass of SSDs of the network with and without 
control. Independent data drawn without control reveals 
information about the SSD without control, and as long 
as networks with the same SSD without control also have 
similar undesirable mass with control, our metrics for prog
nosis can be identified with independent data. At the same 
time, small timeseries data may carry less information due 
to correlations.

To bring this work to the bedside, several extensions can 
be explored, including: (1) more realistic regulatory network 
models, drug models, and prognosis metrics, (2) multiple 
healthy networks, (3) incomplete prior information about 
healthy or unhealthy networks and their parameters, (4) more 
realistic observation models for RNAseq, protein mass spec
trometry and other types of data acquisition technologies 
currently available to clinicians, (5) allowing the network to 
change or deteriorate over time, and (6) design of experiments 
or treatment regimens tailored to an individual patient. Our 
framework may also be extended to classify or infer other 
rele vant metrics, for instance, disease subtype, mean survival 
time, drug response, or drug side effects.
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