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Abstract

Background: Traumatized earthquake survivors may develop poor memory function. Resting-state functional
magnetic resonance imaging (rs-fMRI) and machine learning techniques may one day aid the clinical assessment
of individual psychiatric patients. This study aims to use machine learning with Rs-fMRI from the perspectives of
neurophysiology and neuroimaging to explore the association between it and the individual memory function of
trauma survivors.

Methods: Rs-fMRI data was acquired for eighty-nine survivors (male (33%), average age (SD):45.18(6.31) years) of
Wenchuan earthquakes in 2008 each of whom was screened by experienced psychiatrists based on the clinician-
administered post-traumatic stress disorder (PTSD) scale (CAPS), and their memory function scores were determined
by the Wechsler Memory Scale-IV (WMS-IV). We explored which memory function scores were significantly
associated with CAPS scores. Using simple multiple kernel learning (MKL), Rs-fMRI was used to predict the memory
function scores that were associated with CAPS scores. A support vector machine (SVM) was also used to make
classifications in trauma survivors with or without PTSD.

Results: Spatial addition (SA), which is defined by spatial working memory function, was negatively correlated with
the total CAPS score (r = − 0.22, P = 0.04). The use of simple MKL allowed quantitative association of SA scores with
statistically significant accuracy (correlation = 0.28, P = 0.03; mean squared error = 8.36; P = 0.04). The left middle
frontal gyrus and the left precuneus contributed the largest proportion to the simple MKL association frame. The
SVM could not make a quantitative classification of diagnosis with statistically significant accuracy.

Limitations: The use of the cross-sectional study design after exposure to an earthquake and the leave-one-out
cross-validation (LOOCV) increases the risk of overfitting.

Conclusion: Spontaneous brain activity of the left middle frontal gyrus and the left precuneus acquired by rs-fMRI
may be a brain mechanism of visual working memory that is related to PTSD symptoms. Machine learning may be
a useful tool in the identification of brain mechanisms of memory impairment in trauma survivors.
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Background
Trauma survivors are at high risk of developing mental
disorders, including a series of psychiatric symptoms
(e.g., re-experiencing [1], depression [1, 2], and anxiety
[1, 3, 4]) as well as cognitive decline (e.g., memory
impairment [5, 6]). Nevertheless, these symptoms are
difficult to measure, especially cognitive decline, which
may lead to loss of well-being in later life [7].
Trauma can change brain function and structure,

which may, in turn, lead to memory impairment. For
example, memory impairment in mice may persist for
extended periods beyond the presentation of predatory
stress [8]. Besides, some studies have suggested that
patients with PTSD develop impairments in working
memory, delayed memory, instantaneous memory, atten-
tion, figural memory and visuospatial ability [9–11].
Furthermore, trauma survivors who express higher levels
of early PTSD symptoms have impaired immediate
figural memory and delayed figural memory, which
indicates that they are more likely to develop full-blown
PTSD in the future [12]. Previous memory models indi-
cate that dissociation and inadequate memory encoding
and processing may play a causal role in the develop-
ment of PTSD [13–17]. Trauma changes the behavior
and underlying neurobiology of the individual regardless
of whether he or she develops PTSD [18]. Research has
demonstrated that trauma survivors have more sub-
stance- and alcohol-abuse problems [19–22]. Regarding
changes in underlying neurobiology, previous studies
have indicated trauma-induced changes in brain func-
tion, i.e., abnormalities in the function and structure of
the brain, which can lead to specific cognitive abnormal-
ities, including memory damage and emotional process-
ing abnormalities. For example, Lui et al. demonstrated
that in participants who have survived earthquakes, the
activity of the frontolimbic and striatal areas increases,
while the connectivity among limbic and striatal net-
works decreases [23]. Earthquake survivors have been
found to have a decreased gray matter volume in the
bilateral insula, hippocampus, left caudate and putamen
and increased gray matter volume in the bilateral orbito-
frontal cortex and the parietal lobes 13–25 days after the
earthquake [24]. Besides, Golub et al. found that due to
the shrinkage of axonal protrusions, a traumatic experi-
ence in mice causes a reduction in hippocampal and
central amygdala volumes, which are important areas in
memory function [25]. Therefore, dividing trauma survi-
vors into two groups (with and without PTSD) based on
diagnostic categories can cause brain, cognition, and
behavioral changes in trauma survivors without critical
PTSD to go unnoticed.
To provide effective precision therapeutics for trauma

survivors, it may be helpful to study the effects of
trauma on the brain and on an individual’s behavior to

further investigate the neuromechanistic and behavioral
indicators regardless of the diagnosis, also known as the
research domain criteria (RDoC) [26]. To make a
contribution to the RDoC in PTSD, Gong et al. quantita-
tively predicted individual clinical scores of PTSD in
earthquake trauma survivors using the resting-state
mean amplitude of spontaneous low-frequency fluctu-
ation (mALFF) combined with multivariate machine
learning techniques [27]. The spontaneous low-
frequency fluctuation (ALFF) is a neuroimaging method
used to measure regional spontaneous fluctuations in
the BOLD-fMRI signal intensity in fMRI, and it is the
averaged square root of activity in spontaneous low-
frequency (0.01–0.08 Hz) fluctuations [28]. The mALFF
value reflects the degree of its raw ALFF value divided
by the average ALFF value of the whole brain, which can
avoid the influence of individual differences on brain
activity levels [29]. Their study suggested that the
prefrontal, parietal and occipital regions make a signifi-
cant contribution to the association of 17-item PTSD
checklist (PCL-17) scores, which challenges the trad-
itional hypothesis that the frontolimbic network is the
most important contributor to PTSD symptoms. Gong’s
study was the first to suggest that RDoC can be used at
the individual level and to explore the essential neuroim-
aging mechanism of trauma in the brain. They found
that a number of regions outside this frontolimbic
network, which is traditionally associated with PTSD,
contribute to the association with clinical PTSD scores.
However, this study only predicted PTSD symptoms.
Noticeably, memory deficits can be objective behav-

ioral indicators related to the severity of trauma-related
disorders. Elzinga et al. have indicated that both
psychological and neurobiological data create a model
for a trauma-related disorder as a disorder of memory
[22, 30]. According to general memory models [3, 16,
30–32], inadequate memory encoding and processing
can affect visual sensory information in the visual-spatial
template caused by trauma-related stimuli and result in
flashbacks [33] and other symptoms [34]. Therefore, it
would be more efficient to explore the neuroimaging
mechanisms, such as mALFF, of specific abnormal cog-
nitive functions than to explore the relationship between
symptoms and neuroimaging mechanisms. In addition,
cognitive function is more measurable than symptoms
estimated by a physician’s evaluation, and it could be the
internal neural cognitive basis of post-traumatic mental
symptoms [34], which could be used as supplementary
objective criteria for PTSD clinical diagnosis in the
future. Although the neuromechanisms underlying
trauma-related memory defects remain unclear, it is ne-
cessary to further examine whether neuroimaging could
be applied to investigate memory functions in trauma-
exposed individuals.
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The use of multivariate machine learning techniques
[35] has been a recent way to try to increase the transla-
tional applicability of functional neuroimaging. Com-
pared with standard mass-univariate analytical methods
correlated with cognitive performance measures, these
techniques can provide results at the individual level for
cognitive function without clinical cognitive function
measures as well as an ideal framework for investigating
cognitive impairment, which could include a distributed
network of regions. Importantly, we used simple mul-
tiple kernel learning (simple MKL) [36] in the current
study, which is one of the MKL methods. MKL is a set
of machine learning methods using a predefined set of
kernels. Kernels are specified by researchers. In the
current study, we defined regions of interest (ROIs) as
kernels. The ROIs were defined by the AAL template
(Additional file 1: Part-1). Kernel methods in MKL are
class of algorithms for pattern analysis which can be op-
erated in a high-dimensional, and learn a combination of
kernels as part of the algorithm [37–39]. Simple MKL is
a method that can use support vector machines (SVMs),
which is supervised learning models with associated
learning algorithms that analyze data used for classifica-
tion and regression analysis, to simultaneously learn ker-
nels and the associated predictor in supervised learning
settings and is based on mixed-norm regularization [36].
In the present study, we used the Wechsler Memory

Scale-IV (WMS-IV) [5] to investigate the memory
function correlated with CAPS-IV [40] scores in trauma
survivors. Consequently, we evaluated the potential of
rs-fMRI in making accurate associations about memory
function [41–46]. Then, we tried to predict the memory
function related to PTSD symptoms at an individual
level and to explore the mechanism underlying memory
deficits. In addition, to compare the accuracy of rs-fMRI
in classifying by PTSD diagnosis with the accuracy of rs-
fMRI in associating PTSD symptoms with memory
deficits, we applied SVM and simple multiple kernel
learning (MKL) (Additional file 1: Part-2). We hypothe-
sized that memory function, especially visual memory
and working memory, is related to the CAPS-IV score.
Besides, we calculated the quantitative associations of
individual visual memory functions in trauma survivors
by machine learning using rs-fMRI mALFF. Further-
more, we tried to explore the spontaneous activity of
brain regions that could be part of the fundamental
neuromechanism underlying memory deficits in trauma
survivors.

Methods
Subjects
The study was approved by the Medical Research Ethics
Committee of West China Hospital, Sichuan University,
and written informed consent was obtained from all

participants before the study. We acquired whole-brain
resting-state fMRI for 89 individuals with a history of
trauma (aged between 21 and 60 years, with an average
of 45.18 years, all right-handed). According to the RDoC
approach, we included subclinical PTSD to investigate
the whole-brain mALFF as well as memory functions
regardless of the diagnosis. The current study include (a)
Individuals with CAPS-IV scores from 0 to 19 (asymp-
tomatic/few symptoms (n = 41, mean = 5.60, SD = 5.97),
(b) Individuals with CAPS-IV scores from 20 to 39
(subthreshold PTSD, n = 8, mean = 27.57, SD = 5.19), (c)
Individuals with CAPS-IV scores above 39 (moderate to
extreme PTSD, n = 40, mean = 85.33, SD =27.20) [47]
(Additional file 1: Part-3). All participants were recruited
seven years after the Wenchuan earthquake hit Sichuan,
China; participants were recruited through the Mental
Health Center of the Western China Hospital, Chengdu,
China (Table 1). In addition, all participants had similar
socioeconomic and cultural backgrounds. They were all
residents of Qingchuan Village (the epicenter of the
earthquake), and they were all present at Qingchuan
Village when the earthquake occurred. In addition, all
participants were interviewed to confirm the following:
no history of psychiatric illness among their first-degree
relatives; no history of head injury or loss of conscious-
ness (> 1 h) or neurologic disorders; no present or past
Axis-I psychiatric disorders other than PTSD; no history
of psychotherapy; no learning or developmental disor-
ders; and no history of drug or alcohol abuse in the six
months preceding the scan. All subjects were assessed
by DSM-IV structured clinical interview (SCID) [48] and
CAPS-IV [40] by a consensus between two attending
psychiatrists and a trained interviewer.

Neuropsychological assessment
The WMS-IV [49] is a battery of tests designed to evalu-
ate immediate and delayed recall, working memory,
learning, and recognition of information that is pre-
sented in visual or verbal modalities. WMS-IV consists
of five subtests: logical memory subtest (LM) to assess
the narrative memory, vocabulary paired association
(VPA) to evaluate speech memory, design (DE) to assess
the sensory visual stimulation, visual reproduction (VR)
to measure the memory of nonverbal visual stimuli, and
spatial addition (SA) to evaluate visual working memory.
The primary subtest yields four WMS-IV index scores

Table 1 Trauma survivors’ demographic data (S.D.)

Trauma survivors

Male/female 29/60

Age (years) 45.18 (6.31)

Years of schooling (years) 8.65 (3.25)

CAPS 38.93 (37.00)
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(visual working memory, auditory memory, visual
memory, and delayed memory) and an overall full-scale
memory quotient (Additional file 1: Part-4).

Image Acquisition
Experiments were performed on a 3.0 T magnetic reson-
ance scanner (Siemens 3.0 T Trio Tim, Germany) with
an eight-channel phased-array head coil. Functional
images were acquired using a single shot, gradient-
recalled echo-planar imaging sequence (repetition time
(TR)/echo time (TE) = 2000/30 ms; flip angle = 90°). Five
dummy scans were collected prior to the actual MRI
scans, and the first 5 volumes of the MRI time series
were discarded for magnetization stabilization. The slice
thickness was 5 mm with no gap, 64 × 64 matrix size and
a field of view of 240 × 240 mm2, resulting in a voxel size
of 3.75 × 3.75 × 5mm3. Each brain volume comprised 30
axial slices, and each functional run contained 205 image
volumes. Subjects were instructed to relax, keep their
eyes closed, and let their minds wander without falling
asleep during the 6.8 min scan [50].

Data preprocessing
The data were preprocessed using Statistical Parametric
Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm). The
first 5 volumes were discarded for scanner calibration
and participant acclimation to the scanning conditions.
All data were corrected for slice timing. Besides, head
motion correction of the functional scans was performed
for the remaining 200 consecutive volumes. The three
translational and three rotational motion parameters
were first computed during the realignment step. Then,
we generated the mean framewise displacement (FD),
which reflected the volume-to-volume changes in the
head position [51]. Data from 9 trauma survivors in 98
subjects were discarded when the mean FD exceeded
0.25 mm or when translational or rotational parameters
exceeded ±1.5 mm or ± 1.5°. Therefore, 89 subjects were
included in the analysis of the current study. Demo-
graphic data and clinical symptom scores of 98 subjects
were shown in Additional file 1: Part-5. We coregistered
high-resolution structural images to the mean functional
image and segmented them into white matter, gray mat-
ter and cerebrospinal fluid in MNI space using “new-
segment and DARTEL” in the data processing assistant
for resting-state fMRI (DPARSF) after slice timing and
realignment. Nuisance covariates, including the head
motion (Friston 24-parameter model) [52], cerebrospinal
fluid signals and white matter signals, were regressed
out. Next, we removed the linear trend after spatial
normalization. Finally, the images were normalized to
the MNI space (voxel size: 3 mm3) with the DARTEL
tool, and images were smoothed using a 6-mm full width
half maximum (FWHM) isotropic Gaussian filter.

ALFF calculation
Temporal filtering
The result data were further temporally bandpass filtered
(0.01–0.08 Hz) to reduce the effects of low-frequency
drift and high-frequency physiological noise. The time
series were transformed into the frequency domain using
the Fourier transform (FFT) to obtain the power
spectrum after linear-trend removal. To calculate the
ALFF, the square-rooted power spectrum was obtained.
Then, the ALFF of each voxel was divided by the global
mean of ALFF values for standardization to obtain the
mALFF, which was calculated using the data processing
and analysis for brain imaging (DPABI) [53] (http://
rfmri.org/dpabi) software.

Statistical measures
The score and subscale scores of the CAPS_IV and cog-
nitive test scores were analyzed by partial correlation
analyses, controlling for the potential influences of age,
gender, and educational background, achieving multiple
comparison corrections by Bootstrap analysis. P < 0.05
was considered to be a statistically significant difference.
All tests were performed using SPSS software, version
17.0 for Windows.

Univariate SPM analysis
A standard, univariate approach was used in SPM8
software to investigate the relationship between the
resting-state mALFF and the memory subscale scores
that are significantly correlated with CAPS-IV scores.

Simple multiple kernel learning analysis
The relationship between the cognitive test scores and
the mALFF at rest were examined using simple MKL
[36] as implemented in PRoNTo v2.1 (http://www.mlnl.
cs.ucl.ac.uk/pronto/) running under MATLAB (Math-
works, 2010 release). The simple MKL algorithm is
based on the objective value of gradient descent on the
support vector machine (SVM). Then, gradient descent
wrapping is used to iteratively determine the combin-
ation of kernels [36]. In the current study, a linear com-
bination of 116 basic kernels was considered for the final
synthetic nuclear space. We also regress out the mean
FD in the analysis, a leave-one-out cross-validation was
applied across participants to obtain estimates for each
participant. The accuracy of simple MKL association
was calculated, defined as the Pearson’s correlation
coefficient and the mean squared error (MSE) between
the actual and predicted values of the cognitive scores
(Additional file 1: Part-6).
A randomization test, defined as a permutation test,

was used to estimate the distribution of correlation and
MSE values under the null hypothesis of no association
between mALFF and cognitive ability by randomly
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pairing the input-target data and the simple MKL rerun
1000 times, which provided an estimated P-value for
both the correlation coefficient and the observed MSE.
To facilitate visualization, the current study established

a table to sort the contribution of different ROIs to the
size of the synthesis of the nuclear space. The expected
ROI of different ROIs sorted by leave-one-out cross-
validation is calculated by the synthetic kernel space.
The smaller the expected sort value, the larger the aver-
age weight of the ROI is and the higher the ranking is.

Support vector machine (SVM) classification analysis
The mALFF classification of trauma survivors with
(CAPS_IV score ≥ 40) or without PTSD (CAPS_IV
score < 20) was examined using simple SVM [54] as
implemented in PRoNTo running under MATLAB.
SVM was used to investigate the potential of whole-
brain mALFF for discriminating among trauma survivors
with or without PTSD. Besides, the multi-kernel com-
bination strategy [55] was used to effectively combine
different feature vectors. The weights of different kernels
in the SVM were learned based on the training samples
[36]. We also regress out the mean FD in the analysis.
A leave-one-out cross-validation was applied to valid-

ate the performance of our proposed approach. Thus,
when each sample was designated as a test sample (all
other samples were left out for the test), the remaining
samples were used to train the classification function. In
this manner, it could derive an approximately unbiased
estimator of the model. To quantify the performance of
compared methods, balanced accuracy, sensitivity and
specificity are reported, which are defined based on the
association results of LOOCV. Balanced accuracy takes
the number of samples in each class into account, and it
gives equal weight to the accuracies obtained on the test
samples of each class.
In the discrimination maps, each voxel carried a cer-

tain weightage, indicating its contribution to the classifi-
cation function. In this way, a discrimination map could
be generated.
The details on the kernels and the information on the

tuning parameters are in the Additional file 1: Part 1.

Results
Psychological and behavioral data
The study included 89 subjects. Subject demographic
data and clinical symptom scores are shown in Table 1.

Correlation between cognitive dimensions and CAPS_IV
scale
Table 2 shows the correlations between cognitive per-
formance and the symptoms assessed by CAPS_IV for
the trauma survivors. Most of the cognitive functions
evaluated in the WMS-IV did not correlate with the

total scores of CAPS_IV. The spatial addition (SA)
subtest is the only subtest that displayed a negative
correlation with the total CAPS_IV scores. The visual
memory index, visual working memory index, immediate
memory index, visual reproduction, and SA displayed a
negative correlation with the symptoms of re-
experiencing as measured by CAPS_IV. Moreover, SA
displayed a negative correlation with the symptoms of
avoidance as measured by CAPS_IV.

Univariate SPM analysis
There are no regions that showed a significant associ-
ation with SA scores at P < 0.05 (corrected for multiple
comparisons using family-wise error (FWE)) (Additional
file 1: Part 7).

Simple MKL analysis
As mentioned above, the SA subtest is the only subtest
that displayed a negative correlation with the total
CAPS_IV scores. The application of simple MKL
allowed quantitative association of SA scores by whole-
brain resting-state mALFF in statistically significant
accuracy (correlation = 0.28, P-value = 0.026; mean
squared error = 8.36, P-value = 0.035) (corrected for
multiple comparisons using the permutation test, both
P < 0.05 was the significant level) (Fig. 1) in trauma
survivors. The association was based on functional alter-
ations across the whole brain, particularly in the left
frontal middle gyrus and left precuneus, in addition to

Table 2 The correlation between CAPS score and cognitive
function by bootstrap

Value CAPS

Correlation p

LM (instant) −0.18 0.10

LM (delayed) 0.02 0.86

VPA (instant) −0.04 0.69

VPA (delayed) −0.03 0.79

VPA Recognition (delayed) 0.06 0.60

VR (instant)b −0.23 0.12

VR (delayed) −0.15 0.24

DE (instant) −0.21 0.11

DE (instant) Content −0.21 0.06

DE (instant) Space −0.17 0.13

DE (delayed) −0.17 0.12

DE (delayed) Content −0.11 0.32

DE (delayed) Space −0.08 0.47

SA −0.22 0.04*

Abbreviation: CAPS Clinician-Administered Posttraumatic Stress Disorder Scale,
LM Logical Memory, VPA Vocabulary paired association, VR Visual reproduction,
DE Design, SA Spatial Addition
*significant by bootstrap analysis (p < 0.05)
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parietal lobes and occipital regions (Table 3, Fig. 2, and
Additional file 1: Part 8). Table 3 expresses the neuro-
anatomical regions with a contribution to the association
frame above 2% across all regions for the rs-fMRI-based
MKL used to accurately predict SA. However, the simple
MKL to the whole-brain resting-state mALFF data failed
to make a statistically significant accurate quantitative
association of SA scores (correlation = − 0.04, P-value =

0.497; mean squared error = 9.25, P-value = 0.712) (cor-
rected for multiple comparisons using a permutation
test, both P < 0.05 was the significant level) in PTSD
patients (CAPS_IV score ≥ 40).

SVM analysis
In discriminating among trauma survivors with moder-
ate to extreme PTSD (n = 40) or with asymptomatic/few

Fig. 1 Scatter plot showing the predicted SA score for each subject derived from their resting-state mALFF data using simple MKL, vs. their actual
SA score, SA, Spatial Addition; mALFF, mean amplitude of spontaneous low Frequency; MKL, Multiple kernel learning analysis

Table 3 Weighted sorting and expected sorting table

AAL Brain region Contribution proportion (%) Number of voxels (vox) Desired ordering

7 Frontal_Mid_L 23.895726 1388 1.022472

67 Precuneus_L 20.261179 945 1.94382

59 Parietal_Sup_L 8.929654 546 3.213483

68 Precuneus_R 8.092137 898 4.067416

8 Frontal_Mid_R 7.138229 1159 5.123596

23 Frontal_Sup_Medial_L 6.70388 833 5.797753

20 Supp_Motor_Area_R 5.655513 668 6.764045

52 Occipital_Mid_R 3.450836 565 8.41573

3 Frontal_Sup_L 2.784355 1013 9.977528

14 Frontal_Inf_Tri_R 2.386954 463 10.202247

4 Frontal_Sup_R 2.069247 993 11.696629

85 Temporal_Mid_L 2.045613 1421 15.561798

Abbreviation: Frontal_Mid_L,Left frontal middle gyrus; Precuneus_L,Left precuneus; Parietal_Sup_L,Left superior parietal gyrus; Precuneus_R,Right precuneus;
Frontal_Mid_R,Right middle frontal gyrus; Frontal_Sup_Medial_L,Left superior frontal gyrus,medial; Supp_Motor_Area_R,Right supplementary motor area;
Occipital_Mid_R,Right Middle occipital gyrus; Frontal_Sup_L,Left superior frontal gyrus,dorsolareral; Frontal_Inf_Tri_R,Right inferior frontal gyrus,triangular;
Frontal_Sup_R,Right superior frontal gyrus,dorsolateral; Temporal_Mid_L,Left Middle temporal gyrus;
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symptoms (n = 41), the SVM analysis of the whole-brain
resting-state mALFF data failed to classify trauma survi-
vors with a statistically significant accuracy (Total accur-
acy = 55.56%, balanced accuracy = 55.46%, P value = 0.142;
sensitivity =47.50%, P value = 0.42; specificity =63.41%, P
value = 0.103; positive predictive value = 55.88%; negative
predictive value = 55.32%; kappa = 0.158) (corrected for
multiple comparisons using permutation test, both P <
0.05 was the significant level).

Discussion
The current study indicated that the SA score is the only
subtest score in WSM-IV that is associated with PTSD
symptoms. The current study explored the quantitative
association of visual working memory by whole-brain
resting-state mALFF at the individual level with statisti-
cally significant accuracy. It examined the pathophysio-
logical mechanisms of the visual working memory in
trauma survivors. Importantly, the current work used a
model that predicts visual working memory and further
studied the neuromechanisms of visual working memory
in the distributed network of brain regions of trauma
survivors, laying the foundation for RDoC [56].
This study found that visual working memory was

negatively correlated with the severity of PTSD symp-
toms (see Additional file 1: Part 9). These results are
consistent with previous studies [57]. Stein et al. sug-
gested that visual-spatial ability is significantly reduced
in patients with PTSD who experienced rape compared
with that in healthy controls [57]. Besides, among war

asylum seekers, the visual-spatial ability in patients with
PTSD is significantly lower than that in war survivors
without PTSD [58]. Moreover, a negative relationship
has also been found between PTSD symptom severity
and working memory performance after controlling for
age, gender and educational background [56]. We can
speculate that the visual working memory impairment
may have a detrimental role in the failure of visual infor-
mation processing [3, 16, 30–32] and that the visual
working memory impairment is responsible for dis-
rupted declarative memory of visual information [59,
60], leading to PTSD symptoms [61]. Consequently, our
data indicated an important role for visual working
memory in PTSD.
In the present study, we extended these early results

to show that the application of simple MKL in the rs-
fMRI can be used for the quantitative association of cog-
nitive scores by whole-brain resting-state mALFF at the
individual level in statistically significant accuracy. In re-
cent work on trauma survivors, the combination of
multivariate machine learning techniques and rs-fMRI
showed the potential for predicting and investigating
neuromechanisms at the individual level [27]. The failure
in predicting SA scores at the individual level in PTSD
patients may be due to the small sample size. Moreover,
as the mean score of SA was much lower in PTSD pa-
tients, a floor effect may have also resulted in the failure
to predict these scores, but the influence might not be
large (see Additional file 1: Part 10). This further indi-
cates the importance of the current study, which

Fig. 2 Multivariate map showing the weight of each part of brain region indicating its relative contribution to the regression function in the
context of all other brain regions (color bar in arbitrary units). [a] left frontal middle gyrus; [b] left precuneus;[c] left superior parietal gyrus;[d]
right precuneus
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explored a way to measure memory by neuroimaging,
which can be fast, accurate and appropriate for most
people. Interestingly, the low accuracy classification of
PTSD in trauma survivors is consistent with previous
studies. Qiongmin Zhang et al. [62] classified trauma
survivors with or without PTSD with low accuracy (the
best accuracy was 64.86%) when using ALFF. Although
they applied a combined multimodal feature approach
(combining Reho, GMV, and ALFF), the accuracy im-
proved to only 67.57% with a sensitivity of 52.94% [62],
but this accuracy is still insufficient. In contrast, in the
identification of PTSD versus healthy controls (HCs),
89.19% of individuals were correctly assigned to the ap-
propriate diagnostic category, which is much better than
the identification of trauma survivors with or without
PTSD [62]. In addition, when Gong et al. [63] compared
survivors with or without PTSD, they found that gray
matter allowed discrimination with an accuracy of 67%
(p < 0.001); however, the two groups could not be distin-
guished based on white matter. This accuracy is much
lower than that obtained when comparing PTSD and
HCs 76% (p < 0.001) and 85% (p < 0.001) based on gray
and white matter, respectively) [63]. Moreover, the appli-
cation of MKL to the whole-brain resting-state mALFF
data did not allow a quantitative association of CAPS_IV
scores (see Additional file 1: Part 10) in the current
study. This evidence indicates that it may be better to
predict or classify based on RDoC than on the diagnosis,
and it is more efficient to explore the whole-brain
resting-state mALFF of specific abnormal cognitive func-
tions than to explore the relationship between symptoms
and whole-brain resting-state mALFF.
The current study found that the left medial frontal

gyrus and bilateral precuneus, but mainly the left precu-
neus (the left precuneus contributed 20% to the associ-
ation frame versus the 8% of the right precuneus), both
of which are in the default mode network (DMN), con-
tributed to a substantial proportion of the association
model of SA score and the whole-brain resting-state
mALFF in the current study. The DMN is associated
with autobiographical memory, stimulus independence
and internally focused thought [64]. Specifically, the pre-
cuneus is involved in memory processing and spatial lo-
cation encoding [64, 65]. Moreover, previous studies
have observed that greater activation in the left medial
frontal gyrus is involved in the processing of working
memory [66, 67]. Besides, our results indicated that the
frontal lobe and temporal lobe contribute substantially
to the association frame, which is consistent with our
previous study [62]. Geuze et al. found that, compared
with healthy controls, during the coding phase, patients
with PTSD showed underactivation of the frontal cortex
and overactivation of the temporal cortex [68]. In the re-
trieval process, decreased activation of the right frontal

cortex, the bilateral middle temporal gyri, and the left
posterior hippocampus/parahippocampal gyrus in vet-
erans with PTSD were observed [68]. This difference
suggests the possible involvement of the frontal lobe -
temporal lobe network in the cognitive deficits seen in
PTSD [68], which is in line with the current findings.
Our previous study found that the gray matter volume

(GMV) difference of the bilateral middle occipital gyrus,
left superior frontal gyrus and bilateral middle frontal
gyrus are the most discriminative regions for distinguish-
ing PTSD from HC [62]. Gong et al. have suggested that
PTSD and HC could be discriminated based on gray and
white matter in several prefrontal, temporal, parietal and
occipital regions [63]. In the current study, the functions
of these regions are also important to the association
frame, which indicated that these regions are vulnerable
brain regions related to the dysfunction of trauma survi-
vors, not only for GMV prediction but also for ALFF esti-
mation. This finding indicated that it may be more
sensitive in finding the trauma-related brain regions by
predicting the SA score. However, previous studies have
been limited to the symptoms, for example, predicting
whether the individuals have PTSD or not [62].
In another study, Gong et al. employed multivariate

machine learning techniques for the quantitative associ-
ation of clinical scores (PCL-17) by whole-brain resting-
state mALFF in trauma survivors between 10 and 15
months after the event with statistically significant ac-
curacy (correlation = 0.32, P-value = 0.006; the mean
sum of squares = 176.88, P-value = 0.001) [27]. The ac-
curacy in this study was higher compared with the
current work, which may be due to the smaller sample
size used in the current study compared to Gong’s study
(188 trauma survivors) and the current study investi-
gated trauma survivors 7 years after the event, the long
time may also plays a role in reduce the accuracy.
Nevertheless, the present study aimed to investigate
trauma survivors 7 years after the event; all subjects were
assessed by SCID [48], CAPS_IV [40] and the neuro-
psychological assessment performed by psychiatrists
aimed to predict long-term prognostic indicators of
trauma survivors (such as CAPS_IV score and memory
performance) by machine learning. Noticeably, whole-
brain ALFF predicted SA more accurately than it pre-
dicted the scores of the CAPS_IV scale (Additional file
1: Part-11). We can speculate that the relationship be-
tween neuroimaging and cognitive function is more sig-
nificant than that between neuroimaging and symptoms.
Additionally, the results indicated that during a long
time, the neuroimaging of ALFF was more relevant to
the SA function than the PTSD symptoms in trauma
survivors. Gong et al. demonstrated that ALFF func-
tional activation in several prefrontal, parietal, and oc-
cipital regions is the basis of accurate prediction, which
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is in line with the current study [27]. In the present
study, the left frontal middle gyrus and parietal lobes
contributed above 32% to the frame. The results indi-
cated the importance of the frontal-parietal network in
predicting visual working memory. Saar-Ashkenazy et al.
have reported that the brain activation patterns of visual
working memory in survivors with PTSD are different
from those of non-PTSD trauma survivors [69]. The
frontal cortex is structurally and functionally associated
with the parietal lobe [70], regulating spatial memory
and visual-spatial processing [71, 72]. Furthermore,
Clark et al. have suggested that the encoding of visual
working memory in trauma survivors with PTSD is more
dependent on the spatial coding ability of the parietal
lobe and less dependent on the executive control func-
tion of the frontal lobe [73]. Therefore, the dysfunctional
network between the frontal lobe and parietal lobe may
be the pathophysiological mechanism behind the dis-
order of visual working memory and post-traumatic
mental disorder, especially PTSD; this current finding is
in line with previous findings. The relationship between
the prefrontal and parietal lobes and whether the
frontal-parietal network is a common mechanism behind
PTSD visual working memory impairment and PTSD
symptoms needs to be further investigated.
Noticeably, in addition to the brain regions found in

the above-reported studies, the current work found that
the supplementary motor area (SMA) had a certain pro-
portion of the association of SA, especially the right
SMA that had an association weight of over 5% in the
association model. MacNamara et al. found that patients
with PTSD increased the activation of the motor area in
the process of emotional regulation, unlike trauma survi-
vors without PTSD [74]. SMA is believed to have a key
role in the network of neural regions mediating top-
down control of negative affect [75], and it may be
involved in implementing dorsolateral prefrontal cortex-
initiated emotion regulatory effects [75]. Cunnington
et al. found that SMA is essential in the early component
of premovement activity, which is strongly influenced by
higher cognitive factors [76]. In addition, Whalley et al.
found that individuals with PTSD exhibited flashback-
specific increases in the SMA [77].
In contrast, the univariate analysis of the resting-state

mALFF data did not reveal any regions that were signifi-
cantly associated with SA scores, which is in line with a
previous study [22] that found that univariate analysis
was not significantly associated with clinical scores while
multivariate methods were. This may be due to possible
sample heterogeneity of mALFF at the group level, for
example, the heterogeneity of brain regions and the
individual; however, the algorithm is applied to separate
individuals, so it is not a problem in machine learning
analysis [55]. In addition, the standard univariate

approach explored linear correlations; however, some cor-
relations could be found in nonlinear relationships [55].
For example, in the current study, we applied nonlinear
transformations by using a kernel function. The results
suggest that multivariate methods are more sensitive to
the stable diffuse alterations observed in psychiatric disor-
ders. Thus, compared with standard mass-univariate
techniques, multivariate methods are more suitable for de-
velopment as a real-world clinical diagnostic tool [35].
Importantly, Lianne et al. found that multivariable ma-

chine learning techniques, which allow for individual
associations based on high-dimensional data, are more
sensitive to spatially distributed effects [78] and changes
in brain regions exposed to trauma compared with
standard quality - single variable techniques [54] used in
previous studies [27]. Therefore, these multivariable ma-
chine learning techniques might be more suitable for
clinical application. Moreover, the simple MKL showed
the results related to the average contribution of each
brain region to the model, rather than just showing
these regions by setting the threshold to 30% of the
maximum weight value [79].

Limitations
This study has several limitations as well. One limitation
is the use of cross-sectional study design with partici-
pants who were exposed to an earthquake. It is not pos-
sible to determine whether the observed cognitive
function and the variability in brain function reflect
potential pre-existing plastic changes in individual psy-
chological vulnerability or if they occurred after the
earthquake. Another limitation is that, because gender is
one of the risk factors of PTSD, the potential neuro-
psychological mechanism of PTSD may differ, and future
research needs to separate these mechanisms based on
gender. Moreover, both the SA score and the resting-
state mALFF may be influenced by the symptoms and
age; however, as the covariates that are correlated with
the targets could not be regressed out in the model—as
this could lead to biases (positive or negative) in the ob-
tained results [80], we could not exclude the influence of
age and PTSD symptoms on the model. We are also
aware that the effect size in our study is not large;
however, if we exclude individuals with a very low SA
score (SA = 1), the effect size of the frame is much better
(correlation = 0.36, P-value = 0.010; mean squared
error = 5.09, P-value = 0.010; corrected for multiple com-
parisons using the permutation test, both P < 0.05 was
the significant level) (Additional file 1: Part-12), but we
do not have the evidence to exclude them. Thus, larger
sample size is needed in the future, and the influence of
outliers will then be reduced. Besides, the multimodal
prediction is a promising field. For example, we will ex-
plore whether both rs-fMRI and SA could inform PTSD
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symptoms in the future. Moreover, although calculating
permutation confidence intervals was a computationally
difficult problem, a method for performing this calculation
in the two-sample problem was presented [81]. However,
as far as we know, there is no software package in neuro-
imaging machine learning that can do this. Besides, we
only explored the association frame based on the AAL
brain atlas. No consensus atlas has been proven to be far
superior to others; AAL remains the most-used atlas in
machine learning analysis, although it has many draw-
backs. Although AAL is widely accepted in neuroimaging
studies, new brain atlases have frequently been used in
neuroimaging and machine learning studies, such as the
Power 264-region atlas [82, 83] and the Dosenbach’s 160
functional atlas [84]. Future studies should verify our re-
sults using these atlases in the analyses of different brain
networks. Finally, although the LOOCV was helpful in de-
veloping the association model and discovering the critical
features derived from rs-fMRI, it increases the risk of
overfitting. However, in the current study, LOOCV was
adopted to prevent the training set from deviating too
much from the overall population for the relatively smaller
sample (89 subjects in total) of subjects included in our
study. Out-of-sample validation could be the best method
to use in this study, but we did not include it in the study
design. In the future, we will increase the sample size so
that out-of-sample validation could be used in the study
to avoid the risk of overfitting.

Conclusion
In conclusion, this study investigated the association be-
tween memory and PTSD symptoms, and it indicated that
visual working memory impairment was related to PTSD
symptoms. We also explored individual associations be-
tween mALFF and visual working memory—which may
be suitable for development as a real-world clinical mem-
ory assistive assessment tool—and the neuromechanism
of the spatial overlay dimension of traumatic exposure
using the multicore learning method. In addition, our
findings indicated that, from the perspective of the whole-
brain pattern, brain mechanisms (found in the frontal
cortex and parietal cortex) largely contribute to the im-
pairment of visual working memory of trauma survivors,
which, to our knowledge, has not been reported before
this study. These brain areas are related to memory
processing and spatial location encoding. The failure to
process visual memory may be due to the dysfunction of
these brain areas, which in turn may be related to the
symptoms of PTSD [13–17]. This indicates that RDoC
studies are more effective in discovering mechanisms than
studies that pay more attention to individuals with PTSD
diagnosis. Working memory-related training may benefit
the functioning of these brain areas [85] and may be
helpful to trauma-exposed people.
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