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Expanded polytetrafluoroethylene (ePTFE) is commonly used in cardiovascular surgery, but usually causes postoperation
complications. Although great efforts have been done to relieve these complications or to understand their mechanism, there are
no applicable strategies available and no understanding mechanisms, especially in the myocardium. Here, ePTFE membranes
are implanted into the right ventricular outflow tract of rabbits, and the implant-related myocardium is dissected and analyzed
by histology and transcriptome sequencing. ePTFE implantation causes myocardium inflammation and fibrosis. There are 1867
differently expressed mRNAs (DEmRNAs, 1107 upregulated and 760 downregulated) and 246 differently expressed lncRNAs
(DElncRNAs, 110 upregulated and 136 downregulated) identified. Bioinformatic analysis indicates that the upregulated
DEmRNAs and DElncRNAs are mainly involved in inflammatory, immune responses, and extracellular matrix remodeling,
while the downregulated DEmRNAs and DElncRNAs are predominantly functioned in the metabolism and cardiac remodeling.
Analysis of coexpression and regulatory relationship of DEmRNAs and DElncRNAs reveals that most DElncRNAs are trans-
regulated on the relevant DEmRNAs. In conclusion, ePTFE implantation causes severe myocardial tissue damages and alters the
transcriptome profiles of the myocardium. Such novel data may provide a landscape of mechanisms underlying the adverse
reactions caused by ePTFE implantation and uncover new therapeutic targets for inhibiting the ePTFE-related complications.

1. Introduction

Expanded polytetrafluoroethylene (ePTFE) is a durable high
polymer material and has been widely used in cardiovascular
surgery, such as bypass grafting [1], right ventricular outflow
tract reconstruction [2], the Blalock-Taussig (BT) shunt [3],
and valve replacement [4]. However, ePTFE naturally is a
foreign material to human recipients and may induce a for-
eign body reaction (FBR), which impairs the function of
ePTFE and human organs.

A previous study has pointed that ePTFE grafts can cause
vascular stenosis, particularly for a graft at <6mm in diame-
ter, even in the use of anticoagulants [5]. As a result, the 2-
year failure rate of ePTFE graft in dialysis access sites is
75% [6], the 5-year stenosis rate of ePTFE graft in femoropo-
pliteal bypass ranges between 50% and 75% [7], and the BT
shunt-related stenosis often causes acute death in children

[3]. Furthermore, the long-term use of anticoagulants is usu-
ally associated with side effects, such as bleeding. Currently,
the ePTFE graft-related stenosis is mainly attributed to inti-
mal hyperplasia, thrombosis, and inflammation [6, 8–10].
Accordingly, many efforts have tried to improve the antico-
agulant properties of ePTFE and they include heparin coat-
ing [1], endothelial cell coverage [6], antibody or peptide
coating the ePTFE [11–13], and others [14, 15]. Similarly,
several methods have been developed to prevent intimal
hyperplasia or inhibit the FBR [16–19]. However, their effi-
cacy and stability are unsatisfactory and far away from clini-
cal application [20, 21]. The pathogenesis of ePTFE graft
failure remains unclear.

While ePTFE implants are necessary for reestablishment
of effective blood flow in some pathological conditions, such
as children with a complex congenital heart disease, the
ePTFE implants can not only damage the blood vessel but
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also damage the myocardium. Given that the myocardium
has little potential to regenerate, the myocardial damages
caused by an ePTFE implant are usually irreversible, leading
to impaired heart function and even to death. Previous stud-
ies have revealed the pathogenesis of ePTFE graft-related vas-
cular injury [22–25]. However, little is known on the
pathological changes in the myocardial tissues and molecular
mechanisms underlying the pathogenesis of ePTFE graft-
related myocardial damages.

This study employed a rabbit model of ePTFE implant-
related myocardial injury and used bioinformatics to analyze
the relative levels of mRNA and long noncoding RNA
(lncRNA) transcripts in the implant-related myocardial tis-
sues to explore the potential molecular pathogenesis.

2. Materials and Methods

2.1. Ethics Statement. The experimental protocol was
approved by the Animal Care and Ethical Committee of
Children’s Hospital of Fudan University, and animal experi-
ments were performed, according to the guidelines of the
Animal Care Committee.

2.2. Animal Model and Groups. Female New Zealand rabbits
at 3 months of age and weighing 2.5~3.5 kg were obtained
from Shanghai Jiagan Biological Science and Technology,
China. All rabbits were housed and raised in a normal envi-
ronment. Some rabbits served as the control group without
operation. The remaining rabbits were food-fasted for 6
hours, anesthetized intramuscularly with 15mg/kg of Zole-
til® 50 (Virbac S.A., France), and oxygenized with a mask.
The rabbits were fixed on an operation table, and the sternum
was cut in median to expose the right ventricular outflow
tract of the heart. The rabbits were implanted with an ePTFE
membrane (1 × 0:4 cm, Gore, USA) and they were defined as
the ePTFE group, and the remaining rabbits received sham
surgery (sham group). Briefly, the right ventricular outflow
tract of individual rabbits was cut and inserted with the
ePTFE membrane into the right ventricle, followed by sutur-
ing its one tail onto the myocardium with 5-0 Prolene. The
rabbits in the sham group received similar surgery without
inserting the membrane.

2.3. Tissue Collection, Pathologic Analysis, and RNA
Extraction. On day 30 postsurgery, all rabbits were anesthe-
tized, and their heart tissues were dissected out. Their

Table 1: The sequences of primers for RT-PCR analysis.

Gene Forward primer (5′-3′) Reverse primer (5′-3′)
GAPDH GACTTCAACAGTGCCACC TGCTGTAGCCAAATTCGT

POSTN CCACTACAACACAGCGTTAT TCCAAGTTGTCCCAAGCC

APBB1IP CTAAATGAGTCCTTAAACGCAC TCTGCTCAGCTTCACTTATGT

MMP9 CGTCTTCCAGTACCGAGAG CACCTGGTCCACTAGGTT

NPPA GTGAGCTTCCTCTTCTGTCT GATCTGCGTTGGACATGG

DLK1 TTGCTCCTGCTGGCTTTC ACCTGCACACATTGTCATC

HMGCLL1 GGATTAGGAGGTTGCCCTTAT GATTCACACCTGTATTGAGCC

XR_001792829.1 ATCTCGACCACTTCTCGG CGACATCTACGTTCTTGGTCA

TCONS_00023192 GAGCCCAAGGCAGTGTTA TTGACTGCACTCTGCTAGAC

TCONS_00043233 GGTAGCACATACTACGCGA GTCAGACTGTTCAGTTGTAGG

TCONS_00037188 CCACACACTGTGCAAATAAT GTCTGGTTTCTGGTTGAGATAC

TCONS_00023871 GGCTGATCTGGCTGGCTA GGATGGTCGTCCTCTTCG

TCONS_00026533 TTAGCCGGAGCTTGGAACA AGGTTATGAGGCTCCCAC
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Figure 1: ePTFE implantation induces myocardial tissue injury. (a) HE staining displayed myocardial tissue swelling (red arrows), cell
degeneration (green arrows), and inflammatory infiltrates (black arrows) in the ePTFE and sham groups; Masson’s trichrome staining
exhibited fibrosis in myocardial tissues (blue staining with yellow arrows). Scale bar = 50 μm. (b) The degree of fibrosis in individual
groups of rabbits. ∗P < 0:05.
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myocardial tissues linked to the ePTFE membrane (ePTFE
group) or linked to the sutured parts (sham group) or similar
locational tissues in the control group (control group) were
dissected on ice.

One part of the myocardial tissues was fixed with 4%
formaldehyde solution for 48 h and paraffin embedded. The
tissue sections (4μm) were stained with hematoxylin and
eosin (H&E) or Masson’s trichrome. The pathological
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Figure 2: Bioinformatic analyses of DEmRNAs. The distribution of DEmRNAs in the (a) ePTFE-control comparison or the (b) sham-control
comparison was analyzed by a volcano plot. Vertical lines indicate 2-fold changes in upregulation or downregulation, and the horizontal line
represents P = 0:05; red dots refer to upregulated mRNAs, and blue points refer to downregulated mRNAs. (c) The numbers of specific and
overlapped DEmRNAs from the ePTFE-control and sham-control comparisons are presented by Venn diagrams. (d) The expression patterns
of the corresponding DEmRNAs are exhibited by heatmaps. Red color indicates high expression and blue indicates low expression.
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changes in individual sections were examined under a light
microscope, and the degrees of fibrosis were calculated using
HALO software (Indica Labs, USA).

The remaining myocardial tissues were stored in RNA
later (Invitrogen, USA) at -80°C. Total RNA was extracted
from individual myocardial samples using the mirVana
miRNA Isolation Kit (Ambion, USA), following the manu-
facturer’s protocol. The quality and quantity were evaluated
using the Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA). The samples with a RNA integrity
number ðRINÞ ≥ 7 were used for the subsequent analysis.

2.4. Construction of cDNA Libraries and High-Throughput
Sequencing. Strand-specific libraries were prepared using
the TruSeq Stranded Total RNA with Ribo-Zero Gold

(Illumina, USA). Briefly, after removal of ribosomal
RNA, the fragmented RNA was reversely transcribed into
cDNA. The cDNA was purified and individual DNA frag-
ments were added with adenylate at the 3′end, followed
by ligating adapters. The cDNA fragments were further
purified and enriched with PCR to create the final cDNA
libraries, which were analyzed by the Agilent 2100 Bioana-
lyzer (Agilent Technologies, USA) to confirm the insert
sizes and calculate the concentrations. The libraries were
sequenced on an Illumina HiSeq X Ten platform at OE
Biotech (Shanghai, China) to generate 150 bp/125 bp
paired-end reads.

The generated raw reads were processed by removing the
adapter, low-quality of bases and N-bases using Trimmo-
matic software [26]. Finally, the remaining high-quality clean
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Figure 3: The features of lncRNAs. (a) Venn diagrams displayed lncRNA transcripts from CPC, CNCI, Pfam, and PLEK. (b) The numbers of
different types of lncRNAs. (c) The length distribution of lncRNAs. (d) The number of exons per lncRNA.

4 BioMed Research International



lncRNA
ePTFE vs. control : P value<0.05 && |log2FC|>1 

3

4

5

6

2

1

0

–
Lo

g 1
0 P

 v
la

ue

–5 0 5 10

(a)

(b) (c) (d)

Log2 (fold change)

–5 0 5 10
Log2 (fold change)

3

4

5

2

1

0

–
Lo

g 1
0 P

 v
la

ue

Sham vs. control : P value<0.05 && |log2FC|>1 

Filtered
Up
Down

Filtered
Up
Down

80

Sham−vs−Control
(145)

181

ePTFE−vs−Control
(246)

65

–5 0 5 10

(a)

Log2 (fold change)

Sham vs. control : P value<0.05 && |log2FC|>1

Filtered
Up
Down

Sham−vs−Control
(145)

80

181

ePTFE−vs−Control
(246)

65

sham-DElncRNA

ePTFE-DElncRNA

com-DElncRNA

B1

A1

A1 A2 A3 C1 C2 C3

A2 A3 C1 C2 C3 B1 B2 B3

B2 B3 C1 C2 C3

2

1

–1

–2

0
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indicates low expression.
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reads were aligned to the Oryctolagus cuniculus reference
genome (OryCun 2.0, NCBI) using hisat2 [27]. The aligned
data were stored in a binary file, called a bam file, and were
assembled into new transcripts using the StringTie software.
Subsequently, the candidate lncRNA transcripts were
selected by comparing the gene annotation information of
the reference sequence produced by the Cuffcompare soft-
ware. Finally, transcripts with coding potential were analyzed
using the CPC, CNCI, Pfam, and PLEK to obtain lncRNA-
predicted sequences.

2.5. Quantification of Gene Expression and Differential
Expression Analysis. The expression levels of individual genes
were estimated by fragments per kilobase of exon model per
million reads mapped (FPKM). After standardized gene
counts from every group, the fold change (FC) and signifi-
cant difference between groups were calculated using the
Negative Binomial (NB) distribution test. The differentially
expressed mRNAs (DEmRNAs) and differentially expressed
lncRNAs (DElncRNAs) were determined when P < 0:05
and FC > 2. The distribution of these DEmRNAs and
DElncRNAs was analyzed by volcanic plots. The location
and expression levels of all identified DEmRNAs and
DElncRNAs on chromosomes between different groups were
analyzed by a Circos plot. The similarity of DEmRNAs and
DElncRNAs between the groups was analyzed by Venn anal-
ysis. The expression pattern of DEmRNAs and DElncRNAs
in all samples was illustrated by heatmaps.

2.6. Quantitative RT-PCR and Validation. The RNA sequence
data were validated by quantitative RT-PCR. A total of 6 (3
upregulated, 3 downregulated) DEmRNAs and 6 (3 upregu-
lated, 3 downregulated) DElncRNAs were chosen, respectively.
The relative levels of these RNA transcripts were determined by
a two-step quantitative RT-PCR on a GeneAmp® PCR System
9700 (Applied Biosystems). These RNA samples were reversely
transcribed into cDNA using the HiScript II Q RT SuperMix
(Nanjing, China). The relative levels of the gene transcripts to
the control GAPDH were quantified by PCR using ChamQ
SYBR qPCRMaster Mix (Nanjing, China) and specific primers
(Generay Biotech, Shanghai, China, Table 1). The data were
analyzed by the 2-ΔΔCt method and were transformed into FC
using the following formula:

FC = lg
RNAexpression level in the ePTFE or sham group

RNAexpression level in the control group

� �
:

ð1Þ

2.7. Functional Enrichment Analysis. The function of DEmR-
NAs in the ePTFE vs. control comparison was predicted by
using Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis. GO terms com-
prised three function domains: biological process (BP), cellular
component (CC), and molecular function (MF). The 6 items
with the smallest P values or all items if fewer than 6met the sta-
tistical criteria in each GO term were selected for graphical dis-
play. The distribution of whole DEmRNAs in KEGG level 2 was

(a) (b)

Figure 5: Circos plot displays the distribution of DEmRNAs and DElncRNAs on chromosomes. The distribution of DEmRNAs and
DElncRNAs from the (a) ePTFE-control and (b) sham-control comparisons is exhibited by the Circos plot. The outermost circle is the
distribution diagram of chromosomes. The second circle is the distribution of DElncRNAs on chromosomes, and the third circle is the
histogram of DElncRNAs at different positions. The fourth circle is the distribution of DEmRNAs on chromosomes, and the innermost
circle is the histogram of DEmRNAs at different positions. The higher the column, the higher the number of different genes. The red and
green indicate the upregulated and downregulated genes, respectively.
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illustrated, and the 20 items with the smallest P values were
selected for bubble diagram display or all the items if fewer than
20 met the statistical criteria. A signal pathway map was con-
structed to show the relationship of different pathways.

2.8. Coexpression Analysis of DElncRNAs and DEmRNAs.
Because the functions of most lncRNAs have not been iden-
tified, we analyzed the coexpression of DElncRNAs and
DEmRNAs using the Pearson correlation coefficient (PCC)
with the cut-off values of ∣PCC ∣ >0:8 and P < 0:05. The top
10 DElncRNAs were further analyzed because they had coex-
pressed mRNAs in the most GO terms or KEGG pathways,
and these mRNAs were enriched by ≥5. The function of these
DElncRNAs was predicted by GO and KEGG enrichment
analysis, based on their coexpressed DEmRNAs.

2.9. Cis- and trans-Regulation of Predicted DElncRNAs. An
lncRNA regulated the transcription of mRNA within the
100 kb both its upstream and downstream on the same chro-
mosome, which was defined as cis-regulation relationship.
The trans-regulation relationship was defined when the coex-
pressed lncRNA and mRNA on different chromosomes were
chosen and their binding was based on >10 bases with the
free energy of bases binding ≤−50, analyzed using RNA inter-
action software RIsearch-2.0. We selected the DEmRNAs
between the ePTFE and healthy controls into (1) GO term
related to inflammatory response, immune response, and
complex binding and (2) GO term related to smooth muscle
cell and extracellular matrix. Subsequently, we selected
DElncRNAs with cis- or trans-relationship with those
selected DEmRNAs to construct the regulation network for
the potential regulation mechanisms.

2.10. Statistical Analysis. The statistical analysis methods for
RNA sequencing data were described above. The difference
in the fibrosis degrees between groups was analyzed by Stu-
dent’s t-test. A P value of <0.05 was regarded as statistically
significant. All statistical analyses were performed using the
SPSS 19.0 software (IBM SPSS Statistics, USA), and the
graphs were made using the GraphPad Prism 8 Software
(GraphPad, USA).

3. Results

3.1. ePTFE Implantation Induces Myocardial Tissue Injury.
To understand the molecular pathogenesis of ePTFE graft-
related myocardial damages, rabbits were subjected to a sham
surgery (sham group) or an ePTFE implantation (ePTFE
group) in the right ventricular outflow tract of the heart. A
group of healthy rabbits served as the control (control
group). One month after the surgery, their graft-related myo-
cardial tissues were dissected and their sections were stained
with H&E and Masson’s trichrome for histological examina-
tion. As shown in Figure 1(a), while there were healthy myo-
cardial cells in the control rabbits, there were many
myocardial cells undergoing atrophy and degeneration,
accompanied by some degrees of inflammatory infiltrates in
the myocardial tissues from the rabbits with an ePTFE
implant. In contrast, there were less pathogenic signs in the
myocardial tissues from the sham group of rabbits. Quantita-
tive analyses revealed that the degrees of fibrosis in the sham
group were significantly less than those in the ePTFE group,
but greater than those in the control (P < 0:05 for both,
Figure 1(b)). Hence, implantation with an ePTFE in the right
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Figure 6: Quantitative RT-PCR validates the altered levels of some DEmRNAs and lncRNAs. The expression levels of selected (a) DEmRNAs
and (b) DElncRNAs in myocardial tissues form the ePTFE and sham groups were validated by RT-qPCR. Their expression levels were
compared with the data from RNA-seq.
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ventricular outflow tract of the heart induced the implant-
related myocardial injury in rabbits.

3.2. ePTFE Implantation Modulates the Expression Profiles of
mRNAs in the Myocardial Tissues. To explore the potential
molecular pathogenesis of ePTFE implant-related myocar-
dial tissue injury, the ePTFE implant-related myocardial tis-
sues from each group were dissected out at one month

postsurgery and their RNA transcripts were analyzed by
RNA-seq. We achieved 887.04M raw reads and 864.85M
clean reads after removal of adaptor sequences and low-
quality reads. The percentage of GC content varied from
48.54 to 53.97%, and Q30 value varied from 93.35 to
95.79% in each sample. There were more than 89.33% of
the obtained clean reads in each sample mapping to the Ory-
Cun 2.0. Thus, the RNA-seq data were quite credible.
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Figure 7: GO enrichment analysis of DEmRNAs in the ePTFE-control comparison. (a) The upregulated DEmRNAs. (b) The downregulated
DEmRNAs. Data are the top 6 terms (according to P value) in the GO terms of BP, CC, and MF.

Table 2: The representative DEmRNAs in the top GO terms.

GO term Category Regulation station Representative DEmRNAs

Inflammatory response Biological process Up
CCL2, CD180, CD44, CHI3L1, CXCL8,

IL1RAP, IL34, TLR2

Extracellular space Cellular component Up
ADAMTS15, COL11A1, DKKL1, MMP14,

NAPSA, NPC2, OAS3, TIMP1

Antigen binding Molecular function Up CD48, LAG3, TGFB1

Mitochondrial respiratory chain
complex I assembly

Biological process Down
ACAD9, NDUFA11, NDUFB1, NDUFAF7,
NDUFC1, NDUFS4, NDUFS5, OXA1L

Mitochondrion Cellular component Down
ATP5H, COQ7, CPS1, DLAT, OXCT1,

TIMM44, TRAK2, VDAC2

NADH dehydrogenase
(ubiquinone) activity

Molecular function Down
NDUFA12, NDUFA5, NDUFA7, NDUFB8,
NDUFC1, NDUFC2, NDUFS1, NDUFS3
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In comparison with that in the control, there were 1867
DEmRNAs in the ePTFE group (ePTFE-control compari-
son). Among them, 1107 DEmRNAs were upregulated while
760 DEmRNAs downregulated. Similarly, there were 960

DEmRNAs in the sham group (sham-control comparison),
including 685 upregulated and 275 downregulated DEmR-
NAs. The volcano plot revealed that these DEmRNAs were
clearly separated and contained several DEmRNAs with high
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fold changes and strongly statistical significance (Figures 2(a)
and 2(b)). Comparison of the ePTFE-control with the sham-
control indicated that 647 DEmRNAs were overlapped and
the remaining 1220 and 313 DEmRNAs were specific for
the ePTFE-control and sham-control analysis, respectively
(Figure 2(c)). The expression patterns of specific and shared
DEmRNAs are shown in a heatmap (Figure 2(d)). Of inter-
est, the most upregulated and downregulated mRNAs in
the ePTFE group were LOC100009136 and BMP10, with a
fold change of 935.0357 and 0.0002, respectively. Collec-
tively, such data indicated that an ePTFE implant in the right
ventricular outflow tract of the heart for 30 days modulated
the expression profiles of many genes, contributing to the
ePTFE implant-related myocardial injury in rabbits.

3.3. ePTFE Implantation Modulates the Expression Profiles of
lncRNAs. Analysis of lncRNAs identified 4876 known and
2359 novel lncRNA transcripts in three groups. The novel
transcripts were identified by filtering through CPC, CNCI,
Pfam, and PLEK analyses (Figure 3(a)). There were 7219
lncRNAs sized ≥200 bp (Figure 3(b)). According to their
direction, type, and location, these lncRNAs were classified
into 8 types, of which sense genic_intronic lncRNAs were
the most common (1258), followed by anti-sense_inter-
genic_upstream lncRNAs (1028), anti-sense_genic_intronic
lncRNAs (905), sense_genic_exonic lncRNAs (638), sense_
intergenic_downstream lncRNAs (623), sense_intergenic_
upstream lncRNAs (601), anti-sense_genic_exonic lncRNAs
(571), and anti-sense_intergenic_downstream lncRNAs
(443) (Figure 3(c)). Approximately, 52.2% of lncRNAs were
over two exons, and 25.5% of lncRNAs covered three exons
(Figure 3(d)).

In comparison with that in the control, there were 391
DElncRNAs, of which, 246 DElncRNAs are from the
ePTFE-control comparison, including 110 upregulated and

136 downregulated DElncRNAs, while 145 DElncRNAs are
from the sham-control comparison, including 70 upregulated
and 75 downregulated DElncRNAs. The volcano plot also
revealed that these DElncRNAs were clearly separated and
contained several DElncRNAs with high fold changes and
strongly statistical significance (Figures 4(a) and 4(b)). Com-
parison of the ePTFE-control with the sham-control indicated
that 65 DElncRNAs were overlapped and the remaining 181
and 80 DElncRNAs were specific for the ePTFE-control and
sham-control analysis, respectively (Figure 4(c)). The expres-
sion patterns of specific and shared DElncRNAs are shown
in the heatmap (Figure 4(d)). In addition, the most upregu-
lated DElncRNA was TCONS_00041400 with a fold change
of 1900.7034, and the most downregulated DElncRNA was
TCONS_00006875 with a fold change of 0.0028 in the ePTFE
group. Further analyses uncovered that these DEmRNAs and
DElncRNAs were widely distributed in different chromo-
somes (Figure 5). Such results indicated that an ePTFE
implantation in the right ventricular outflow tract of the heart
significantly altered the lncRNA expression profiles in the
implant-related myocardial tissues, contributing to myocar-
dial tissue injury in rabbits.

3.4. Validation of Selected DEmRNAs and DElncRNAs by
Quantitative RT-PCR. To validate the reliability of sequenc-
ing data, 6 DEmRNAs (3 upregulated and 3 downregulated)
and 6 DElncRNAs (3 upregulated and 3 downregulated)
were selected and their expression was quantified by RT-
PCR. In comparison with the results from RNA-seq, these
DEmRNAs and DElncRNAs displayed a similar trend of
altered expression (Figure 6). Such data indicated the reliabil-
ity of RNA-seq data.

3.5. Functional Analysis of DEmRNAs Caused by ePTFE
Implantation. GO enrichment and KEGG enrichment analy-
sis predicted the potential functions of the upregulated and
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downregulated DEmRNAs unique in the ePTFE-control
comparison. The details of top 6 items in each GO term are
displayed in Figure 7. The representative upregulated and
downregulated DEmRNAs in the top 1 BP, CC, and MF
terms are shown in Table 2.

The KEGG level 2 analysis indicated that most upregu-
lated DEmRNAs were enriched in the immune system, signal
transduction, and infectious diseases (Figure 8(a)), and the
most downregulated DEmRNAs were enriched in environ-
mental adaption, signal transduction, and endocrine and
metabolic diseases (Figure 8(b)). The upregulated and down-
regulated DEmRNAs enriched in the top 20 KEGG pathway
are shown in Figure 9. The upregulated DEmRNAs were pri-
marily enriched in the cytokine-cytokine receptor interaction
and osteoclast differentiation pathways. The downregulated
DEmRNAs were mainly enriched in the oxidative phosphor-

ylation, thermogenesis, and dilated cardiomyopathy path-
ways. Such data suggest that implanted ePTFE may
promote immune response and extracellular matrix change,
negatively affecting cell metabolism and myocardial activity.
We constructed one of the important signal pathway maps
to illustrate the relationship between different pathways
(Figure 10).

After analyzing the function of DEmRNAs specific in
ePTFE-control or sham-control comparison and common
in these two comparisons, further analyses revealed that first,
although both an ePTFE implantation and sham surgery
caused inflammatory and immune responses, these
responses caused by the ePTFE implantation were much
severer than those caused by sham surgery. Secondly, many
genes related to adaptive immune response changed a lot
after ePTFE implantation, but there were almost no genes
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related to adaptive immune response changed after sham
surgery. Thirdly, both an ePTFE implantation and sham sur-
gery promoted extracellular matrix modification in myocar-
dial tissues, but the molecular changes between two groups
were different. Finally, both an ePTFE implantation and
sham surgery negatively affected cell metabolism and cardiac
muscular contraction, particularly for the ePTFE
implantation.

3.6. Coexpression of DEmRNAs and DElncRNAs Caused by
ePTFE Implantation. To understand the relationship
between the DEmRNAs and DElncRNAs, we analyzed their
coexpression. We found that 221001 pairs of DElncRNAs
and DEmRNAs were coexpressed, according to the criterion
∣PCC ∣ >0:8 and P < 0:05. The top 10 DElncRNAs, such as
TCONS_00043233, were mainly enriched in the
metabolism-related GO term, including the mitochondrial
respiratory chain complex I assembly, inflammatory
response, immune response, and vascular smooth muscle cell
development. Those top 10 DElncRNAs were also enriched
in the oxidative phosphorylation, osteoclast differentiation,
and cardiac muscular contraction pathways. Hence, the func-
tions of DElncRNAs were highly similar to those of
DEmRNAs.

3.7. cis- and trans-Regulation of DElncRNAs Caused by
ePTFE Implantation. According to the specific GO term,
there were 117 DEmRNAs in the immune response term
and 52 DEmRNAs in the smooth muscle cell and extracellu-
lar matrix terms. There were 12 pairs of DElncRNAs and
DEmRNAs involved in the cis-regulation on the expression
of immune response-related genes and 3 pairs of them in
the cis-regulation on the expression of smooth muscle cell
and extracellular matrix-related genes (Figure 11). However,

there were many DElncRNAs involved in the trans-regula-
tion on DEmRNAs in the immune response term and
smooth muscle cell term and extracellular matrix terms,
and the top 30 in each part were used for construction of a
trans-regulation network (Figure 12).

4. Discussion

Implantation with ePTFE grafts or ePTFE membranes is a
common procedure for the reconstruction of blood flow
and cardiac valves [1, 7], but it can cause adverse reactions
in the relevant tissues, impairing their function [6, 9, 28].
Extensive researchers have made great efforts to improve
the properties of existing materials by changing the surface
tomography and adding drug and antibody coating [29,
30]. However, there are few effective approaches to clinical
application [14].

Although many works have been done to reveal the
mechanisms underlying the ePTFE-related complications,
the molecular pathogenesis of adverse reactions caused by
ePTFE implantation currently remains unclear. In addition,
there is no information on the pathological changes and tran-
scriptome profile alternations in the ePTFE-related myocar-
dial tissues and no available knowledge about the function
and regulatory network of ePTFE-related mRNAs and
lncRNAs [23–25]. In this study, we employed a rabbit model
of ePTFE implantation in the right ventricular outflow tract
of the heart. We observed that ePTFE implantation for 30
days caused the relevant myocardial cell degeneration and
atrophy, myocardial tissue inflammation, and fibrosis in rab-
bits, similar to that in the ePTFE-implanted vessels [9, 12].
The high degrees of fibrosis in the myocardial tissues of the
ePTFE-implanted rabbits may cause local flow obstruction
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and abnormal myocardial contractility, mimicking clinical
observations in patients with ePTFE implants [2, 31].

We identified 1867 ePTFE-related DEmRNAs in myo-
cardial tissues of rabbits, which were twice more than in the
sham group. In addition, only 35% of DEmRNAs in the
ePTFE group shared with that in the sham group, and the rel-
ative levels of DEmRNAs in the ePTFE group were higher
than those in the sham group. The greater numbers of
DEmRNAs and higher levels of their transcripts indicated
that ePTFE implant altered the transcriptome profiles in
myocardial tissues. Furthermore, functional prediction
revealed that the upregulated DEmRNAs were mainly
involved in immune and inflammatory responses and extra-
cellular matrix remodeling processes while the downregu-
lated DEmRNAs were mostly enriched in metabolism and
cardiac remodeling. Hence, ePTFE implant caused inflam-
mation and immune responses and inhibited cardiac cell
metabolism, which would impair the heart function.

lncRNAs, a kind of noncoding RNAs with transcripts
longer than 200 nucleotides, can regulate the expression of
mRNA and are potential therapeutic targets [32]. lncRNAs
can also be crucial regulators of pathological processes,
including tumor [33], cardiovascular diseases [34, 35],
inflammatory diseases [36], and vascular injury-related neo-
intimal hyperplasia [37]. However, there is little information
on the role of lncRNAs in adverse reaction caused by artificial
materials. In this study, we identified 2359 novel lncRNAs
and 246 DElncRNAs in the myocardial tissues from the
ePTFE group. Furthermore, we found that some DElncRNAs
were coexpressed with some DEmRNAs, mainly through the
trans-regulation, leading to a regulatory network. Thus, these
DElncRNAs may be potential new molecular targets to
reduce the ePTFE-related complications.

Previous studies have suggested material implantation
can cause a FBR, which is mainly involved in inflammatory
stimuli, immune response, endothelial cell damages, vascular
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smooth muscle cells (VSMCs) switching from a quiescent
contractile phenotype to an active synthetic mode, and car-
diac injury [38, 39]. Our present studies have confirmed
some mechanism underlying the FBR found by others [40–
43]. In this study, we found that ePTFE implantation upreg-
ulated MAPK15 (fold change 8.59) and MAPK8IP1 (fold
change 2.66) mRNA transcripts in myocardial tissues of rab-
bits, supporting the notion that vascular smooth muscular
MAPK14 is required for neointimal hyperplasia by activating
the MAPK pathway [43]. Similarly, our RNA-seq in myocar-
dial tissue shared some similarity with the molecular changes
in vessel tissues [24, 25]. For example, we found that ePTFE
implant increased ACTG2 and MYOM1 mRNA transcripts,
mimicking the enhanced MMP13 and COL11A1 expression
in the osteo/chondrogenic pathways in porcine vessel tissues
[24]. These indicated that ePTFE implantation changed some
mRNA transcripts related to matrix accumulation in differ-
ent cardiovascular tissues in different species of animals.
We are interested in further investigating whether similar
lncRNA transcriptome profiles change during the process
of FBR in different tissues and whether different biomedical
material implants cause FBR with similar molecular
mechanisms.

Our findings not only confirmed the existing mecha-
nisms involved in the process of FBR but also provided novel
potential key mechanisms. These findings may help in unco-
vering new therapeutic targets for prevention and interven-
tion of ePTFE-related complications [30]. For example, we
found that both innate and adaptive immune responses
might be involved in the ePTFE-related adverse reactions,
which extended previous observations that only innate
immune responses existed in FBR caused by artificial mate-
rial implantation [17, 19, 44, 45]. Many molecules and signal
pathways were involved in the mechanisms underlying the
ePTFE-related adverse reactions, and they might interact
with each other in multiple ways, which increased the diffi-
culty of learning the underlying mechanisms. However, the
signal pathway map, based on our sequencing data, can be
constructed to help us learn the relationship between differ-
ent molecules and pathways. According to the signal pathway
map (Figure 7), the downstream of many inflammatory path-
ways is the PI3K/AKT pathway, which is also the upstream of
cell proliferation or extracellular matrix-related pathways.
Furthermore, the PI3K/AKT pathway is also involved in the
platelet activation pathway. Therefore, the PI3K/AKT signal
pathway may be a new target to reduce platelet activation
and related adverse reaction caused by ePTFE implantation.

Recently, there are many research approaches to modifi-
cation of targeted genes and application of synthetic mate-
rials to reduce implant-related complications [5, 46–48].
However, most of the gene-targeting strategies are not based
on implant-related mechanisms. Our findings predicted the
potential molecular mechanisms underlying the ePTFE-
related adverse reactions, which should help in targeting spe-
cific genes to achieve therapeutic efficacy. Given that
implanting different biomaterials in different organs may
cause varying adverse reactions with varying mechanism, it
is important to design an optimal animal model to explore
the potential molecular mechanisms underlying the specific

implant-related adverse reaction. Our findings may provide
a new and easier animal model to study the cardiac tissue
injury induced by a specific implant without complex cardio-
pulmonary bypass.

5. Conclusions

Transcriptome profile alternation was different between
ePTFE implantation and surgery in the heart without mate-
rial implantation, which indicated that the mechanism of
adverse reaction caused by ePTFE implantation was unique.
Hence, our findings may uncover novel potential targets to
improve the properties of medical materials and new solu-
tions to ameliorate the postoperation complications caused
by an ePTFE implantation.
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