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Driver gene classification reveals 
a substantial overrepresentation 
of tumor suppressors among very 
large chromatin-regulating proteins
Zeev Waks1, Omer Weissbrod1, Boaz Carmeli1, Raquel Norel2, Filippo Utro2 & 
Yaara Goldschmidt1

Compiling a comprehensive list of cancer driver genes is imperative for oncology diagnostics and drug 
development. While driver genes are typically discovered by analysis of tumor genomes, infrequently 
mutated driver genes often evade detection due to limited sample sizes. Here, we address sample size 
limitations by integrating tumor genomics data with a wide spectrum of gene-specific properties to 
search for rare drivers, functionally classify them, and detect features characteristic of driver genes. 
We show that our approach, CAnceR geNe similarity-based Annotator and Finder (CARNAF), enables 
detection of potentially novel drivers that eluded over a dozen pan-cancer/multi-tumor type studies. In 
particular, feature analysis reveals a highly concentrated pool of known and putative tumor suppressors 
among the <1% of genes that encode very large, chromatin-regulating proteins. Thus, our study 
highlights the need for deeper characterization of very large, epigenetic regulators in the context of 
cancer causality.

Cancer originates from a set of genetic aberrations that alter the balance between cell division and death1. Genes 
in which acquired mutations are causally linked to cancer progression are known as drivers. Cancer driver genes 
can be functionally classified as tumor suppressor genes (TSGs) or oncogenes (OGs) based on their role in dis-
ease formation. Unharmed TSGs act to prevent disease onset or progression whereas OGs promote cancer upon 
acquisition of specific genomic defects.

Numerous genomic and experimental efforts have attempted to refine the compendium of cancer driver genes 
given their clinical relevance in cancer2–8. However, in spite of immense efforts, evidence suggests the existence 
of many uncharacterized TSGs and OGs. Perhaps most notably, down-sampling analysis of nearly 5,000 tumor 
genomes predicted the existence of hundreds of elusive driver genes mutated at intermediate and low frequen-
cies9. As mutations do not occur evenly across the genome10, mutation frequency is not perfectly correlated with 
driver gene potency. Thus, infrequently mutated driver genes can potentially have strong phenotypes. In fact, 
there are sequenced tumors that lack even a single mutation in characterized driver genes2,11.

Several computational approaches have been employed to detect infrequently mutated, or rare, driver genes. 
Analysis of mutation patterns rather than frequency circumvents sample size issues to some extent1,12–14, although 
drivers with atypical patterns may be missed by such frameworks. Alternatively, dimensionality reduction from 
genes to gene clusters or pathways can be used to address statistical power limitations, at the cost of bias resulting 
from incomplete knowledge of protein networks15,16. Finally, pan-cancer analysis can be used to examine the 
similarities and differences among the genomic and cellular alterations found across diverse tumor types, thus 
increasing sample size.

Given the sample size limitations in existing data sets9, we hypothesized that gene similarity-based methods 
may be a promising complementary approach for identifying infrequently mutated drivers. Such statistical meth-
ods can create a ranked list of candidate genes by using the vast wealth of available gene-level knowledge to infer 
statistical patterns that characterize driver genes17–19. More importantly, similarity can be used to inform specific 
traits that can aid in narrowing the driver gene search space. Although several existing methods have also used 
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gene-level knowledge to identify driver genes15,16,19, the collection of gene features used is typically small and does 
not fully exploit the vast amount of biological knowledge accumulated over the last several years.

In this study, we used a similarity-based machine learning approach and performed driver gene feature 
analysis using a wide collection of gene properties beyond tumor genomics to detect mutation-based and copy 
number-based TSGs and OGs. Our classifier, CAnceR geNe similarity-based Annotator and Finder (CARNAF), 
was used in a pan-cancer mode and identified driver genes which are supported by biomedical literature but were 
not detected by 15 existing studies to which we compared, including several novel candidates. Beyond driver gene 
ranking, feature analysis showed a remarkably selective enrichment of TSGs among large driver gene proteins, 
with the large TSGs functioning primarily in chromatin modification processes. Following this insight, CARNAF 
and other methods predict the presence of additional uncharacterized driver genes among the < 1% of genes 
encoding very large proteins (top 5% in genome) that participate in chromatin biology.

Results
Many well-studied and known driver genes were originally identified by searching for higher than expected muta-
tion rates. Thus, it is likely that the remaining uncharacterized driver genes exhibit infrequent or atypical muta-
tion patterns (Fig. 1A, Supplementary Fig. 1). As driver genes are known to be enriched for specific properties1,2, 
methodical analysis of these traits can help focus the search on a smaller subset of candidate genes, and a machine 
learning approach that integrates both tumor data and other gene level traits may elucidate important driver gene 
traits.

Gene features. CARNAF uses a broad set of gene properties. We extracted tumor-derived and non-tumor 
based gene features spanning genomic, transcriptomic, proteomic, functional, and phenotypic categories (Fig. 1B, 
Table 1, Supplementary Tables 1 and 2, and Online Methods). The tumor genomics features consisted of copy 
number variation data and four gene mutation patterns that are highly predictive of TSG and OG function13. A 
total of 131 features remained after removal of sparse and inter-correlated features (Online Methods).

Driver and background gene datasets. Supervised machine learning methods require the construction 
of a labeled data set to train a classifier that can categorize new genes. For this, we defined three gene classes of 
interest: TSGs, OGs, and background genes (BGs) which are genes that are not known to act as drivers. As there 
is large variation among published lists of driver genes, we assembled 15 multi-tumor type driver gene sources to 
aid in label construction (Supplementary Tables 3 and 4). These studies included drivers present in at least one, 
and often more tumor types. From this set we selected 165 high confidence drivers with a known function that 
are present in at least one tumor type (84 TSGs, 81 OGs), 682 medium confidence drivers, 1,360 low confidence 
drivers, and 15,972 BGs (Fig. 1C and Online Methods).

CARNAF methodology. CARNAF performs multi-class classification using a random forest, a robust pre-
dictive model composed of an ensemble of decision trees, each of which is trained on a subset of the training 

Figure 1. Approach for detection of infrequently mutated driver genes. (A) There is likely a long-tail of 
uncharacterized driver genes with infrequent somatic tumor aberrations or atypical mutation patterns. CNA–
copy number alteration (deletions and gains). (B) Illustration of the CARNAF pipeline. A diverse set of gene-
specific features are extracted and used for ranking genes as TSGs, OGs, or non-driver genes. (C) Breakdown of 
genes used for CARNAF training. 165 high confidence driver genes (84 TSGs and 81 OGs) are used as positive 
examples. Additional genes present in at least one of 15 pan-cancer/multi-tumor type studies used in this work 
are divided into medium confidence, low confidence, and other evidence drivers and are omitted from training 
(Online Methods). The remaining 15,972 background genes are used as negative examples for CARNAF 
training.
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data20. The training set consists of 165 high confidence driver genes labeled as TSGs or OGs, and 15,972 BGs 
(Fig. 1c). Genes in the medium confidence, low confidence, and other evidence sets were excluded from train-
ing, since they may contain false positive results and often cannot be functionally categorized as TSGs or OGs. 
After training, every gene in the genome is assigned a posterior probability of being a TSG, OG or BG, such that 
the probabilities sum to one. The use of a large set of negative examples that is likely to include a small subset of 
mislabeled examples (genes that are labeled as BGs but have the potential to become driver genes) is known as 
positive-unlabeled (PU) learning in machine learning literature21.

Each gene was ranked according to the posterior probability of being a TSG, OG, or a BG as computed accord-
ing to all trees that did not use the specific gene for training, out of 100,000 generated trees. Driver gene probabil-
ities were obtained via the summation P(driver) =  P(TSG) +  P(OG). As the training data contains 97-fold more 
BGs than high confidence driver genes, we employed a stratified resampling with replacement approach where 
each tree used a training set with 165 high confidence driver genes and 165 BGs, as is commonly done in PU 
learning22. Additional details are provided in the Online Methods.

Non-tumor genomics features improve detection of rare drivers. As most computational methods 
identify driver genes by relying primarily on tumor data, we asked whether a large set of gene features beyond 
tumor data may be beneficial for detecting rare drivers. To this end, we compared CARNAF driver gene rankings 
using three different sets of features: all gene features, all gene features except tumor genomics, and only tumor 
genomics features (Fig. 2 and Supplementary Table 5). Prediction performance was evaluated as the ability to 
prioritize high, medium, and low confidence driver genes over BGs, with the medium and low sets expected 
to contain high false positive rates. As expected, precision at N shows that tumor genomics alone are ideal for 
detecting the highest confidence drivers, as these genes are frequently mutated (Fig. 2). In contrast, precision at N 
among the lower confidence sets corroborates that addition of non-tumor genomics features provides advantages 
when looking for infrequently mutated driver genes.

Feature category (# features) Description

Genomic

 GC percent (1, 1) GC content of gene, including introns

 Genomic density (1, 1) Number of genes that are present ≤ 4 Mb from gene center

 DNA replication time (1, 1) Stage in cell cycle in which gene is replicated

 Number of transcripts (1, 1) Number of transcripts per gene

 Chromatin compartment (1, 1) Extent that the chromatin compartment of the gene is open or closed (HiC experiment)

Gene expression - healthy tissue

 Tissue RNA levels (27, 27) Expression levels from 27 different tissues

 Median across tissues (1, 1) Median expression level across tissues

 Variation across tissues (1, 1) Coefficient of variation (mean divided by standard deviation) across the 27 tissues

Protein size

 Coding sequence length (1, 1) Number of amino acids in longest gene isoform

Post-translational modification

 Number of modified residues (14, 10) Number of acetylation, methylation (mono, di, & tri), phosphorylation, SUMOylation, and 
ubiquitination sites (normalized by CDS length)

Network biology

 Number of PPIs (1, 1) Number of protein-protein interactions

 Gene duplication (1, 1) Is the gene a duplicate gene

 Betweenness centrality (1, 1) Measure for centrality within networks as quantified by frequency in shortest paths between 
nodes (proteins).

Gene ontology

 GO slims biological process (70, 36) Biological process in which the gene is involved. Gene Ontology (GO) slims are high level 
gene ontology terms. 

 GO slims molecular function (34, 16) Specific function of encoded proteins 

 GO slims cellular component (42, 19) Spatial location of encoded proteins

 Number of total GO slim terms (4, 4) Number of total GO slims terms and total per each GO category

Phenotype

 Predicted haploinsufficiency (1, 1) Estimated probability of haploinsufficiency of the gene

 Predicted essentiality (1, 1) Essential gene or non-essential but phenotype-changing based on mouse homology

Tumor-derived genomics

 Mutation patterns (4, 4) Four features: Mutation clustering estimation (distribution entropy) and ratio of predicted 
loss-of-function, damaging missense, and splice site mutations to benign mutations

 Copy number alteration (2, 2) Somatic gene amplification and deletion frequency

Table 1.  Gene-specific features used in study. A diverse set of feature classes were used in the study. The 
number of features within each category before and after feature selection is presented in parentheses (before, 
after). 131 features remained after feature selection (Online Methods and Supplementary Tables 1 and 2).
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We further investigated several additional driver gene detection aspects. First, we verified that CARNAF 
results remained very similar when using slightly different training sets, indicating it is robust to the specific 
choice of training genes (Supplementary Table 6). Second, we verified that CARNAF accurately distinguished 
high confidence TSGs from OGs (Supplementary Fig. 2 and Supplementary Note). This was especially nota-
ble when using tumor genomics features (area under Receiver Operating Characteristic curve of 0.94 ±  0.02, 
out of bag estimation) since frequently mutated drivers have strong characteristic mutation patterns1. Third, 
the cumulative detection rate was superior when using non-tumor genomics features for all gene confidence 
sets (Supplementary Fig. 3). Fourth, we evaluated gene rankings in the absence of gene ontology features, as 
these can be biased towards well-studied genes. We observed a decrease in precision for low confidence genes 
(Supplementary Fig. 4 and Supplementary Table 5), suggesting that gene ontology features are useful for pro-
posing rare drivers. Fifth, we demonstrated that although frequently mutated drivers are overrepresented 
among the high confidence drivers used for training (Fig. 1A), this has minimal impact on the top ranked genes 
(Supplementary Fig. 5, Supplementary Table 7, and Supplementary Note).

Finally, we performed manual literature curation of the top 15 ranked CARNAF driver genes (excluding 
the high confidence drivers) using all features and compared the results to 15 multi-tumor type cancer studies 
(Supplementary Tables 4 and 8). Strikingly, we found that the large majority of the 15 genes had substantial 
cancer-related evidence (Supplementary Table 8), often supported by genomics or functional assays. 4 (SIRT1, 
TGFBR1, CDK1, and SMAD1) of the 15 genes were not present in any of the multi-tumor type cancer studies. 
All of the latter 4 genes contain cancer-related evidence23–31, with SIRT1 and TGFBR1 also having documented 
genomic alterations29–31 (Supplementary Note).

Contribution of individual features to driver gene detection. Random forests, which CARNAF 
uses for gene ranking, provide a measure of importance for each feature which quantifies its contribution to 
the classification process. The majority of top ranked features were confirmed to be those that are known to 
be cancer-related such as signal transduction, cell differentiation, cell proliferation, number of protein-protein 
interactions, predicted haploinsufficiency, specific phosphorylation events, and tumor mutation patterns 
(Supplementary Table 9). The total number of gene ontology terms also ranked high in feature importance, sug-
gesting a potential bias towards high ranking of previously studied genes.

Comparison of feature distributions among TSGs, OGs, and BGs also identified known distinguishing 
features (Supplementary Tables 10 and 11), many of which were ranked as highly important for classification 
(Supplementary Table 9). Perhaps the most interesting finding is that TSGs encode significantly larger proteins 
than OGs (P =  1.27 ×  10−5, Welch t-test). Among binary features, involvement in chromosome organization pro-
cesses was a major differentiator between TSGs and OGs (P =  2.25 ×  10−6).

TSGs selectively encode very large driver gene proteins. The observation that TSGs and OGs encode 
large proteins had been previously noticed but not thoroughly characterized13 (Fig. 3a). Upon deeper investiga-
tion we detected a profound enrichment of TSGs and depletion of OGs, specifically among the largest proteins in 
the high confidence set (P =  8.56 ×  10−6, hypergeometric test using the 30 largest driver proteins) (Table 2). This 
TSG enrichment among large driver proteins is particularly fascinating as it has been considered an artifact to 
some extent by previous studies10.

To alleviate the concerns that this observation is an artifact of previously suggested confounding fac-
tors, we evaluated several hypotheses as to why TSGs encode very large proteins, specifically in comparison 
to OGs, and found no association between any of the factors and protein size. Assessed explanations included 
expression levels, DNA replication timing, protein connectivity, gene deletion frequency, gene mode of 

Figure 2. Use of non-tumor based features improves detection of rare driver genes. Precision at N shown for 
three gene sets: (A) high confidence driver genes, (B) medium confidence genes, and (C) low confidence genes. 
The 200 top ranked driver genes are shown sorted by rank. Going from left to right, the genes considered in each 
panel are excluded from subsequent panels. Precision in this scenario is equivalent to the fraction of detected 
genes. High confidence drivers, which are frequently mutated, are better detected using tumor genomics data. 
In contrast, non-tumor genomics data increases detection of candidate driver genes that are infrequently 
mutated.
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inactivation, gene essentiality, gene duplications, and presence in specific gene ontology terms or pathways 
(Supplementary Figs 6–13, Supplementary Tables 12 and 13, and Supplementary Note).

Large TSGs are frequently involved in chromatin modification. Noting that chromosome organiza-
tion was the strongest feature associated with TSGs compared with OGs (Supplementary Table 10), we hypoth-
esized that TSG protein size and chromosome organization are related. Indeed, involvement in chromosome 
organization was the feature most strongly associated with TSG size, with chromosome organization TSGs having 
a 3.8 fold-larger median coding sequence length than non-chromosome organization TSGs (P =  0.047, Welch 
t-test) (Fig. 3b, and Supplementary Figs 14 and 15).

The above suggests that the simple intersection of large protein size with a role in chromosome organization 
may pinpoint a small set of genes with potentially uncharacterized driver gene function. In fact, 19 out of the 84 
high confidence TSGs (23%) are among the 92 genes that encode the top 5% largest proteins in the genome and 
are involved in chromosome organization (Fig. 4A). This is a 62-fold enrichment compared to TSG prevalence 
among the remaining genes (P =  2.3 ×  10−27, hypergeometric test). In contrast, only a single high confidence OG 
is found among these 92 genes.

CARNAF as well as other pan-cancer/multi-tumor type studies predict an additional high con-
centration of putative driver genes among this focused gene set, primarily of TSG function (Fig. 4A, 
Supplementary Figs 16 and 17, Supplementary Tables 4 and 5, and Supplementary Note). Similar to the 84 high 
confidence TSGs, 13 out of the top 84 CARNAF TSG predictions encode large chromosome organization pro-
teins, 8 of which are present in the medium confidence set (CHD8, KAT6A, KMT2A, KMT2B, KMT2E, NIPBL, 
NSD1, and TAF1). Two additional genes out of the 13 (INO80 and RERE) were detected as TSGs by TUSON13 
(Supplementary Table 4), and the remaining 3 (PRKDC, PSME4, and SUPT6H) had little or no evidence among 
the 15 studies used in this work. PRKDC was only detected by the author implementation of a simple TSGs versus 
OGs mutation-based classifier1, PSME4 was not present in any source, and SUPT6H was ranked far below the 
significance threshold in TUSON (rank 709).

A review of literature for SUPT6H and PRKDC provides a degree of support for a potential driver gene role. 
SUPT6H encodes a histone chaperone that acts as a transcription elongation rate enhancer. The gene may sup-
press breast cancer as its protein levels are inversely correlated with breast cancer malignancy. It also promotes 
estrogen receptor-dependent transcription and chromatin structure maintenance32. PRKDC encodes a serine/
threonine-kinase involved in DNA repair and recombination, with little current documentation for driver muta-
tions within the gene. However, PRKDC inhibition sensitizes cells to irradiation33 and is synthetic lethal in MYC 
dependent cancers34 and with the mismatch repair gene MSH335. The latter studies suggest non-oncogene addic-
tion to PRKDC.

The observation that a high percentage of very large chromosome organization proteins are driver genes, spe-
cifically TSGs, is consistent with the vastly growing appreciation of mutated epigenetic regulators as causal cancer 
drivers36,37. Indeed, of the 92 genes in the above category, the majority (n =  66; 72%) are involved in chromatin 
modification according to gene ontology38 (Fig. 4B), with many (n =  39, 42%) specifically linked to various types 
of histone protein modification, primarily methylation and acetylation (Fig. 4C and Online Methods). Consistent 
with the above, the majority of high confidence TSGs (17 of 19) and top predicted TSGs (11 of 13) among very 
large chromosome organization proteins (top 5% in genome) are annotated as involved in chromatin modifica-
tion. Among the 13 CARNAF predicted genes, there are 4 histone methyltransferases (KMT2A, KMT2B, KMT2E, 

Figure 3. Large driver gene proteins are almost exclusively encoded by TSGs and primarily regulate 
chromosome organization. (a) Comparison of protein size distributions encoded by high confidence (HC) 
TSGs, high confidence OGs, medium confidence drivers, low confidence genes, other evidence genes that are 
present in at least one of 15 studies used in this work (Online Methods), and background genes (BGs). A high 
fraction of TSGs encode very large proteins. CDS–coding sequence. (b) Comparison of high confidence TSG 
and non-TSG protein size with respect to having a documented role in chromosome organization processes 
(Chr) based on gene ontology. Large TSG proteins are enriched for participation in chromosome organization 
processes. All P values are derived using the Welch t-test.
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and NSD1), 2 histone acetyltransferases (KAT6A and TAF1), and 5 genes involved in chromatin remodeling 
(CHD8, PSME4, RERE, SUPT6H, and INO80 which is also involved in DNA repair and chromosome segrega-
tion)38. The remaining 2 genes are involved in DNA repair (PRKDC) and chromosome segregation by loading the 
cohesion complex onto chromatin (NIPBL)38.

Discussion
In this study we used diverse gene properties beyond tumor genomes to detect cancer driver genes and classify 
their mode of action. This integrative approach enabled us to detect literature-supported driver genes that are not 
present among a large compendium of driver genes derived from over a dozen efforts. We show that the largest 
driver genes are almost exclusively TSGs, with a remarkably dense concentration of known and putative drivers 
among very large proteins involved in chromatin modification. These findings highlight a small subset of candi-
date genes for focused experimental investigation, specifically as driver genes that modify the cancer epigenome.

The use of non-tumor genomics gene-level knowledge has been previously shown to aid in driver gene detec-
tion; however, this was typically done using a small set of select features. For example, MutSigCV uses DNA repli-
cation timing and cell line expression levels10, ActiveDriver uses phosphorylation site knowledge39, and HotNet2 
uses protein network knowledge15. One exception, MAXDRIVER, uses a larger set of features, although only 
to detect copy number-based drivers in select tissues19. By integrating diverse gene knowledge in a pan-cancer 
framework, CARNAF found additional putative driver genes beyond what was previously found by other com-
putational efforts.

Our work argues for a deeper mechanistic investigation of the link between protein size and cancer driving 
potential. It appears that while driver genes have high protein-protein connectivity, protein network centrality 
is not associated with TSG protein size and does not explain why TSGs encode large proteins compared to OGs. 
Perhaps evolutionary considerations and alternative gene function hypotheses may offer insight. Functionally, 
large genes and proteins tend to be evolutionarily conserved40, exhibit increased essentiality41, and have less 
redundancy and gene duplications42 as there is selective pressure for proteins to be short in order to preserve 
resources43. The above may guide further exploration.

Symbol Type
CDS length 

(aa)
Percentile in 

genome

KMT2D TSG 5537 99.9%

KMT2C TSG 4911 99.8%

FAT1 TSG 4588 99.7%

CSMD1 TSG 3565 99.5%

BRCA2 TSG 3418 99.4%

ATM TSG 3056 99.2%

APC TSG 2843 99.1%

NF1 TSG 2839 99.1%

SETD2 TSG 2564 98.8%

NOTCH1 TSG 2555 98.8%

CIC TSG 2514 98.7%

ATRX TSG 2492 98.7%

NOTCH2 TSG 2471 98.6%

CREBBP TSG 2442 98.6%

NCOR1 TSG 2440 98.6%

EP300 TSG 2414 98.5%

ARID1A TSG 2285 98.3%

ARID1B TSG 2236 98.2%

MED12 OG 2177 98.1%

TET2 TSG 2023 97.7%

BRCA1 TSG 1884 97.2%

ARID2 TSG 1835 97.0%

TSC2 TSG 1807 96.9%

BCOR TSG 1755 96.6%

PBRM1 TSG 1689 96.2%

SMARCA4 TSG 1681 96.2%

DNMT1 OG 1678 96.2%

ALK OG 1620 95.9%

SETBP1 OG 1596 95.8%

KDM5C TSG 1560 95.6%

Table 2.  Large driver proteins are encoded almost exclusively by TSGs. List of the high confidence driver 
genes encoding the 30 largest proteins. CDS – coding sequence length.
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The focus on very large proteins involved in chromatin modification as an enriched pool of candidate TSGs 
targets roughly 0.3% of the protein-coding genes in the genome for potential validation. This emphasis is con-
sistent with the recently increased appreciation of mutated epigenetic regulators as cancer drivers36,37. The above 
gene pool, beyond containing characterized driver genes, contains many additional genes predicted as drivers by 
CARNAF and other methods. Thus, this suggests that our knowledge of cancer-causing mutations to epigenome 
modifiers is potentially far from complete.

The TSG predictions in this highly enriched set of genes, even if functionally incorrect, may still be important 
cancer driver genes. For example, CARNAF predicts that the very large (top 3% in genome) histone acetyltrans-
ferase encoded by KAT6A functions as a TSG (ranked 10th top TSG prediction, Supplementary Table 8). While 
it was hypothesized that KAT6A may suppress cancer in response to severe DNA damage44, stronger evidence 
suggests an OG role as it is very frequently amplified and has been experimentally shown to act as a breast cancer 
oncogene and senescence inhibitor44–47.

Machine learning methods such as CARNAF provide a major advantage by systematically integrating many 
features for gene ranking. Beyond this study, additional scenarios can be envisioned, for example by using alter-
native training sets (as done previously13), performing lineage specific rather than pan-cancer analysis (as done 
previously48), limiting use of features with missing data or bias (e.g. gene ontology annotations towards well 
studied genes), including additional gene features, using a different learning methodology, and modifying various 
other parameters.

In this study we used machine learning techniques on a large set of publically available data to highlight a tar-
geted set of genes for further validation as cancer drivers. Ultimately, our work suggests the presence of numerous 
uncharacterized, epigenetics-based driver genes, most of which are predicted TSGs, among very large regulators 
of chromatin structure.

Methods
Data Preparation. Selection of driver genes to be used as training examples. We constructed an integrated 
list of high confidence, protein-coding driver genes covering both mutation-based and copy number alteration 
driver genes. The data sources used to compile this list and the background genes list consisted of over a dozen 
multi-tumor type studies and databases (Supplementary Tables 3 and 4). These sources included drivers present 
in at least one, and often more, tumor types. Considerations for inclusion comprised source reliability, presence in 
multiple sources, and source confidence in the given gene. The list does not consider driver genes resulting from 
chromosomal rearrangements. The high confidence set was built in several sequential steps as described below.

First, we included all of the mutation driver genes (71 TSGs, 54 OGs) and copy number alteration driver genes 
(3 TSGs, 10 OGs) reported in Vogelstein et al. as these represent well-known, manually curated driver genes1.

Figure 4. CARNAF and other methods predict an enrichment of uncharacterized TSGs among very 
large chromatin regulators. (A) The abundance of high confidence TSGs and CARNAF predicted TSGs 
encoding very large (top 5% in genome) and small proteins (the remaining 95%) with respect to participation 
in chromosome organization processes. The top 84 CARNAF TSG predictions, using all features and excluding 
the high confidence driver gene set, were selected to match the abundance of TSGs in the high confidence set 
(n =  84). CARNAF predictions that overlap with the medium and low confidence driver gene sets are shown. 
Chr – chromosome organization biological process, according to gene ontology. (B) Prominent cellular 
processes for the 92 large, chromosome organization proteins. The fraction of high confidence and CARNAF 
predicted TSGs in each category is displayed. Categories are not mutually exclusive. (C) Specific cellular 
processes of the 66 genes annotated as involved in chromatin modification. Categories are mutually exclusive. 
Abbreviations: Chrsm–chromosome; Chrmt – chromatin; Chrmt mod – chromatin modification; Chrsm seg – 
chromosome segregation; DNA rep – DNA repair; Hist mod – histone modification; SWI/SNF cmplx – SWI/
SNF complex; Chrmt remod* – other chromatin modification not annotated as histone modification or SWI/
SNF complex.
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Second, we supplemented the TSGs that result from deletions. We added the two genes (FANCD2 and TSC2) 
that were labeled by the Cosmic Cancer Gene Census (CGC)49 and by at least two of the following three sources: 
TAG DB3, TSGene4, and our 20/20 classifier implementation, a mutation-pattern based classifier that labels 
genes as TSGs or OGs1 (briefly described in Supplementary Table 3). Next, we added the four remaining genes 
(CDKN1B, FAT1, IKZF2, MYCN, and PARK) that were curated by Zack et al.45 as known frequently deleted TSGs.

Third, we supplemented the OGs that result from amplification. We added the 12 remaining genes (BCL2L1, 
CCNE1, CDK4, CDK6, E2F3, IGF1R, MCL1, NEDD9, PAX8, SOX2, TERT, and ZNF217) curated by Zack et al. as 
known frequently amplified OGs. We then added the four remaining genes (AKT2, JUN, MITF, and REL) that 
were present in both in the CGC and Santarius et al.50.

Fourth, we supplemented the mutation-based drivers by curating the remaining genes that were identified by 
the highest amount of mutation-based methods. All genes present in six or seven mutation methods were already 
included. Of the four remaining genes present in five out of seven mutation methods, we assigned two (CDK12 
and CTCF) as TSGs with sufficient confidence based on manual literature curation. Of the 15 remaining genes 
detected by four mutation-based methods, we assigned two (ELF3 and ZFHX3) as TSGs and two (RAC1 and 
TBX3) as OGs based on manual literature curation.

Finally, we removed MYCN from the list as it may serve as both a TSG and OG according to the literature. 
Thus, MYCN was not used as a driver gene in the high confidence set.

The resulting high confidence set consisted of 84 TSGs and 81 OGs for a total of 165 driver genes, which 
were present in at least one tumor type. TSG mode of inactivation consisted of 46 mutation-based TSGs, 7 
deletion-based TSGs, and 31 TSGs spanning either form of inactivation. OG mode of activation consisted of 46 
mutation-activated OGs, 23 amplification-activated OGs, and 12 OGs that can be activated by either method.

Selection of background genes. We selected 19,486 protein-coding genes to be used in the study. The genes were 
derived by intersecting protein-coding genes from dbNSFP v2.4, the Gene Ontology Consortium51 (downloaded 
from http://geneontology.org on January 29th, 2015), and genes from Uniprot52 (http://www.uniprot.org/, down-
loaded on January 4, 2015) for which we could retrieve coding sequence lengths to ensure known proteins. The 
full list of genes can be found in Supplementary Table 1.

CARNAF requires a set of genes with little or ideally no cancer evidence to be used as negative examples. To 
this end, we removed the 165 high confidence driver genes and 3,349 additional genes that were reported in at 
least one source (Supplementary Table 4a) from the above. This resulted in 15,972 background genes (BGs) to be 
used as negative examples for classifier training.

Selection of medium and low confidence driver gene sets. We created medium and low confidence driver gene 
sets to evaluate CARNAF driver gene detection beyond high confidence drivers, the latter being the training set 
(n =  165). Both sets consist of non-consensus genes and are expected to contain high rates of false positives.

The medium confidence set (n =  682) includes all genes present in at least one of the following nine 
genomics-based sources: Zack et al. (deletion/amplification)45, CGC (deletion/amplification/mutation)49, 
Santarius et al. (amplification)50, Lawrence et al. (mutation)9, HotNet2 (mutation)15, MuSiC (mutation)53, 
OncoDriveClust (mutation)54, OncoDriveFM (mutation)55, and ActiveDriver (mutation)39. TUSON13 was not 
used in the above gene sets as it was the origin of our genomics features. Genes from the high confidence set were 
excluded.

The low confidence gene set (n =  1,360) includes genes present in at least one of the following sources and 
not in the medium and high confidence sets: TagDB3, TSGene4, our own 20/20 rule implementation1, and genes 
ranked high (absolute effect > 3 in Supplementary Table 4b) as biomarkers in a high-throughput cell line study5.

Feature extraction-data sources. dbNSFP v3.0b2a was used to retrieve protein-protein interaction (PPI) 
data56,57. PPI data included IntAct (downloaded on March 27, 2015) and BioGRID (version 3.3.122). dbNSFP 
v2.4 was used to retrieve GO slim terms. The GO slim terms had a Gene Ontology Consortium validation date 
of September 27, 2013. Full GO terms were not used as they are relatively sparse features. dbNSFP v2.4 was 
also used to retrieve an estimated probability of haploinsufficiency per gene58 and gene essentiality predictions 
based on homology with the Mouse Genome Informatics database41. Essentiality predictions had three categories: 
essential, non-essential but phenotype-changing, and all other genes. The coding sequence was determined as 
the longest isoform within the gene, as retrieved from UniProt on January 4, 2015. Ensembl BioMart was used 
on November 26, 2014 to retrieve the GC percent per gene and the number of transcripts per gene. Chromatin 
compartment and DNA replication time were retrieved from Lawrence et al.10. Duplicate gene data was retrieved 
from Ouedraogo et al.42. Healthy tissue gene expression data was derived by Fagerberg et al.59 and retrieved from 
EMBL-EBI ArrayExpress (http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1733/). Post-translational 
modification (PTM) data was downloaded from PhosphoSitePlus® , www.phosphosite.org, on September 24, 
201460. All acetylation, SUMOylation, trimethylation, ubiquitination PTMs were chosen on lysine residues since 
such PTMs rarely occurred on other residues, thus using non-lysine residues would result in sparse features. 
Likewise, all tyrosine modifications were of phosphorylation type.

Tumor-derived genomics features. Four tumor mutation-pattern features were used in the study: (a) the entropy 
score (a measure of the randomness of mutation distribution across a gene), (b) the ratio of loss-of-function 
mutations to benign mutations per gene, (c) the ratio of splice site mutations to benign mutation per gene, and 
(d) the ratio of missense mutations predicted to have high functional impact by PolyPhen2 Hum-Var61 to benign 
mutations per gene. These four features were shown to be highly informative for TSG and OG classification, and 
were extracted from the original study13.

http://geneontology.org
http://www.uniprot.org/
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1733/
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Somatic gene amplification and deletion frequency, specifically GISTIC2 p-values62, was extracted from the 
above study13.

Feature extraction-computations. Several of the features we used required some computation, as detailed below.
Genomic density: The genomic density of a gene was determined as in previous work by quantifying the num-

ber of genes that reside within 4Mb upstream or downstream from the center chromosomal position of the gene, 
and then dividing by the mean of this number63.

Number of PPIs: The number of PPIs per gene was calculated as the average number of interactions present in 
both sources (BioGrid and IntAct) as retrieved from dbNSFP v3.0b2a.

Betweenness centrality: Betweenness centrality was calculated by running the Brandes algorithm64, using the 
iGraph R package65, on the BioGRID PPIs (Release: 3.2.111), which were accessed via the rTRM package66 for 
this purpose.

Non-tumor genomics features considered but not used. An effort was made to reduce feature redundancy by 
avoiding the use of multiple data sources for the same feature type. For example, we did not use pathway data 
from the Kyoto Encyclopedia of Genes and Genomes to prevent redundancy with GO slim biological process 
terms.

In addition, we evaluated protein and mRNA stability data but ultimately did not include these features as 
the data was typically incomplete. Regarding mRNA turnover rates, human datasets have half-life data for only 
up to approximately 50% of protein-coding genes67–69. Likewise, protein stability data exists for roughly 40% of 
genes70,71. In contrast to humans, global mRNA stability data does exists for the majority of mouse genes in ES 
cells72.

We also evaluated InterPro protein features, retrieved from Ensembl BioMart on November 26, 2014. InterPro 
contains data on protein families, domains, and functional sites. However, as only 1 of the 7,132 extracted features 
passed feature selection due to high sparsity, we opted to omit InterPro features.

Total features used and feature removal. A total of 131 features were used by CARNAF after two sequential fea-
ture removal steps: sparse feature removal and correlated feature removal.

i) Sparse features. Identification and removal of sparse features was performed using the R caret package73. 
Sparse features were defined as features satisfying two criteria: the ratio between the frequency of the first and 
second most common values was larger than 97/3, and the percentage of unique values out of the number of 
genes was smaller than 3%. A value of ‘unknown’ was also considered a unique value, thus leading to the omission 
of features with substantial levels of missing values.

ii) Removal of correlated features. To avoid redundancy, features were omitted if they were highly corre-
lated to other features using the R caret package. Two features were considered highly correlated if they had a 
Spearman correlation coefficient with an absolute value > 0.95. For each pair of correlated features, the feature 
with the greater mean absolute correlation with the remaining features was removed. After this stage, 131 features 
remained for use by CARNAF.

Missing data imputation. Missing values for features that were not omitted in the previous stage were imputed 
via the k-nearest neighbor procedure using the R caret package. For each gene, missing values were imputed 
according to the mean value of its 5 nearest neighbors, where similarity was measured using Euclidean distance. 
Features that could not be imputed because the same feature was missing in all 5 nearest neighbors were imputed 
as the median using all genes in the sample.

Additional data sources used in study, but not in CARNAF. Tissue expression data in binary format was used in 
Supplementary Table 12c-d. The expression data source GNF/Atlas (BioGPS) was downloaded from Ensembl 
BioMart on October 1, 2013 and retrieved via dbNSFP v3.0b2a. Cancer cell line expression data was retrieved 
from Lawrence et al.10. The data is presented in Supplementary Table 2.

Gene ontology analysis in Figure 4 and Supplementary Table 13. Gene ontology analysis of the genes encoding 
large chromosome organization proteins was performed using the Panther Classification System via the Gene 
Ontology Consortium website (http://geneontology.org/) with the GO Ontology database released on July 7, 
2015.

We manually curated the 92 genes in Fig. 4B to ensure updated annotations of biological roles. As a result, 
SMARCA2, ARID1A, ARID1B, SMARCA4, and ARID2 were manually marked as members of the SWI/SNF com-
plex74. In addition, the two histone demethylases, KDM3B and KDM5A, were marked as involved in histone 
modification to ensure consistency.

Carnaf Methodology. PU learning. CARNAF employs PU learning20,75,76, wherein genes without cancer 
evidence are treated as negative labels in an ensemble learning approach, where many classifiers are trained on 
different subsets of the data. This approach has been compared favorably with methods that do not make use of 
unlabeled or negative example genes, such as Endeavour17, Toppgene77, or density estimators78. The theoretical 
merits of this approach have been previously discussed22.

http://geneontology.org/
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Classification. Classification of genes as TSGs, OGs, or non-driver genes was performed using a random forest 
classifier21. Random forests enable multi-class classification and have been demonstrated to often outperform 
other well-known classifiers in a variety of predictive modeling domains79. Briefly, a random forest is an ensemble 
of a large number of decision tree classifiers, each of which is assigned to a random bootstrapped sample of the 
data as its training set. Random forest classifiers also compute feature importance, in addition to classification, 
by quantifying the mean decrease in node impurity (also known as Gini index) gained by splitting a node in a 
decision tree according to each feature. We employed the R randomForest package80 using 100,000 trees for each 
classification task and the caret R package for parameter tuning73. For each gene, the posterior probability of being 
a TSG, OG, or background gene was computed according to all the classifiers to which it was not assigned. This 
procedure is known as out of bag estimation.

Unbalanced classes. The training data contains 97-fold more background genes than driver genes. We used a 
stratified down-sampling approach to deal with this class imbalance, where each decision tree in the ensemble 
was assigned a random subset of the data. Data subsets consisted of the 165 high confidence driver genes and 
165 randomly selected negative example genes, where each was sampled with replacement using the “samp-
size” option of the R package randomForest. A similar approach was previously recommended in a PU learning 
setting22. We note that while the estimated posterior driver gene probabilities are useful for gene ranking, they 
should not be regarded as the true posterior probability of being a driver due to the down-sampling procedure.

Receiver operating characteristic (ROC) curve for TSG vs OG classification. ROC curves were calculated using the 
84 TSG and 81 OG driver genes. TSG labels were set to 1 and OG labels to 0. The probability of the label equaling 
one was defined as

= =
+

P(Label 1) P(TSG)
P(TSG) P(OG) (1)
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