
Article

Sensitivity to Nonaccidental
Configurations of
Two-Line Stimuli

Jonas Kubilius, Charlotte Sleurs and Johan Wagemans
Brain & Cognition, KU Leuven, Belgium

Abstract

According to Recognition-By-Components theory, object recognition relies on a specific subset of

three-dimensional shapes called geons. In particular, these configurations constitute a powerful cue

to three-dimensional object reconstruction because their two-dimensional projection remains

viewpoint-invariant. While a large body of literature has demonstrated sensitivity to changes in

these so-called nonaccidental configurations, it remains unclear what information is used in

establishing such sensitivity. In this study, we explored the possibility that nonaccidental

configurations can already be inferred from the basic constituents of objects, namely, their

edges. We constructed a set of stimuli composed of two lines corresponding to various

nonaccidental properties and configurations underlying the distinction between geons, including

collinearity, alignment, curvature of contours, curvature of configuration axis, expansion,

cotermination, and junction type. Using a simple visual search paradigm, we demonstrated that

participants were faster at detecting targets that differed from distractors in a nonaccidental

property than in a metric property. We also found that only some but not all of the observed

sensitivity could have resulted from simple low-level properties of our stimuli. Given that such

sensitivity emerged from a configuration of only two lines, our results support the view that

nonaccidental configurations could be encoded throughout the visual processing hierarchy even

in the absence of object context.
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Introduction

Which principal factors lead to an efficient organization of a visual scene into objects and
backgrounds? Since the early days of experimental psychology, Gestalt grouping laws, such
as proximity, similarity, and good continuation, have offered a powerful means to
understand and predict the structure of our percepts (Wagemans, Elder, et al., 2012;
Wagemans, Feldman, et al., 2012; Wertheimer, 1923). Based on these grouping principles,
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separate elements and parts in an image can be grouped together into larger clusters or
coherent wholes in the presence of clutter or noise.

Gestalt grouping principles are not the only basis to perceive structure in a scene though.
For example, observing that two elements are parallel is important because this relationship
remains constant from nearly any viewpoint. If the goal is to perceive the three-dimensional
(3D) structure of an object or to recognize its identity, such viewpoint-independent
relations can be very informative. Although it remains true that an image can result
from infinitely many different 3D scenes, to find a particular type of regularity in the
image for non-corresponding regularities in the world would be quite accidental. Indeed, it
usually only happens with one specific viewpoint. Under the assumption of a generic
viewpoint, therefore, these image regularities usually signal corresponding scene
regularities. For this reason, these image regularities are called nonaccidental properties
(Lowe, 1985). Examples of nonaccidental properties (NAPs) include curvilinearity,
collinearity, cotermination, parallelism, and skew-symmetry. In contrast, observing that
the two parts intersect at a particular angle is much less informative since the projected
angle on the retina is viewpoint-dependent (e.g., Willems & Wagemans, 2000).

According to the Recognition-By-Components (RBC) theory (Biederman, 1987), these
NAPs play an essential role in quickly deriving the essential building blocks of objects and
interpreting our surroundings in terms of objects. In particular, Biederman proposed that
object recognition relies on a small set of 3D geometric primitives called geons that are
derived from nonaccidental edge configurations. For example, a brick and a pyramid differ
in the parallelism of the edges and are thus rarely confused in their 2D projection to the eye,
despite changes in viewpoint. Conversely, a brick and a cube do not differ in terms of
nonaccidental features and thus cannot always be distinguished solely based on their 2D
projections.

Biederman and colleagues have accumulated an impressive body of evidence that the
primate visual system indeed is sensitive to NAPs. For example, Kayaert, Biederman, and
Vogels (2003) compared neural responses in the monkey inferotemporal cortex by presenting
stimuli differing from a base stimulus (e.g., a pyramid) either in a NAP (resulting in a brick)
or a metric property (MP) equally distant from the base stimulus (resulting in a shallower
pyramid). They found that neurons responded more vigorously to objects that differed in
NAPs than when they differed in MPs. Similarly, by measuring accuracy in a match-
to-sample task, Amir, Biederman, and Hayworth (2012) found that participants were more
sensitive behaviorally to both 2D and 3D geons differing in a wide range of NAPs (see also
Todd et al., 2014). This sensitivity to NAPs appears to be a very general property of the visual
system, observed in infants (Kayaert & Wagemans, 2010), children (Amir, Biederman,
Herald, Shah, & Mintz, 2014; Ons & Wagemans, 2011), non-urban cultures (Biederman,
Yue, & Davidoff, 2009), and non-mammalian species (Gibson, Lazareva, Gosselin, Schyns,
& Wasserman, 2007; Lazareva, Wasserman, & Biederman, 2008; Peissig, Young, Wasserman,
& Biederman, 2000). Neural measurements in monkeys pointed to the inferotemporal cortex as
a possible locus of such sensitivity (Kayaert et al., 2003; Kayaert, Biederman, Op de Beeck, &
Vogels, 2005; Vogels, Biederman, Bar, & Lorincz, 2001) and more recently the shape-selective
lateral occipital cortex (LOC) in humans has also been shown to respond to changes in NAPs
(Amir, Biederman, & Hayworth, 2011; Kim & Biederman, 2012). Finally, NAPs have also been
claimed to play an important role in scene recognition. Walther and Shen (2014) and Choo and
Walther (2016) showed that at least some NAPs, namely, junctions and junction angles, might
also underlie scene categorization by humans.

Here we demonstrate that sensitivity to NAPs holds even in the absence of object or shape
context. We constructed a set of stimuli composed of two line segments only, corresponding
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to the nonaccidental configurations in the original geons. Even in these simple displays we
found a pronounced sensitivity to NAPs, indicating that the computation of nonaccidental
properties is not exclusive to object processing and instead reflects generic image processing
mechanisms in the visual system.

Methods

Participants

Ten students from KU Leuven participated in the experiment (age: 21–23; males: 3,
females: 7) and were paid E8 for their participation. Ten additional students from KU
Leuven (9 participants of age less 20, one between 20 and 29; males: 1, females: 9)
participated in a replication of this experiment and received course credit for their
participation. All participants had normal or corrected-to-normal vision and provided a
written informed consent. The experiments were approved by the ethical committee of the
Faculty of Psychology and Educational Sciences.

Stimuli

Our aim was to investigate whether the visual system was sensitive to nonaccidental
configurations even when no object context was provided. We therefore translated geons
and configurations of geons used in various experiments by Biederman and his colleagues
into stimuli composed of two line segments only (Figure 1; Amir et al., 2012; Kim &
Biederman, 2012), resulting in 12 experimental conditions (Figure 2):

(1) NAPs between objects:

(a) Alignment: whether objects are aligned or not.
(b) Collinearity: whether objects are on the same line or not.
(c) Junction type: the kind of junction that two objects are forming:

(i) Generic to L
(ii) Generic to T

Figure 1. An example how geons were translated into two-line stimuli.
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(iii) Generic to X
(iv) T to L
(v) X to T

(2) NAPs within objects:

(a) Cotermination: whether edges of an object are coterminating or not.
(b) Expansion vs. constant: whether edges of an object are at a constant distance or

expanding
(c) Collinearity: whether edges of an object are collinear or not
(d) Curvature:

(i) Edges: whether edges of an object are straight or curved
(ii) Axes: whether object’s axis is straight or curved

We also had an additional condition where the stimulus consisted of a single line segment
and its curvature was manipulated. This condition served as a control for the two curvature
conditions where participants could discriminate between the variants not based on the
nonaccidental configuration but the curvature alone.

Note that not all NAPs defining geons could be translated to two-line configurations, such
as a straight versus a curved cross section (Dickinson & Biederman, 2014). Moreover, it is not
exactly clear whether the junction configurations truly correspond to nonaccidental
configurations. However, we included them for completeness, since occlusion was
considered a nonaccidental property in Kim and Biederman (2012). Furthermore, it is

Figure 2. Examples of stimuli for each of 13 conditions in the experiment. In each triplet, the middle

stimulus is the base stimulus, the one on the left is its metric variant (MP), and the one on the right is the

nonaccidental variant (NAP). Note that in the actual experiment we had many more exemplars for each

condition (78 triplets in total), constructed by mirroring the shown stimuli upside-down or left-right.
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possible that observers treat these junction stimuli not as two separate objects but rather as
one, and thus, the nonaccidental relation holds in this two-dimensional context.

For each stimulus, which we refer to as the base stimulus, two variants were created. The
nonaccidental variant featured a very similar configuration that differed from the base in
terms of a single nonaccidental property. In contrast, the metric variant had the same
configuration as the base but differed to the same extent as the nonaccidental variant but
in the opposite direction such that there was no change in nonaccidental properties.

Setup

Experiments and analyses were coded in Python 2.7 using PsychoPy (Peirce, 2007, 2009),
psychopy_ext (Kubilius, 2014), pandas, and statsmodels packages (source code available at
https://bitbucket.org/qbilius/twolines).

A trial was initiated by a key press. The participants saw a central fixation spot for 300ms,
followed by the onset of four stimuli, presented in the four quadrants of the display (Figure 3),
modeled after Pomerantz, Sager, and Stoever (1977). Three of these stimuli were identical,
while the remaining one (the target) was different, and participants were instructed to indicate
via a key press as quickly and as accurately as possible which one of the four quadrants
contained the target stimulus. The target was either the metric or the nonaccidental variant,
and the three distractors were then the base stimuli, or the target was the base stimulus and the
distractors were either three identical metric or nonaccidental variants. All possible
combinations were tested only once, resulting in 1,248 trials in total, 78 (stimuli types)� 2
(metric vs. nonaccidental variant)� 2 (target vs. distractor)� 4 (target positions).

The stimuli subtended 3� in visual angle and were presented 5� away from the central
fixation spot. The gap between the centers of the two line segments was approximately 1.5�.

Figure 3. Experimental design. At each trial, participants were presented with four stimuli and had to

indicate which one was different. In half of the trials, the odd stimulus differed from the rest in a nonaccidental

change of configuration. In the other half, the odd stimulus was identical to the other stimuli in terms of its

nonaccidental properties but differed in some metric property (e.g., angle) to the same amount as its

nonaccidental counterpart. Note that in the actual experiment the stimuli were white and were presented on

a gray background.
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To make the task more challenging and avoid symmetry effects common in Pomerantz et al.
(1977) displays, in each trial random jitter was added to the position (within� .25�) and
orientation (within� 5�) of each stimulus independently. Trials were presented in a
random order (conditions were interleaved). The experiment lasted approximately an hour.

Results

To investigate the effects of NAPs, we computed mean reaction time per stimulus condition
(Figure 4). Note that typically reaction time measures are not distributed normally and thus
computing mean reaction times per participant might lead to a poor estimate of the true
reaction time. After a graphical inspection that normality was indeed violated, we computed
the median reaction time per participant, which was used to compare reaction times to the
nonaccidental and metric variants across participants. Bonferroni correction was applied to
account for multiple testing.

Figure 4. (a) Average response times per condition (blue) and average error rate (gray). Error bars denote

the standard errors of the mean across participants (n¼ 10). *denotes p-value significant at a-level .05 for

reaction times, **denotes p-value significant at a-level .01, ***denotes p-value significant at a-level .001 (after

the Bonferroni correction). (b) Cosine similarity of metric and nonaccidental stimuli to the base stimulus as

measured by GaborJet model outputs. Error bars denote the standard errors for the mean across stimuli of

the same kind. Significance levels are indicated as in panel (a).
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We found that in almost all conditions, participants detected nonaccidental variants faster
than their metric counterparts (Figure 4(a) and Table 1). The only condition that did not
exhibit a statistically reliable effect was the expansion versus constant condition (t(9)¼ 1.82,
p¼ .051). We reasoned that the two line segments might have appeared so close together in
the metric variant that participants perceived them as coterminating, which is an undesirable
nonaccidental change. To test if this was the case, we tested 10 additional participants to
perform the task again but this time with a slightly larger gap between the two lines (2.25�).
Moreover, to maximize the chances of finding any difference, we presented each condition in
a separate block, so that participants would try just as hard for easy as for hard conditions. In
this experiment, we found that all conditions nonaccidental changes were detected reliably
faster that metric. (It should be noted however that the generic to T condition resulted in
p¼ .005, which does not survive our strict Bonferroni correction criterion.)

Similar, albeit weaker, trends were found when accuracy was analyzed (Figure 4(a), gray
bars). Since accuracy differences were likely influenced by ceiling effects (on average,
participants reached 90% on metric changes and 97% on the nonaccidental ones), we did
not analyze these effects any further.

We further asked if the observed effects for curvature in conditions curvature edge and
curvature axis conditions were due to configural sensitivity per se or resulted solely from
participants’ sensitivity to curvature in a single line (curvature control condition). To address
this question, we performed a repeated-measures analysis of variance. We found no
significant difference in the effect of distance (NAP vs. MP) between curvature edge and
curvature control conditions (F(1,9)¼ .124, p¼ .727). In contrast, the effect of distance
(NAP vs. MP) was significantly stronger between curvature axis and curvature control
conditions (F(1,9)¼ 11.66, p¼ .002). These observations held in the replicated data as well,
albeit less robustly (F(1,9)¼ 1.54, p¼ .223 and F(1,9)¼ 5.50, p¼ .025, respectively).
Therefore, participants could have relied on judging the curvature of single line in the
curvature edge condition, but not in the curvature axis condition where the configural
information between the two lines disproportionately influenced participants’ decisions.

Finally, we asked if this pattern of results could be due to some low-level differences
between stimuli that are not related to nonaccidentalness per se? Although we
parametrically matched the distances of metric and nonaccidental variants from the base,

Table 1. A Related-Samples One-Tailed t Test Results for Each Condition.

Condition t(9) p

Generic to L 5.83 <.001

Generic to T 3.79 .002

Generic to X 7.87 <.001

T to L 4.62 .001

X to T 4.06 .001

Collinearity by angle 4.73 .001

Collinearity by position 5.79 <.001

Alignment 3.67 .003

Curvature edges 4.33 .001

Curvature axis 8.17 <.001

Expansion vs constant 1.82 .051

Cotermination 7.56 <.001

Curvature control 7.52 <.001
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it is still possible that a difference exists when the actual images of stimuli are processed by
simple Gabor filters found in the visual area V1. Thus, if nonaccidental variants are found to
be less similar to the base stimulus than the metric variant is to the base stimulus, any
difference observed behaviorally could potentially result from the confounding low-level
differences in stimuli. In contrast, if no difference is found, any behavior difference is more
likely to stem from features computed later on in the visual system.

We therefore quantified the difference between the nonaccidental and metric variants using
the GaborJet model (Lades et al., 1993), a common approach used by Biederman and
colleagues to equate metric and nonaccidental variants. In a nutshell, this model computes
V1-like features of each stimulus and a similarity is estimated using the one minus the cosine
difference between these feature vectors, as described by Lades et al. (1993).

For our stimulus set, we found that all but one stimulus were properly matched or the
similarity between the nonaccidental and the base stimulus was even larger than between the
metric and the base one (Figure 4(b)). We also found that the Pearson correlation between
this model and human reaction times (using nonaccidental minus metric) across all 78
stimulus triplets was only about �.14 (two-tailed p¼ .23). Overall, it is unlikely that the
behaviorally observed differences resulted from simple low-level differences in stimuli.

Discussion

Taken together, we demonstrated that the participants were sensitive to various
nonaccidental configurations, even in the absence of object information. Unlike previous
studies, here we showed that the visual system is sensitive to even the most basic form of
nonaccidental configurations, composed of merely two lines. While some of these
configurations might result from confounding changes in nonaccidental configurations
(curvature edges, between-object collinearity), overall we found that the visual system is
sensitive to even the most basic form of nonaccidental configurations, composed of merely
two lines. These results are consistent with earlier theoretical, behavioral, and neural studies
that reported sensitivity to the regularity in configurations of two-line stimuli (Feldman,
1997, 2007; Kubilius, Wagemans, & Op de Beeck, 2014a).

Based on these findings, it is possible that the encoding of configural information occurs as
a default computation during the visual information processing. More specifically,
nonaccidental relations between primitive shape features, such as edges, angles, and
curves, might already be detected early on and communicated to the next processing stages
even prior to object-centered visual processing and even in the absence of object recognition
tasks. Notice that this suggestion reveals a broader range of configural information encoding
than proposed by earlier studies where only angles and curved segments have been shown to
be encoded (Ito & Komatsu, 2004; Pasupathy & Connor, 1999). It is worth mentioning
however that to some extent our results could also be interpreted as reflecting not just any
nonaccidental changes but rather changes in symmetry. Consistent with this view, higher
visual areas have shown sensitivity to symmetry (Bertamini & Makin, 2014).

How early could these configurations be computed? Our GaborJet simulations that try to
capture the basic processing in the visual area V1 imply that it is not likely to be the source of
this computation. Instead, we suggest that truly configural processing might be required
where the outputs of different kinds of simple cells (e.g., selective for different orientations
or spatial frequencies) are combined. This idea is consistent recent demonstrations that
primate visual area V2 computes summary statistics of edge-based responses (Freeman &
Simoncelli, 2011; Freeman, Ziemba, Heeger, Simoncelli, & Movshon, 2013). Such summary
statistics might be sufficient to reflect differences between metric and nonaccidental property
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(see also Kubilius, Wagemans, & Op de Beeck, 2014b, for a broader discussion of summary
statistics computations in the visual cortex). Future studies could explore this possibility
in depth.

On the other hand, in a similar two-line stimuli setup, Kubilius et al. (2014a) only observed
sensitivity to these configurations in human lateral occipical cortex (LOC) but not earlier.
Given that previous studies using three-dimensional geons consistently reported LOC or
monkey IT (Kayaert et al., 2003) being sensitive to geon properties, our results indicate a
possibility that LOC computes configural information between edges in addition to
comparing full surface-based representations or matching to geon templates.

Finally, our findings are consistent with recent computer vision studies that demonstrated
that a robust sensitivity to NAPs can emerge even without training explicitly for
nonaccidental feature processing. Parker, Reichert, and Serre (2015) showed that a
hierarchical model HMAX enhanced with a temporal continuity rule also develops a
sensitivity to NAPs by merely observing videos of slowly rotating objects. A similar
sensitivity is also present in deep convolutional neural networks that are optimized for
object recognition and that are currently our best models of visual processing in the
primate visual system (Kubilius, Bracci, & Op de Beeck, 2016; Rajalingham et al., 2015;
Yamins et al., 2014). These computational studies indicate that the sensitivity to NAPs
might not even rely on any explicit coding of nonaccidental properties but instead emerge
as a result of the system absorbing statistical regularities from its visual inputs.
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