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Computational discovery of transcription factors associated
with drug response
C Hanson1, J Cairns2, L Wang2 and S Sinha3

This study integrates gene expression, genotype and drug response data in lymphoblastoid cell lines with transcription factor
(TF)-binding sites from ENCODE (Encyclopedia of Genomic Elements) in a novel methodology that elucidates regulatory contexts
associated with cytotoxicity. The method, GENMi (Gene Expression iN the Middle), postulates that single-nucleotide polymorphisms
within TF-binding sites putatively modulate its regulatory activity, and the resulting variation in gene expression leads to variation
in drug response. Analysis of 161 TFs and 24 treatments revealed 334 significantly associated TF–treatment pairs. Investigation of 20
selected pairs yielded literature support for 13 of these associations, often from studies where perturbation of the TF expression
changes drug response. Experimental validation of significant GENMi associations in taxanes and anthracyclines across two
triple-negative breast cancer cell lines corroborates our findings. The method is shown to be more sensitive than an alternative,
genome-wide association study-based approach that does not use gene expression. These results demonstrate the utility of GENMi
in identifying TFs that influence drug response and provide a number of candidates for further testing.
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INTRODUCTION
The field of pharmacogenetics aims to understand the relationship
between individual variation at the genetic level and variation in
cellular or physiological response to a drug. Rapidly emerging
genomic technologies have expanded the scope of analysis to
genome-wide levels, simultaneously providing a variety of high-
quality data to enable the analysis, including genotype, gene
expression and proteomic data, as well as functional annotations
from the Encyclopedia of Genomic Elements (ENCODE).1 Advances
in the burgeoning field of pharmacogenomics2 have the potential
to revolutionize health care by guiding personalized health care
for patients via genome sequencing.3

The de facto method for generating biological hypothesis of
clinical relevance involves the extraction of pharamacogenomic
data from human cell lines that are generalizable and easily
manipulated; lymphoblastoid cell lines (LCLs) represent a canoni-
cal source with such clear clinical utility.4–6 A number of studies
have analyzed such data sets to relate genotypic variation to drug
response,7 revealing important single-nucleotide polymorphisms
(SNPs) as well as SNP-carrying genes that are candidates for
functional testing. Parallel to the identification of SNPs associated
with drug response, there is also considerable interest in
characterizing the mechanistic basis of such relationships, that
is, pathways and regulatory networks involved in drug response
and its variability.8,9 Identifying systems-level components of the
response, such as signaling pathways and transcriptional cascades,
can enable discovery of novel drug targets and lead to the
realization of ‘precision medicine’.10 Here, we embark upon one
such line of enquiry—to identify transcription factors (TFs) whose

regulatory activities are associated with cellular response to
cytotoxic treatments (Figure 1a), with the expectation that in the
future the response may be manipulated by intervening with the
function of TF.
The most widely used statistical method for harnessing

pharamacogenomic data to identify biomarkers relevant to
drug-induced cellular response is genome-wide association study
(GWAS), where SNPs are analyzed for their correlation with drug
response across individuals. The multigenic origins of phenotypic
variability, correlations between proximally located SNPs and
multiple hypothesis correction over millions of candidate markers
reduce the ability of GWAS to discover casual SNPs. A number of
studies have sought to improve upon the basic GWA approach, for
example, by testing subsets of SNPs as opposed to single marker
analysis, or combining GWAS associations with prior knowledge of
gene networks and pathways.11–13 We draw inspiration from this
emerging paradigm, and attempt to associate drug response
variation with multiple SNPs that share a common functional
context, viz., that of being located within binding sites of the
same TF.
Functional genotypic variants are expected to exert their

influence on phenotypic differences at least partly through
variation in expression levels of nearby genes.14–16 A previous
study17 argued that if gene expression data are available in
addition to genotype and phenotype data on the same cohort,
then a statistical approach called ‘mediator analysis’ can be
employed to discover functional SNPs with greater sensitivity.
Gene expression and proteomic data have often been used
to predict phenotypes, including drug-induced cellular
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response.16,18–21 Efforts have been made to develop methodolo-
gies that integrate both gene expression and genotype informa-
tion to predict phenotype. One method of achieving this is the
following: first conduct a GWAS associating SNPs with the
phenotype, and then correlate significant GWAS SNPs with
expression of their proximal genes, thereby identifying expression
quantitative trait locus (eQTL) SNPs, and finally correlate expres-
sion of these eQTL genes with phenotype. This triangulation
procedure for integrating genotype, gene expression and
phenotype (Figure 1b) data has been used to identify either
candidate SNPs or candidate genes for experimentation.4 It has
also been used in pharmacogenomics to identify biomarkers and
genes related to cisplatin-, etoposide- and radiation-induced
cytotoxicity.22–24 These previous studies motivate us to integrate
gene expression data in our search for molecular determinants of
drug response variability.
Integration of genotype and expression data in association

studies draws our attention to cis-regulatory SNPs that represent a
large proportion of individual variability and have been linked to
important phenotypes, including diseases.25 A prime difficulty in
characterizing regulatory variants is the poor annotation of the
noncoding genome, making it difficult to tell neutral from
potentially functional cis-variants. Recent community efforts to
systematically annotate the regulatory genome, such as the
ENCODE project, may alleviate this problem to an extent.
However, few existing approaches incorporate ENCODE data, in
particular transcription factor-binding site (TFBS) data, into
statistical analysis of individual variation at the genotypic and
phenotypic levels. The ENCODE consortium analyzed the overlap
of disease-associated SNPs from the NHGRI GWAS catalog with
TFBS and DNase I hypersensitivity sites.26 A recent study
integrated ENCODE data, among other sources of functional data,
into a model that selects optimally informative annotation filters
to improve SNP association studies.27 Another study concluded
that GWAS SNPs embedded in cis-regulatory elements from
disease-relevant cell types are likely to function as eQTLs.28

However, these studies do not provide a systematic method for
integrating all of the above-mentioned types of genomic data so
as to determine candidate regulators of phenotypic variation. Our
study aims to address this issue by developing a computational
method named GENMi (Gene Expression iN the Middle) that
integrates ENCODE TFBS, genotype, gene expression and drug-
induced cytotoxicity data in LCLs to quantify the association
between a TF and drug response, thereby elucidating putative
regulators responsible for observed cellular responses to drugs.

MATERIALS AND METHODS
Data collection
We obtained genotype, gene expression and drug response data on 95
Han-Chinese, 96 Caucasian and 93 African-American lymphoblastoid cell
lines from the Coriell Cell Repository (Camden, NJ, USA). Of these 284
individuals, 176 were females and 108 males, with an average age of 33.44
years. The genotype data consisted of 1 344 658 germline SNPs. Quality
control analysis had already been performed on these SNPs, removing
those that deviated from Hardy–Weinberg equilibrium, were called o95%
of the time or had minor allele frequencies o5%. Gene expression data
consisted of 54 613 Affymetrix U133 Plus 2.0 Gene-ChIP (Santa Clara, CA,
USA) probes assayed for the 284 individuals, with raw expression data
being transformed using QUOTE GC robust multiarray averaging.
Genotype and gene expression data are available at the National Center
for Biotechnology Information (NCBI) Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo) under SuperSeries accession no. GSE24277.
These data were published in a study by Niu et al.24

Drug response data were derived from dosage–response curves of 24
cytotoxic treatments shown in Supplementary Table 1. The phenotype,
called EC50, represents the concentration at which the drug reduces the
population of LCL cells to half of the initial population. Data for 15 of the
24 treatments have been published in analysis in various studies
conducted on these cell lines; in particular, MPA, NAPQI, 6MP, 6TG, ara-
C, oxaliplatin, carboplatin, cisplatin, docetaxel, everolimus, gemcitabine,
paclitaxel, metformin, radiation and rapamycin have been analyzed in
published studies.29,30,24,31–36 Response data for the following nine drugs
have not been published: arsenic, cladribine, doxorubicin, epirubicin,
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Figure 1. (a) Diagram of how transcription factors (TFs) mediate response to a drug. A drug (diamond) enters the cell and affects multiple
cellular processes. One such process involves transport or signal transduction to the nucleus where it alters the transcriptional activity of a TF.
Expression of target genes is subsequently altered, potentially resulting in apoptosis. (b) Outline of triangulation procedure proposed in the
literature. Each edge of the triangle corresponds to a correlation between two of the three axes of information: drug response, genetic
variants and gene expression. Integrative analysis involves intersecting expression quantitative trait locus (eQTL) genes and genome-wide
association study (GWAS) genes or eQTL single-nucleotide polymorphisms (SNPs) and GWAS SNPs.
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fludarabine, hypoxia, MTX, TCN and TMZ. Cytotoxicity assay was performed
for every one of these drugs using the LCL panel. After initial optimization,
cells were treated with a range of concentrations for any given drug tested,
followed by incubation for 48 to 72 h. MTS cytotoxicity assays were then
performed using Cell Titer 96 AQueous Non-Radioactive Cell Proliferation
Assay kit (Promega Corporation, Madison, WI, USA), followed by absor-
bance measurement at 490 nm in a Safire2 microplate reader (Tecan AG,
Switzerland). Cytotoxicity phenotypes were determined by the best fitting
curve using the R package ‘drc’ (dose–response curve) (https://
cran.r-project.org/web/packages/drc/drc.pdf) based on a logistic model.
Experimental data on TF binding were retrieved from the ENCODE

project;26 specifically, the clustered ChIP (version 3) tracks across 91 were
used. ChIP tracks consisted of the clustered ChIP peaks of 161 TFs. TF ChIP
high occupancy target regions were removed as described in
Supplementary Note 1.
Gene mappings to the Affymetrix arrays were obtained for the

Affymetrix Human Genome U133 Plus 2.0 array. ENSEMBL gene symbols
were used as the gene reference of choice: we used 55 038 ENSEMBL gene
symbols that were annotated with at least one ENSEMBL exon. Of the
54 613 probes assayed on the HG U133 Plus 2.0 array, 37 677 mapped to at
least one of the 55 038 ENSEMBL gene symbols.
Human triple-negative breast cancer cell lines, BT549 and MDA-MB231,

were obtained from the American Type Culture Collection (Manassas, VA,
USA). BT549 cells were cultured in RPMI-1640 containing 10% fetal bovine
serum. MDA-MB-231 cells were cultured in L-15 medium containing 10%
fetal bovine serum.

Experimental methods
RNA interference and qRT-PCR. The small interfering RNAs (siRNAs) for the
candidate transcript factors and negative control siRNA were purchased
from Dharmacon (Lafayette, CO, USA). Reverse transfection was performed
in 96-well plates. Specifically, 3000–4000 cells were mixed with 0.1 ml of
lipofectamine RNAi-MAX reagent (Invitrogen, Grand Island, NY, USA) and
10 nM siRNA for each experiment.
Total RNA was isolated from cultured cells transfected with control or

specific siRNAs with the Qiagen RNeasy kit (QIAGEN, Valencia, CA, USA),
followed by real-time quantitative reverse transcription-PCR (qRT-PCR)
performed with the one-step, Brilliant SYBR Green qRT-PCR master mix kit
(Stratagene, Santa Clara, CA, USA). Specifically, primers purchased from
QIAGEN were used to perform qRT-PCR using the Stratagene Mx3005P
Real-Time PCR detection system (Stratagene). All experiments were
performed in triplicate with β-actin as an internal control. Reverse-
transcribed Universal Human reference RNA (Stratagene) was used to
generate a standard curve. Control reactions lacked RNA template.

MTS cytotoxicity assay. Epirubicin, doxorubicin, paclitaxel and docetaxel
were purchased from Sigma-Aldrich (Milwaukee, WI, USA). Drugs were
dissolved in dimethyl sulfoxide and aliquots of stock solutions were frozen
at − 80 °C. Cell proliferation assays were performed in triplicate at each
drug concentration. Cytotoxicity assays with the lymphoblastoid and
tumor cell lines were performed in triplicate at each dose. Specifically, 90 μl
of cells (5 × 103 cells per ml) were plated into 96-well plates (Corning,
Corning, NY, USA)37 and were treated with 10 μl of epirubicin or
doxorubicin at final concentrations of 0, 0.0156, 0.03125, 0.0625, 0.125,
0.25, 0.55, 1 and 2 μmol l− 1. Similarly, cells were treated with paclitaxel or
docetaxel at 0, 0.01, 0.1, 1, 10, 50, 100, 1000 and 5000 nmol l− 1. After
incubation for 72 h, 20 μl of CellTiter 96 AQueous Non-Radioactive Cell
Proliferation Assay solution (Promega Corporation) was added to each well.
Plates were read in a Safire2 plate reader (Tecan AG).

Statistical analysis of cytotoxicity data. Significance of the half-maximal
inhibitory concentration (IC50) values between negative control siRNA and
gene-specific siRNA was determined by the two-tailed unpaired t-test.

Statistical testing for TF role in varying response to cytotoxicity
treatment (GENMi)
We operationally defined the cis-regulatory domain of a gene as the 50-kb
sequence upstream of the gene’s transcription start site. For any given TF,
we assigned a ‘TF-specific cis-eQTL score’ to each ENSEMBL gene as
follows:

1. Retain all SNPs located within TF ChIP peaks in the cis-regulatory
domain of the gene.

2. Retrieve all HG U133 Plus 2.0 probes mapped to the gene.
3. Compute the correlation (eQTL) for each (SNP, probe) combination. This

is the correlation coefficient, across all 284 cell lines, between the SNP
genotype and the probe’s expression value. Also, compute the P-value
corresponding to this correlation coefficient.

4. Use the coefficient of determination of the single best eQTL among all
(SNP, probe) combinations as the ‘TF-specific cis-eQTL score’ of the
gene. Retain probe and SNP identities contributing to the best eQTL for
further analysis.

We then considered the set of 400 genes with the strongest TF-specific
cis-eQTL scores (we additionally required that a gene included in this set
have a TF-specific cis-eQTL P-value ≤ 0.05, so the cardinality of the set may
be ≤ 400). These may be thought of as genes where genotypic variation in
the TFBS correlates with variation in the gene’s expression, potentially
implicating the TF in their expression variation. Although SNPs outside of
TFBS can affect TF regulation of gene regulation38 (for example, SNPs in
cofactor binding sites), we limit analysis to eQTL SNPs enveloped within
TFBS, as the functional effect of SNPs distant from the TFBS is not well
understood. We therefore refer to this gene set as the ‘eQTL gene set’ of
TF. In addition, we required that in order for us to analyze the role of TF in
drug response, there should be at least 15 genes with strong eQTLs within
binding sites of that TF, that is, the ‘eQTL gene set’ of TF should have at
least 15 genes, as per recommendations accompanying the Gene Set
Enrichment Analysis (GSEA) tool. This resulted in the analysis being
restricted to 114 of the 161 TFs for which ChIP data were available.
To determine whether the genotype expression associations identified

above are linked to the varying response to a given cytotoxic treatment
(drug or radiation), we correlated each probe’s expression value with the
EC50 value of the treatment, and ranked all genes by this correlation
coefficient. (We used the best correlation coefficient among multiple
probes for each gene.) Using GSEA,39 we tested for statistical association
between this ranked list and the eQTL gene set of TF defined above. The
GSEA procedure reported a P-value that served as the basis for inferring a
role for the TF in individual variations in response to the specific cytotoxic
treatment. As 114 TFs were separately tested in this manner, we relied
upon the false discovery rate (FDR) values reported by GSEA to correct for
multiple hypothesis testing with each treatment. We refer to this method
as GENMi.

Code availability
Scripts used in GENMi, with appropriate documentation, will be freely
available upon publication at the following location: veda.cs.uiuc.edu/
GENMi.

RESULTS
Integrating genotype, phenotype and expression data with
profiles of TF binding
The relationship between genotype and response to cytotoxic
treatments is expected to be mediated, at least in part, by
regulation of gene expression 17 (Figure 1a). Inclusion of
expression data in the LCL data set allows us to investigate this
hypothesis by simultaneously examining the correlation between
genotype and expression and that between expression and
phenotype (Figure 1b). We hypothesized that SNPs manifesting
the genotype–expression correlation (eQTLs) should reside within
binding sites of TFs that orchestrate the transcriptional programs
activated or deactivated by the treatment, and that these SNPs
influence phenotypic variation through their effect on gene
expression.40

Our goal was to test the possibility that a TF mediates the
individual-to-individual variation of gene expression that in turn
leads to variation in cytotoxicity across cell lines. To this end, we
sought examples (Figure 2a) where a SNP inside the TFBS
(ChIP peak) correlates with the neighboring gene’s expression
(cis-eQTL41), and that gene’s expression correlates with drug
response. To formalize this idea as a statistical test (Figure 2b), we
(1) first ranked genes by the correlation between their expression
and the phenotype, (2) separately identified a fixed number of
genes (400 in tests reported here) that bear the strongest
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cis-eQTLs within the TFBS and (3) finally used GSEA39 to test
whether the latter set of genes (step 2) is enriched near the top of
the former ranked list (step 1). In other words, we asked: when
using the TFBS as the context, is genotype-to-expression correlation
reflected in expression-to-phenotype correlation? Note that step (1)
is performed independently of the TF, and does no hypothesis
testing; it simply ranks genes by their (expression) correlation with
phenotype. Steps (2) and (3) test whether the cis-eQTLs induced
by a TF appear significantly frequently near the top of this
phenotype-associated gene list, thus suggesting a role for that TF
in the association between genotypic and phenotypic variation,
with expression variation in the middle. We call this entire
procedure ‘GENMi’.

Identification of TFs with potential role in cytotoxicity variation
We used the GENMi method to assign statistical significance, that
is, P-value and FDR to each (TF, treatment) pair. In total, drug-
induced cytotoxicity for 24 drugs were analyzed, of which 9 were
prepared specifically for this study (see Materials and Methods).
A total of 3864 pairs were tested (114 TFs × 24 treatments, see
Supplementary Table 1). There are 334 associations at a threshold
of FDR ≤ 0.10, involving 91 TFs and 23 treatments (Supplementary
Table 2). Figure 3 shows all log2 transformed FDR values of any TF

and drug with a significant association. The 334 significant
associations were distributed unevenly across the treatments,
with the drug Methotrexate (MTX) appearing in 70 of the 334
associations (21%), followed by Cytarabine (ara-C) and Medrox-
yprogesterone Acetate (MPA) as the drugs with most TF associa-
tions (Supplementary Table 3). The TFs with the most numbers of
associations, as shown in Supplementary Table 4, were POLR2A,
the largest subunit of RNA Polymerase II, and CTCF, a versatile
regulator involved in gene activation, repression, silencing and
chromatin insulation.42 We have reason to believe (Supplementary
Figure 1) that these frequent associations involving general TFs
that bind the genome extensively are artifacts of our procedure, in
conjunction with linkage disequilibrium and the promiscuous DNA
binding of these TFs. We ignored such associations in our follow-
up investigations. Also included in the six TFs with the most drug
associations were MYC, which plays an important role in reversing
multidrug resistance,43 and FOS, a member of the AP-1 complex
that is linked to chemotreatment resistance.44

We next examined the collection of statistically significant (TF,
treatment) associations for prior experimental evidence support-
ing them. To our knowledge, there is no standard benchmark that
can help us with such an assessment, and hence we resorted to
surveying the literature for studies implicating a TF in the response
to a specific cytotoxic treatment, for example, TFs whose
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Figure 2. (a) The GENMi (Gene Expression iN the Middle) method. Shown is the 50 kb upstream region of a single gene, with transcription
factor-binding site (TFBS; ChIP peaks) in yellow, single-nucleotide polymorphisms (SNPs; circles) and their allelic state (black or white) in a
sample of seven individuals, as well as gene expression (blue bars on right) and drug response EC50 values (orange bars on left) in these
individuals. The gene is scored in two ways : correlation of the best expression quantitative trait locus (eQTL) SNP (green diamond) coincident
with a TFBS and correlation of the gene’s expression with drug response (these two correlations are illustrated by lines connecting the two
correlated variables). Integrating over all genes, testing the overlap between strongest eQTL genes and genes associated with drug response
(enrichment test, bottom) quantifies the extent to which a TF is associated with drug response via cis-regulatory mechanisms. (b) Cartoon of
Gene Set Enrichment Analysis (GSEA) used as the enrichment test in GENMi. Genes are ranked according to their correlation with drug
response (‘gene GWAS’). The analysis looks at the extent to which a given gene set (in this case genes carrying the strongest eQTLs coincident
with the TFBS) are enriched near the top or bottom of the ranked list. Here, the gene set is strongly associated with genes positively
associated with drug EC50 values. (c) Baseline method that does not use expression data. Shown are SNPs (columns) distributed throughout
the genome within TFBS (yellow peaks) and outside. Genome-wide association study (GWAS) SNPs (green diamonds) correlated with drug
response across individuals (rows) are tested for enrichment with within-TFBS SNPs to determine whether a TF is associated with drug
response.
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knockdown or overexpression has been shown to affect
cytotoxicity, though not necessarily in the lymphoblastoid cell
line. We focused on significant (TF, treatment) associations that
are relatively unique, that is, the TF is associated with ≤ 5 (of 24)
treatments and the treatment is associated with ≤ 10 (of 114) TFs.
These 20 associations are shown in Table 1. We noted 6 of the 20
associations to be supported by direct experimental evidence
involving the drug and the TF. We discuss these below.

Observation. FoxM1 (transcription factor forkhead box protein
M1) is associated with response to docetaxel. Remarks: over-
expression of FoxM1 in gastric cancers was previously shown to
mediate resistance to docetaxel and inhibiting FoxM1 was found

to reverse docetaxel resistance in gastric cancers.45 Similar
conclusions were reached by other studies.46

Observation. EGR-1 (early growth response protein 1) is asso-
ciated with cisplatin treatment. Remarks: EGR-1 has been shown to
regulate cisplatin-induced apoptosis in human esophageal squa-
mous cell carcinoma cell lines (WHCO1).47 The EGR-1 promoter has
been shown to be induced by this drug.48,49

Observation. STAT1, a member of the signal transducer and
activator family of transcription factors, is associated with cisplatin.
Remarks: overexpression of STAT1 in A2780 human ovarian cancer
cells was shown to increase cisplatin resistance.50 Moreover,
inhibiting STAT1 expression has been shown to attenuate
cisplatin-induced ototoxicity in rats51 and mice.52

Observation. STAT3, a homolog of STAT1 in the signal transducer
and activator family of transcription factors, is associated with
radiation treatment. Remarks: a previous study found STAT3
blockade to enhance radiosensitivity in Hep-2 cells.53 Other
studies have reported that radiation activates STAT3,54 and that
targets of STAT3 are upregulated by radiation in a mouse model of
glioblastoma.55

Observation. SMARCB1, a core component of the switch/sucrose
nonfermentable (SWI/SNF) nucleosome remodeling complex, is
associated with cisplatin. Remarks: recent sequencing of various
cancer cells have demonstrated frequent mutations in SWI/SNF
factors such as ARID1A. Suppression of ARID1A and its paralog
ARID1B sensitized the cell to cisplatin as well as radiation.
Suppression of SMARCB1 reproduced the same effects.56

Observation. BCL-3 is associated with cisplatin. Remarks: a
previous study found BCL-3 overexpression to suppress
cisplatin-induced apoptosis in MCF7 breast cancer cell lines.57

In addition to the above six examples of experimental results
directly supporting an association, we also noted seven of the
statistical associations from Table 1 to be supported by indirect
experimental evidence involving transcriptional regulation of the
TF in response to the drug or direct experimental evidence
involving a protein closely related to the TF. These are described in
Supplementary Note 2. For seven of the associations noted in
Table 1, we were unable to find strong supporting evidence from

Figure 3. Significant (transcription factor (TF), treatment) associations. Shown are the log-transformed false discovery rate (FDR) values for all
associations meeting FDR ≤ 0.1. The green–blue range refers to enrichment for genes whose expression negatively correlates with
cytotoxicity, and the yellow–red range indicates enrichment of genes whose expression positively correlates with cytotoxicity. The yellow–red
log-transformed FDR values are multiplied by negative 1, creating the − 3 to 3 range in the legend enrichment. Anything with an FDR ≥ 0.1 is
shown as white.

Table 1. Literature support for 20 significant (TF, treatment)
associations at FDR ≤ 0.1 where the TF is associated with ≤ 5
treatments and the treatment is associated with ≤ 10 TFs

Association no. Treatment TF Literature evidence

1 Cisplatin EGR1 Direct
2 Cisplatin STAT1 Direct
3 Docetaxel FOXM1 Direct
4 Radiation STAT3 Direct
5 Cisplatin SMARCB1 Direct
6 Cisplatin BCL3 Direct
7 TCN EZH2 Indirect
8 Gemcitabine SETDB1 Indirect
9 Docetaxel KDM5B Indirect
10 Hypoxia ARID3A Indirect
11 Carboplatin MBD4 Indirect
12 Cisplatin TFAP2C Indirect
13 Docetaxel BCL3 Indirect
14 Everolimus TAF7 None found
15 NAPQI TFAP2C None found
16 TCN ARID3A None found
17 TCN STAT1 None found
18 Metformin HMGN3 None found
19 Metformin ZKSCAN1 None found
20 TCN SETDB1 None found

Abbreviations: FDR, false discovery rate; TF, transcription factor.
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the literature, making these promising candidates for future
experimental follow-up. To test the effects of imputation on these
results, we replicated the GENMi pipeline using both imputed and
genotyped SNPs (Supplementary Note 3) to see how many of the
literature-supported associations in Table 1 were corroborated.
The results are shown in Supplementary Table 5. Overall,
imputation did not significantly alter the associations reported
in Table 1: we found 10 of the 13 associations with literature
support reported in Table 1 to be recovered in this new analysis at
the nominal P-value threshold of 0.05 (FDR ≤ 0.13). In additionally,
to test the effect of population stratification, we performed GENMi
analysis on each population separately using only genotyped
SNPs and genotyped SNPs with imputation. Results are shown in
Supplementary Table 6 and discussed in Supplementary Note 4.
Of the 13 TF–drug associations in Table 1 that had some

form of literature support, 9 were significant in at least one
sub-population, at a nominal P-value of 0.05, using either the
genotyped SNPs or genotyped as well as imputed SNPs.

An analogous method that does not use expression data reports
fewer associations
To determine the utility of our method that integrates genotype,
gene expression and phenotype to identify (TF, treatment) pairs,
we devised a baseline method agnostic of gene expression. This
baseline method (Figure 2c) tests whether GWAS SNPs (P-value
≤ 10�8) for a given treatment are enriched within peaks of a
particular TF (see Materials and Methods), computing a P-value of
association for each (TF, treatment) pair. We sought to compare
the number of significant associations discovered by GENMi and
the baseline method respectively at a fixed false positive rate. For
a fair comparison, we devised a procedure that generates
randomized data sets and asked whether either method discovers
a significant association (a false positive, as the data set is a
randomized one) on it. By performing this test repeatedly and
counting how frequently each method (GENMi or the baseline
method) reported false associations, we were able to control for
the false positive rate of each method in exactly the same manner.
Details of the randomization procedure are articulated in
Supplementary Note 5. The number of (TF, treatment) pairs
reported by either method on the real data set, at each false
positive rate threshold, is shown in Table 2. The number of
significant associations found by the GENMi procedure
far outweighs those in the baseline, indicating that utilizing
expression information improves the sensitivity of the
association study.

Table 2. Number of (TF, treatment) associations discovered by the
GENMi method and the baseline method that does not use expression
data, at varying FPR thresholds

FPR 1 0.2 0.002 0.0002 0.00002

Baseline 1932 75 16 2 0
GENMi 2736 943 211 33 14

Abbreviations: FPR, false positive rate; GENMi, Gene Expression iN the
Middle; TF, transcription factor. The FPR is estimated by running either
method on 5000 randomized data sets where transcription factor-binding
site (TFBS) locations have been shuffled genome wide.

Table 3. Shown are the functional validation results for 21 TFs enriched (at FDR ≤ 0.1 and P-value ≤ 0.05) for either taxane, paclitaxel (PAX) or
docetaxel (DOC)

Number TF GENMi enrichments Cell lines

PAX DOC BTF549 MDA-MB-231

P-value FDR P-value FDR PAX DOC PAX DOC

1 BATF 0.0142 0.07 0.5160 1.00 UP UP
2 BCL3 0.4112 0.56 0.0020 0.03 UP UP UP UP
3 BHLHE40 0.0088 0.06 0.0487 0.30 UP UP
4 CEBPB 0.0024 0.02 0.3199 0.86 UP UP UP UP
5 ELF1 0.0020 0.03 0.0147 0.20 UP UP UP UP
6 FOS 0.0127 0.09 0.2007 0.63 UP UP
7 FOSL2 0.0285 0.12 0.0012 0.03 UP UP
8 FOXM1 0.2754 0.44 0.0052 0.07 UP UP UP
9 IKZF1 0.0213 0.09 0.1422 0.78 UP UP
10 KDM5B 0.0016 0.02 0.0004 0.04 UP UP
11 MAFK 0.0016 0.02 0.6006 1.00 UP UP UP UP
12 MTA3 0.0027 0.03 0.1556 0.62 UP UP UP
13 NFIC 0.0020 0.02 0.0131 0.18 UP UP UP UP
14 RBBP5 0.0012 0.02 0.3613 0.69 UP
15 REST 0.0008 0.04 0.2343 0.57 UP UP UP UP
16 SIN3A 0.0028 0.03 0.5193 0.78 UP
17 TBL1XR1 0.0071 0.04 0.5347 1.00
18 TCF7L2 0.0056 0.04 0.1004 0.45 UP
19 WRNIP1 0.0004 0.02 0.2273 0.59 UP UP UP
20 ZBTB33 0.0044 0.05 0.9282 0.95 UP UP
21 ZNF263 0.0168 0.09 0.0255 0.26 UP UP

Abbreviations: FDR, false discovery rate; GENMi, Gene Expression iN the Middle; TF, transcription factor. Validation was performed in two triple-negative breast
cancer cell lines (BTF549 and MDA-MB-231). For each cell line, drug and TF, a small interfering RNA (siRNA) knockdown experiment was performed, followed by
an MTA assay for the drug. Comparisons were made to negative siRNA experiments to determine whether the TF decreased, increased or did not affect the
sensitivity of the cell to the drug. ‘UP’ in the table refers to decreased sensitivity or desensitization of the cell to the drug, that is, the TF knockdown increased
cell resistance/survivability to increasing concentrations of the apoptotic drug. In no case was the knockdown found to decrease cell resistance. Cells with
P-value ≤ 0.05 or FDR ≤ 0.1 are colored gray, and represent the drug (PAX or DOC or both) for which the TF was predicted to influence response.
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In vivo experimental validation of TFS regulating anthracycline and
taxane response
We sought to verify whether TFs associated with drug response
variation can be linked in vivo to significant changes in cellular
sensitivity to drug-induced apoptosis. Though we utilized
lymphoblastoid cell lines data for our association analysis, we
performed siRNA knockdown experiments in two different cell
lines to demonstrate the generalizability of our results and the LCL
model system. Specifically, we choose two triple-negative breast
cancer cell lines, BTF549 and MDA-MB-231, that are of great
clinical significance. In addition, we restricted our analysis to two
of the most widely utilized family of drugs used in the treatment
of breast cancer: anthracyclines (doxorubicin, epirubicin) and
taxanes (docetaxel, paclitaxel). In addition to being clinically
relevant, the mechanisms of the drugs within each family are very
similar, gifting us with the ability to check self-consistency within a
drug family, that is, if TF increases resistance to doxorubicin, it
should also increase resistance to epirubicin. Cost and time
constraints restricted the experimental validation in this study to
these four drugs.
To choose candidate TFs for validation, we restricted ourselves

to those TFs that exhibited a P-value of ≤ 0.05 and FDR of ≤ 0.1 for
at least one drug in the family of interest. For the taxanes, this
produced 21 TFs, as shown in Table 3, 4 of which were omitted for
various reasons. For the anthracyclines, these criteria yielded 14
TFs, as shown in Table 4. CTCF and POLR2A were original
candidates, but omitted because they are ubiquitous activators for
expression. The siRNA knockdowns were performed for the 21
taxane- and 14 anthracycline-associated TFs with negative siRNA
as a control. Tables 3 and 4 show the results of the assays for the

taxanes and anthracyclines, respectively. Even though a TF was
tested even if it was predicted to be associated with only one of
the two drugs in a family, our definition of successful validation
conservatively required a TF to affect significant change in the
dosage–response curve for both drugs in the family. For additional
stringency, this requirement had to be met in both the tested cell
lines. Using these stringent criteria, we found 6 out of the 21
predicted TFs, specifically BCL3, CEBPB, ELF1, MAFK, NFIC and
REST, to increase resistance to taxane-induced cytotoxicity. An
example of what constitutes significant change (induced by a TF
knockdown) in the dosage–response curve for the taxanes is
shown in Figure 4a, for NFIC knockdown. For the anthracyclines,
we found 4 out of the 14 predicted TFs, namely ELF1, HDAC1,
HNF4G and ZNF263, to increase cytotoxic resistance to doxor-
ubicin and epirubicin in both tested cell lines. An example of a
validated TF association (ELF1) for the anthracyclines is shown in
Figure 4b. The rest of the cytotoxicity curves are shown in
Supplementary Figures 2. In addition, the GENMi analysis
predicted MYC to be associated only with epirubicin, and the
experimental validation supports this as it is associated only with
epirubicin (in BTF549).
Although several of GENMi associations were not corroborated

experimentally in both drugs within a family and in both cell lines,
this is expected to an extent as the selection of TF knockdowns
was based on GENMi predictions for either one of the drugs in the
family and made from a different cell line, that is, the experimental
test was more stringent than what the statistical association
suggests. In total, we find the hit rates of 6/21 and 4/14 as
significant evidence that GENMi identifies TFs that truly regulate
cellular response to drug-induced apoptosis.

DISCUSSION
We have presented a methodology for interrogating the extent to
which specific TFs are associated with individual variations in
drug-induced cytotoxicity. We employ a statistical approach that
assumes cis-regulatory variants embedded within TFBS affect
proximal genes, whose varying expression is then reflected in
drug response. Our approach is fundamentally different from the
aforementioned triangulation approach in that we integrate
TF–DNA-binding data and are able to associate TFs with drug
response; also, we do not require the direct association of SNPs
with drug-induced phenotype. Focusing on drugs and TFs that
feature in a limited number of associations, we noted the
statistically significant (TF, treatment) associations to be frequently
supported by the literature, in the form of experiments where
knockdown or overexpression of the TF changes drug response.
Stringent control of the randomization procedure illuminated the
benefit of GENMi over a simple GWAS–TFBS overlap approach
where expression data are not used. Although our results
showcase the true positive rate of GENMi, they do not yet allow
us to determine false negative rates or sensitivity because of the
absence of a comprehensive benchmark of true (TF, treatment)
associations. Nevertheless, our methods represent the first
comprehensive methodology for assessing regulatory associations
with drug response.
There are a number of areas in which the GENMi method could

be improved. For one, differences in allele frequencies between
stratified populations has been shown to induce spurious
associations;58 adjusting for this confounding factor in a more
principled framework may reduce the number of false positives in
our results. Second, although filtering for ChIP high occupancy
target regions helps eliminate regions where it is difficult to assign
function to any one TF, one may not assume that all bound TFs are
nonfunctional,59 and future extensions of our method will be
cognizant of this. The literature also indicates the existence of
eQTL hot spots—eQTLs associated with a large number of genes
—as a result of various confounding factors; elimination of these

Table 4. Shown are the functional validation results for 14 TFs
enriched for either anthracycline drug, epirubicin (EPI) or doxorubicin
(DOX) at FDR ≤ 0.1 and P-value ≤ 0.05

Number TF GENMi enrichments Cell lines

DOX EPI BTF549 MDA-MB-231

P-value FDR P-value FDR DOX EPI DOX EPI

1 CBX3 0.0033 0.05 0.4734 0.77 UP UP
2 CHD1 0.0036 0.04 0.5706 0.82
3 E2F6 0.0051 0.06 0.0944 0.76
4 ELF1 0.0008 0.05 0.3030 0.79 UP UP UP UP
5 HDAC1 0.0020 0.04 0.9026 0.89 UP UP UP UP
6 HMGN3 0.0077 0.05 0.4534 0.76 UP UP
7 HNF4G 0.0004 0.03 0.5844 0.82 UP UP UP UP
8 MYC 0.1112 0.32 0.0028 0.09 UP UP UP
9 NR2F2 0.0112 0.08 0.8199 0.82 UP UP
10 POU2F2 0.0048 0.06 0.1192 0.72 UP UP
11 RBBP5 0.0004 0.04 0.7434 0.83
12 STAT1 0.0065 0.07 0.7122 0.87 UP UP
13 TEAD4 0.0101 0.07 0.8462 0.98
14 ZNF263 0.0071 0.05 0.1045 0.72 UP UP UP UP

Abbreviations: FDR, false discovery rate; GENMi, Gene Expression iN the
Middle; TF, transcription factor. Validation was performed in two triple-
negative breast cancer cell lines (BTF549 and MDA-MB-231). For each cell
line, drug and TF, a small interfering RNA (siRNA) knockdown experiment
was performed, followed by an MTA assay for the drug. Comparisons were
made to negative siRNA experiments to determine whether the TF
decreased, increased or did not affect the sensitivity of the cell to the drug.
‘UP’ in the table refers to decreased sensitivity or desensitization of the cell
to the drug. In other words, it means that the TF knockdown increased cell
resistance/survivability to increasing concentrations of the apoptotic drug.
Cells with P-value ≤ 0.05 or FDR ≤ 0.1 are colored gray.
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Figure 4. (a) Dosage–response curves for the transcription factor (TF) NFIC across two drugs, docetaxel (left) and paclitaxel (right), and two cell
lines, MDA-MB-231 and BTF549. Each plot shows significant increase in resistance to the drug upon knockdown of NFIC compared with
normal response of the cells, using a two-tailed paired t-test. (b) Dosage–response curves for the TF ELF1 across two drugs, doxorubicin (left)
and epirubicin (right), and two cell lines, MDA-MB-231 and BTF549. Each plot shows significant increase in resistance to the drug upon
knockdown of NFIC compared with normal response of the cells, using a two-tailed paired t-test.
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factors would aid in the discovery of true eQTL signals.60 Another
way of improving GENMi would be to exploit prior knowledge of
the relationship between drugs; relevant methods already exist, to
an extent.61 GENMi could also be improved at the level of
determining gene targets for a TF. At a statistical level, GENMi
reduces to a two-step procedure of enriching top cis-eQTL genes
under a given transcriptional regulatory context with genes whose
expression correlates with a particular drug. Ideas from a recent
study that employs a two-step regressive framework to a similar
end (but without the integration of TF ChIP data)17 may be
adapted to eliminate the arbitrary threshold of the GENMi method
in determining transcription gene targets. In addition, GENMi
could be improved by considering more elegant eQTL models,
such as the methods employed by Sudarsanam and Cohen;62

however, exploiting more complex methods capturing multi-
additive and epistatic interactions at the genome-wide level
carries a heavy computational price that is not easy to
circumnavigate. Another area of investigation involves the
determination of the cis-regulatory region: although cis-regulatory
eQTLs are replicated better across studies than trans-eQTLs,63

definitions of cis-regulatory regions differ widely.64 In our analysis,
we use an operational regulatory region size of 50 kb upstream of
the gene’s transcription start site; a size that has been used in
many other studies.28,65 In fact, studies have even used regions up
to 100 kb.66 In additionally, we denote the entire region upstream
of the gene as the de facto regulatory region of the gene.
Together, these assumptions carry the risk that the regulatory
region of one gene may contain regulatory sequences for other
genes; a more conservative regulatory size would dilute this effect,
at the expense of sensitivity. It is not known the extent to which
different regulatory sizes and schemes affect the GENMi analysis
and more work needs to be conducted on this front. Enhancer–
promoter interaction data from chromatin capture-based
technologies such as Hi-C67 will help obviate this problem to a
certain degree, though such data have to be obtained from the
cell type of interest. Furthermore, the GENMi method only
considers single TFBS for filtering eQTL SNPs; associations may
be more conspicuous when considering combinations of tran-
scriptional contexts. Though this is hard to compute greedily,
there are methods for finding combinations of TFs overrepre-
sented in cis-regulatory regions.68 Finally, future work will benefit
from analysis of protein QTLs—SNPs correlated with protein
abundance—as opposed to mRNA abundance,6,63 as the activity
of the gene at the protein level is hypothesized to implement the
target cellular response; however, genome-wide protein data are
not readily available.
Our approach utilizing single TF contexts with eQTLs estimated

from basal gene expression data in LCLs corresponds to a logical
entry point analysis into the pharmacological effects of TFs on drug
response. To our knowledge, the GENMi approach is novel in its
direct interrogation of transcriptional regulation on drug-induced
cellular response. Although many improvements can be made, the
fruit of the existing GENMi analysis in both our literature review and
control experiments illustrates the remarkable utility of the method.
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