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Abstract

Glucocorticoids are key regulators of glucose homeostasis and pancreatic islet function, but

the gene regulatory programs driving responses to glucocorticoid signaling in islets and the

contribution of these programs to diabetes risk are unknown. In this study we used ATAC-

seq and RNA-seq to map chromatin accessibility and gene expression from eleven primary

human islet samples cultured in vitro with the glucocorticoid dexamethasone at multiple

doses and durations. We identified thousands of accessible chromatin sites and genes with

significant changes in activity in response to glucocorticoids. Chromatin sites up-regulated

in glucocorticoid signaling were prominently enriched for glucocorticoid receptor binding

sites and up-regulated genes were enriched for ion transport and lipid metabolism, whereas

down-regulated chromatin sites and genes were enriched for inflammatory, stress response

and proliferative processes. Genetic variants associated with glucose levels and T2D risk

were enriched in glucocorticoid-responsive chromatin sites, including fine-mapped variants

at 51 known signals. Among fine-mapped variants in glucocorticoid-responsive chromatin, a

likely casual variant at the 2p21 locus had glucocorticoid-dependent allelic effects on beta

cell enhancer activity and affected SIX2 and SIX3 expression. Our results provide a compre-

hensive map of islet regulatory programs in response to glucocorticoids through which we

uncover a role for islet glucocorticoid signaling in mediating genetic risk of T2D.

Author summary

Glucocorticoids regulate inflammation and metabolism and are widely used in the treat-

ment of immune disorders, although prolonged exposure to glucocorticoids can lead to

the development of diabetes. In this study we determined the response of primary pancre-

atic islets, which are central to the development of diabetes, to the glucocorticoid dexa-

methasone at multiple doses and durations. We observed widespread changes in
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pancreatic islets after glucocorticoid treatment at glucocorticoid receptor binding sites, as

well as at key genes involved in islet function and processes related to steroid and lipid

metabolism, ion channel activity, inflammation, and growth. Genetic variants affecting

type 2 diabetes and glucose levels were located in sites affected by glucocorticoids at many

genomic regions, and highlighted genes regulated by these sites through which glucocorti-

coid signaling may contribute directly to the development of diabetes. Together these

results provide key insight into how glucocorticoid treatment affects pancreatic islet func-

tion and risk of diabetes.

Introduction

Glucocorticoids are steroid hormones produced by the adrenal cortex which broadly regulate

inflammatory, metabolic and stress responses and are widely used in the treatment of immune

disorders [1–3]. The metabolic consequences of glucocorticoid action are directly relevant to

diabetes pathogenesis, as chronic glucocorticoid exposure causes hyperglycemia and steroid-

induced diabetes and endogenous excess of glucocorticoids causes Cushing’s syndrome in

which diabetes is a common co-morbidity [4,5]. Glucocorticoids contribute to the develop-

ment of diabetes both through insulin resistance and obesity via effects on adipose, liver and

muscle, as well as through pancreatic islet dysfunction [4]. In islets, glucocorticoid signaling

has been shown to modulate numerous processes such as insulin secretion, ion channel activ-

ity, cAMP signaling, proliferation and development [6–11].

The effects of glucocorticoids on cellular function are largely mediated through regulation

of transcriptional activity. Glucocorticoids diffuse through the cell membrane into cytoplasm

and bind the glucocorticoid receptor (GR), which is then translocated into the nucleus where

it binds DNA and modulates the transcriptional program [12–15]. Gene activity can be

affected by GR via direct genomic binding and regulation as well as indirectly through physical

interaction with other transcriptional regulators [13–17]. Previous studies have profiled gluco-

corticoid signaling by mapping genomic locations of GR binding and other epigenomic fea-

tures such as histone modifications and chromatin accessibility in response to endogenous

glucocorticoids such as cortisol or analogs such as dexamethasone [13,14,18,19]. Studies have

also shown that the genomic function of GR is largely mediated via binding to regions of acces-

sible chromatin [20,21].

Genetic studies have identified hundreds of genomic loci that contribute to diabetes risk

and which primarily map to non-coding sequence and affect gene regulation [22–25]. Risk

variants for type 2 diabetes (T2D) are enriched for pancreatic islet regulatory sites [22–

24,26,27], while type 1 diabetes (T1D) risk variants are enriched for immune cell as well as islet

regulatory sites. The specific mechanisms of most risk variants in islets are unknown, however,

which is critical for understanding the genes and pathways involved in disease pathogenesis

and for the development of novel therapeutic strategies. Previous studies of islet chromatin

have focused predominantly on normal, non-disease states [27–33], although recent evidence

has shown that diabetes risk variants can interact with environmental stimuli to affect islet

chromatin and gene regulatory programs [34].

The effects of glucocorticoid and other steroid hormone signaling on islet regulatory pro-

grams and how these signals interact with diabetes risk variants, however, are largely

unknown. In this study we profiled islet accessible chromatin and gene expression in primary

human pancreatic islets exposed in vitro to the glucocorticoid dexamethasone. Glucocorticoid

signaling had widespread effects on islet accessible chromatin and gene expression levels. Up-
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regulated chromatin sites were strongly enriched for glucocorticoid receptor binding and up-

regulated genes were enriched for processes related to ion channel activity and steroid and

lipid metabolism. Conversely, down-regulated sites and genes were involved in inflammation,

stress response and proliferation. Genetic variants affecting T2D risk and glucose levels were

significantly enriched in glucocorticoid-responsive chromatin sites, including a likely causal

variant at the SIX2/3 locus which had glucocorticoid-dependent effects on beta cell enhancer

activity and affected SIX2 and SIX3 expression. Together our results provide a comprehensive

map of islet gene regulatory programs in response to glucocorticoids which will facilitate a

greater mechanistic understanding of glucocorticoid signaling and its role in islet function and

diabetes risk.

Results

Map of gene regulation in pancreatic islets in response to glucocorticoid

signaling

In order to determine the effects of glucocorticoid signaling on pancreatic islet regulation, we

cultured primary islet cells in vitro with dexamethasone at several different doses (100 ng/mL

for 24hr, 4 ng/mL for 6hr and 24hr) as well as in untreated conditions and measured accessible

chromatin and gene expression levels in both treated and untreated cells. An overview of the

study design is provided in Fig 1A.

We assayed gene expression in dexamethasone-treated and untreated islets from 6 total

samples using RNA-seq (S1 Table; see Methods). Across replicate samples we observed

changes in expression levels of genes both known to be induced by dexamethasone such as

ZBTB16 [35–37] and VIPR1 [38] as well as those suppressed by dexamethasone such as IL11
[39] in both the high-dose (100 ng/mL) and low-dose (4 ng/mL) treatments (Figs 1B, 1C, S1A,

S1B and S1C). We next assayed accessible chromatin in dexamethasone-treated and untreated

islets from 9 total samples using ATAC-seq (S1 Table; see Methods). Across replicate samples

we observed reproducible changes in islet accessible chromatin signal concordant with

changes in gene expression. For example, accessible chromatin signal was notably induced at

several sites proximal to the ZBTB16 and VIPR1 genes in dexamethasone-treated compared to

untreated islets in both high- and low-dose treatments (Figs 1D, 1E, S2, S3 and S4). Similarly,

accessible chromatin signal was reduced at a site proximal to the IL11 promoter in glucocorti-

coid-treated compared to untreated islets (S5 Fig).

Islet accessible chromatin sites with differential activity in response to

glucocorticoid signaling

To understand the effects of glucocorticoid signaling on accessible chromatin in islets at a

genome-wide level, we first performed principal components analysis (PCA) using normalized

read counts in chromatin sites for each treated and untreated islet ATAC-seq sample (see

Methods). We observed reproducible differences in accessible chromatin profiles in dexameth-

asone-treated compared to untreated islets across replicate samples, where the effects of low-

dose treatment (4 ng/mL, n = 3) were intermediate to high-dose treatment (100 ng/mL, n = 6)

relative to untreated samples (n = 9) (Fig 2A).

We then identified specific islet accessible chromatin sites with significant differential activ-

ity in glucocorticoid treatment compared to untreated control cells. We first defined a canoni-

cal set of 127,228 islet accessible chromatin sites genome-wide by comparing replicate samples

using IDR (see Methods, S2 Table). Among these canonical sites, there were 2,688 sites with

significant evidence (FDR< .10) for differential activity in glucocorticoid signaling at high-
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Fig 1. A map of gene regulation in pancreatic islets in response to glucocorticoid signaling. (A) Overview of study

design. Primary pancreatic islet samples were split and separately cultured in normal conditions and including the

glucocorticoid dexamethasone at either a high-dose (100ng/mL for 24hr) or low-dose (4 ng/mL for 6hr or 24hr)

treatment, and then profiled for gene expression and accessible chromatin using RNA-seq and ATAC-seq assays.

Genes with known induction in glucocorticoid signaling (B) ZBTB16 and (C) VIPR1 had increased expression in

glucocorticoid-treated islets compared to untreated islets. Values represent mean and standard error. (D) At the

ZBTB16 locus several accessible chromatin sites intronic to ZBTB16 had increased accessibility in glucocorticoid

treated (Dex.) compared to untreated (Untr.) islets. (E) At the VIPR1 locus an accessible chromatin site downstream of

VIPR1 had increased accessibility in glucocorticoid treated (Dex.) compared to untreated (Untr.) islets. Values in D

and E represent RPKM normalized ATAC-seq read counts. Fold-change (FC) in accessible chromatin signal in

glucocorticoid treatment compared to untreated indicated at highlighted sites. All results shown are for the high-dose

treatment.

https://doi.org/10.1371/journal.pgen.1009531.g001
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Fig 2. Glucocorticoid signaling affects chromatin accessibility in pancreatic islets. (A) Principal components plot showing ATAC-seq signal for high-dose (red)

and low-dose (blue) glucocorticoid-treated islets and untreated (grey) islets from 9 total donors. Dashed lines connect assays from the same sample, and box plots on

each axis represent the distribution of principal components of samples for each condition. (B) Volcano plot of sites with differential chromatin accessibility in

glucocorticoid treated compared to untreated islets. Sites with significant differential activity (FDR< .10) are highlighted in red. The sites with the most significant

changes are labelled with the locus and the nearest gene. (C) Transcription factor (TF) sequence motifs enriched in differential chromatin sites with increased activity

(+ in dex) and decreased activity (- in dex) in glucocorticoid-treated islets. (D) Enrichment of ChIP-seq sites from ENCODE for 160 TFs in differential chromatin

sites with increased activity (+ in dex) and decreased activity (- in dex) in glucocorticoid-treated islets. (E) A chromatin site at the SIX2/3 locus had increased activity

in glucocorticoid-treated islets and overlapped a ChIP-seq site for the glucocorticoid receptor (GR/NR3C1) (top). Fold-change (FC) in accessible chromatin signal in

glucocorticoid treatment compared to untreated indicated at the highlighted site for high-dose treatment. (F) The differential site at SIX2/3 had glucocorticoid-
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dose treatment (Fig 2B and S3 Table). Among these 2,688 glucocorticoid-responsive sites,

1,992 had up-regulated activity and 695 had down-regulated activity in glucocorticoid treated

compared to untreated cells (Fig 2B and S3 Table). The majority of sites (95%) with differential

activity were already accessible in untreated islets, suggesting that sites induced by glucocorti-

coid signaling are typically not activated de novo. Furthermore, a majority of differentially

accessible sites (2,453, 91%) were not proximal to promoter regions, suggesting they act via

distal regulation of gene activity. At low-dose treatment, 373 sites had differential activity

(FDR< .10) in glucocorticoid signaling, where the majority (350) were up-regulated (S3

Table). Among sites with differential activity in either treatment, the effects in high- and low-

dose were highly concordant (Spearman ρ = .72, P<2.2x10-16) (S6A and S6B Fig).

We next characterized transcriptional regulators underlying changes in glucocorticoid-

responsive islet chromatin. First, we identified TF motifs enriched in genomic sequence

underneath sites up-regulated and down-regulated in glucocorticoid-treated islets (see Meth-

ods). The most enriched sequence motifs in up-regulated sites for both high- and low-dose

treatment were for glucocorticoid and other steroid hormone response elements (high-dose:

GRE P = 1x10-340, ARE P = 1x10-302, PGR P = 1x10-280; low-dose: GRE P = 1x10-73, ARE

P = 1x10-66, PGR P = 1x10-62), in addition to lesser enrichment for TFs relevant to islet func-

tion (FOXA1: high-dose P = 1x10-5, low-dose P = 1x10-3) (Fig 2C and S4 Table). Conversely,

down-regulated sites in high-dose treatment were most enriched for sequence motifs for

STAT TFs (STAT3 P = 1x10-9, STAT1 P = 1x10-8) followed by TFs involved in islet function

(NKX6.1 P = 1x10-7, FOXA1 P = 1x10-6) (Fig 2C and S4 Table). Next, we determined enrich-

ment of glucocorticoid-responsive chromatin sites for ChIP-seq TF-binding sites previously

identified by the ENCODE project. We observed strongest enrichment of up-regulated acces-

sible chromatin sites in both high- and low-dose treatment for glucocorticoid receptor

(NR3C1) binding sites (high-dose ratio = 3.7, P = 1.7x10-294, low-dose ratio = 5.4, P = 2.1x10-

129), and less pronounced enrichment for binding sites of FOXA1 (high-dose ratio = 1.7,

P = 1.6x10-55; low-dose ratio = 2.3, P = 2.3x10-30) and other TFs (Fig 2D and S4 Table). Down-

regulated sites were most enriched for STAT binding (STAT3 ratio = 2.1, P = 7.6x10-41) as well

as enhancer binding TFs such as FOS/JUN (FOS ratio = 1.5, P = 2.3x10-17; JUN ratio = 1.7,

P = 1.3x10-14) and P300 (ratio = 1.4, P = 2.9x10-11) (Fig 2D and S4 Table).

Accessible chromatin sites with significant up-regulation in glucocorticoid signaling com-

pared to untreated islets included a site that mapped to the SIX2/SIX3 locus (Fig 2E and S3

Table), which also harbors genetic variants associated with fasting glucose level and risk of

T2D. The glucocorticoid-responsive site at this locus also directly overlapped a NR3C1 ChIP-

seq site identified by the ENCODE project (Fig 2E). We tested the glucocorticoid-induced site

at this locus (high-dose fold-change = 1.49; P = 1.0x10-5; low-dose fold-change = 1.51;

P = 4.4x10-4) for enhancer activity in luciferase gene reporter assays in dexamethasone-treated

and untreated MIN6 mouse insulinoma cells. We observed a significant increase in enhancer

activity in dexamethasone-treated cells relative to untreated cells (T-test P = 1.65x10-6) (Fig

2F), confirming that this site is highly induced in response to glucocorticoid signaling.

Environmental stimuli can interact with genetic variation to affect chromatin accessibility

and gene regulation. We therefore determined the effects of genetic variants on islet accessible

chromatin in both glucocorticoid-treated and untreated conditions using allelic imbalance

dependent effects on enhancer activity in gene reporter assays in MIN6 cells (bottom). Values represent mean and standard deviation. (G) Variant rs4729667

mapped in a chromatin site with increased activity in glucocorticoid-treated islets and had stronger allelic imbalance in chromatin accessibility in glucocorticoid-

treated compared to untreated islets. Values represent ref allele fraction and 95% confidence intervals. For panels B, C and D the values shown are from results using

high-dose treatment. ��P< .01, ���P<1x10-4.

https://doi.org/10.1371/journal.pgen.1009531.g002
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mapping. We performed microarray genotyping of seven islet samples and imputed genotypes

into 39M variants (see Methods). For variants overlapping islet chromatin sites we obtained

read counts in samples heterozygote for that variant, corrected for mapping bias using WASP

and modeled the resulting counts for imbalance using a beta-binomial test. We then identified

variants with evidence (FDR< .10) for allelic imbalance in accessible chromatin from either

glucocorticoid-treated or untreated islets (S5 Table). Among imbalanced variants, we further

identified those with significant differences in allelic effects (FDR < .10) between glucocorti-

coid-treated and untreated islets (S5 Table, see Methods). For example, variant rs4729667 at

7q22 mapped in a glucocorticoid-responsive site bound by GR and had significantly stronger

imbalance in glucocorticoid-treated islets (GC ref frac. = .20, untr. ref frac. = .46; P = 3.9x10-3)

(Fig 2G and S5 Table). Conversely, variant rs2291583 at 10p12 in a glucocorticoid-responsive

site had significantly stronger imbalance in untreated islets (GC ref frac = .39, untr. ref frac. =

.28; P = 9.6x10-4) (S5 Table).

These results demonstrate that glucocorticoid signaling broadly affects accessible chromatin

in islets including sites both up-regulated through glucocorticoid receptor activity and down-

regulated through the activity of STAT and other TFs.

Genes and pathways with differential regulation in islets in response to

glucocorticoid signaling

We next sought to determine the effects of glucocorticoid treatment on gene expression levels.

We first performed PCA using gene transcript counts from untreated and dexamethasone-

treated islet samples at each treatment dose and duration obtained from RNA-seq assays (see

Methods). There were again reproducible differences in expression levels across replicate sam-

ples, where the effects of low-dose treatment (4 ng/mL at 24hr, n = 3; 4 ng/mL at 6hr, n = 3)

were intermediate to high-dose treatment (100 ng/mL at 24hr, n = 6) relative to untreated sam-

ples (n = 6) (Fig 3A).

We identified specific genes with differential expression in response to glucocorticoids

compared to untreated islet samples using DESeq2 (see Methods). There were 2,837 genes

with significant evidence for differential expression (FDR<0.10) in glucocorticoid signaling at

high-dose treatment (S6 Table). Among these genes, 1,348 (47%) were up-regulated and 1,489

(53%) were down-regulated in response to glucocorticoids compared to untreated islets (Fig

3B). Genes with the most significant up-regulation included EDN3 (log2(FC) = 1.44, FDR =

2.42x10-81), FAM115C (log2(FC) = 1.52, FDR = 3.61x10-75), METTL7A (log2(FC) = 1.81,

FDR = 4.36x10-71), PRR15L (log2(FC) = 2.20, FDR = 9.55x10-62), and CCND3 (log2(FC) =

0.95, FDR = 9.05x10-60). Conversely, genes with most significant down-regulation included

PCSK1 (log2(FC) = -1.21, FDR = 2.05x10-61), KLHL41 (log2(FC) = -1.31, FDR = 8.84x10-59),

DHRS2 (log2(FC) = -1.41, FDR = 2.19x10-49) and CD36 (log2(FC) = -1.21, FDR = 2.41x10-49)

(Fig 3B). At low-dose treatment 775 and 848 genes had differential expression (FDR < .10) at

6hr and 24hr, respectively (S6 Table and S7A and S7B Fig). Among genes differentially

expressed in either treatment, the effects in high- and low-dose were highly concordant (24hr

low-dose ρ = .91, P<2.2x10-16; 6hr low-dose ρ = .86, P<2.2x10-16) (S7C and S7D and S7E Fig).

We determined whether changes in gene expression in glucocorticoid signaling were driven

through accessible chromatin, by testing for enrichment of glucocorticoid-responsive chroma-

tin sites for proximity to differentially expressed genes. Glucocorticoid-responsive chromatin

sites were significantly more likely to map within 100kb of a gene with glucocorticoid-respon-

sive expression compared to other chromatin sites in islets (high-dose: OR = 1.48, P = 9.9x10-

20; low-dose: OR = 4.91, P = 6.5x10-36). We next performed these analyses separately for sites

up- and down-regulated in glucocorticoid signaling. There was significant enrichment of sites

PLOS GENETICS Islet gene regulation in glucocorticoid signaling and diabetes risk

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009531 May 13, 2021 7 / 23

https://doi.org/10.1371/journal.pgen.1009531


Fig 3. Glucocorticoid signaling affects gene expression levels in pancreatic islets. (A) Principal components plot of gene

expression from high-dose (red) and low-dose (green 24hr, blue 6hr) glucocorticoid-treated and untreated (black) islets from a total

of 6 samples. Dashed lines connect assays from the same sample. (B) Volcano plot showing genes with differential expression in
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with increased activity in glucocorticoid signaling within 100kb of genes with up-regulated

expression specifically (up-reg OR = 2.9, P = 3.8x10-82, down-reg OR = 0.51, P = 2.1x10-19)

(Fig 3C). Similarly, sites with decreased activity in glucocorticoid signaling were enriched

within 100kb of genes with down-regulated expression (down-reg OR = 2.0, P = 6.2x10-13, up-

reg OR = 0.48, P = 1.6x10-7) (Fig 3C). Furthermore, we also observed an enrichment of gluco-

corticoid-responsive chromatin sites for closer proximity to genes with glucocorticoid-respon-

sive expression compared to background sites (Kolmogorov-Smirnov P = 3.4x10-11) (Fig 3D).

In order to understand the molecular pathways affected by glucocorticoid activity in islets,

we tested genes up- and down-regulated in glucocorticoid signaling for gene set enrichment

using pathway and gene ontology (GO) terms (see Methods). Up-regulated genes in high-dose

treatment were enriched for gene sets related to steroid metabolism (steroid metabolic process

FDR = 8.94x10-30), lipid metabolism (lipid biosynthetic process FDR = 1.93x10-32), potassium

and other ion transport (potassium channels FDR = 5.71x10-7; regulation of ion transport

FDR = 1.93x10-17), and extracellular matrix organization (FDR = 3.68x10-7) (Fig 3E and S7

Table). Similar gene sets were enriched among genes up-regulated in low-dose treatments (S7

Table). Numerous genes that function in ion transport were up-regulated in glucocorticoid

signaling; for example ATP1A1, SCN1B, SCNN1A, CACNA1H, CACNG4, SLC38A4, TRPV6 as

well as potassium channel genes including KCNJ2, KCNAB1, KCNF1, KCNJ8, and KCND3
(Fig 3E and S6 Table). Up-regulated genes also included numerous that function in lipid

metabolism including FADS1, FADS2, ACSL1, SCD5, FABP4, ACACB, and ANGPTL4 (Fig 3E

and S6 Table).

Conversely, genes down-regulated in glucocorticoid signaling were enriched for inflamma-

tory response (cytokine signaling in immune system FDR = 2.2x10-27, signaling by interleukins

FDR = 9.50x10-19), extracellular matrix, cell adhesion and morphogenesis (extracellular matrix

organization FDR = 1.53x10-17, regulation of cell adhesion FDR = 2.48x10-42, cellular compo-

nent morphogenesis FDR = 2.45x10-37), and cell differentiation and proliferation terms (neg.

regulation of cell differentiation FDR = 2.18x10-36) (Fig 3F and S7 Table). Similar gene sets

were enriched among genes down-regulated in low-dose treatments (S7 Table). Down-regu-

lated genes included those involved in the inflammatory response such as IL6, STAT5B,

STAT3, STAT4, SMAD3, CXCL12, CCL2, CD44, CD36, RELB, IRF1, extracellular matrix for-

mation such matrix metalloproteinase genes such as MMP3, MMP7, MMP9 and matrix com-

ponents such as LAMA4 and LAMC2, islet function and pancreatic differentiation such as

ISL1, PAX6, NKX6-1, HES1 and JAG1, and proliferation and growth factors such as PDGFA,

PDGFB, FGF2, TGFB3 and VEGFA (Fig 3F and S6 Table).

These results demonstrate that glucocorticoid signaling in islets up-regulates genes involved

in steroid and lipid metabolism and ion channel activity, and down-regulates key genes in islet

function as well as genes involved in inflammation, proliferation and extracellular matrix

formation.

glucocorticoid-treated islets compared to untreated islets. Genes with significantly differential expression (FDR< .10) are

highlighted in red, and genes with pronounced changed in expression are listed. (C) Percentage of accessible chromatin sites with

up-regulated activity (left) and down-regulated activity (right) in glucocorticoid-treated islets within 100kb of differentially

expressed genes (DEGs) compared to chromatin sites without differential activity. (D) Relative distance metric (from bedtools

reldist) between accessible chromatin sites with differential activity (dex) and genes with differential expression compared to all

chromatin sites (background). (E) Biological pathway terms enriched among genes with up-regulated expression in glucocorticoid-

treated islets (top), and the expression level of selected genes annotated with ion transport and lipid metabolism terms in

glucocorticoid-treated and untreated islets (bottom). Values represent mean expression and standard error. (F) Biological pathway

terms enriched among genes with up-regulated expression in glucocorticoid-treated islets (top), and the expression level of selected

genes annotated with inflammatory response and proliferation pathway terms in glucocorticoid-treated and untreated islets

(bottom). Values represent mean expression and standard error. For panels B, C, D and E the values shown are from results using

high-dose treatment.

https://doi.org/10.1371/journal.pgen.1009531.g003
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T2D and glucose associated variants map in glucocorticoid-responsive islet

chromatin

Genetic variants associated with diabetes risk are enriched in pancreatic islet regulatory ele-

ments. As these studies have been performed primarily using non-diabetic donors in normal

(untreated) conditions, however, the role of environmental stimuli in modulating diabetes-rel-

evant genetic effects on islet chromatin is largely unknown. We therefore tested for enrich-

ment of diabetes and fasting glycemia associated variants in glucocorticoid-responsive islet

chromatin sites using fgwas [40] (see Methods). We observed enrichment of variants influenc-

ing T2D risk and blood sugar (glucose) levels in chromatin sites with differential activity in

both high- and low-dose glucocorticoid treatment (T2D high-dose ln(enrich) = 3.71, 95%

CI = 3.03,4.25; T2D low-dose ln(enrich) = 4.23, 95% CI = 2.66,5.20; blood sugar high-dose ln

(enrich) = 3.92, 95% CI = 0.86,5.70; blood sugar low-dose ln(enrich) = 6.20, 95% CI =

3.92,8.42) (Fig 4A). Conversely, we observed no evidence for enrichment of T1D risk variants

(high-dose ln(enrich) = -28.00, 95% CI = -48.00,3.39; low-dose ln(enrich) = -23.82, 95% CI =

-43.8,5.29) (Fig 4A).

We next catalogued fine-mapped variants overlapping glucocorticoid-responsive islet chro-

matin using 99% credible sets of T2D and glucose level signals from DIAMANTE and Biobank

Japan (BBJ) [22,41] (see Methods). We identified 126 fine-mapped variants at 51 signals that

overlapped a glucocorticoid-responsive site (S8 Table). We further identified 511 variants

genome-wide in glucocorticoid-responsive sites with at least nominal evidence for T2D associ-

ation (P< .005) in DIAMANTE or BBJ GWAS (S8 Table). We prioritized potential target

genes of T2D- and glucose-associated variants in glucocorticoid-responsive chromatin by

identifying genes proximal to these sites with differential expression. For example, T2D-associ-

ated variants at the 11q12 locus mapped in a site induced by glucocorticoids proximal to SCD5
and TMEM150C which both had up-regulated expression (Fig 4B and S3 and S8 Tables). Simi-

larly, T2D-associated variants at the 4q31 locus mapped in a site down-regulated in glucocorti-

coids proximal to FBXW7 which had down-regulated expression (S7A Fig and S3 and S8

Tables). Outside of known T2D loci we observed additional examples such as at the 7p15 locus

where rs1107376 (T2D P = 2.2x10-4) mapped in a glucocorticoid-induced site proximal to

NPY which had glucocorticoid-stimulated expression (S7B Fig and S3 and S8 Tables). At 71

T2D- or glucose-associated variants we further observed evidence for association with target

gene expression (eQTL) in islets (S8 Table); for example, rs1107376 was an islet eQTL for NPY
(P = 2.2x10-21).

At the 2p21 locus associated with glucose level, lead variant rs12712928 (BBJ beta = .068,

P = 7.4x10-46) mapped in a chromatin site with increased activity in glucocorticoid signaling

and was proximal to SIX2 and SIX3 which both had glucocorticoid-induced expression (Fig

4C and 4D and S8 Table). This variant had the highest posterior probability in fine-mapping

data (PPA = .89), suggesting it is likely causal for glucose association at this locus. This variant

also had evidence for T2D association in BBJ (beta = .048, P = 2.1x10-6) and DIAMANTE

(beta = .022, P = .012), and was the lead variant at a T2D signal recently reported in East Asians

(P = 1.8x10-14) [42]. We therefore tested whether rs12712928 affected enhancer activity using

sequence around variant alleles in untreated and dexamethasone treated MIN6 cells (see Meth-

ods). The glucose increasing and T2D risk allele C had significantly reduced enhancer activity

in both glucocorticoid-treated (T-test P = 2.5x10-6) and untreated cells (T-test P = 3.2x10-4)

(Fig 4E). However, the allelic differences at this variant were more pronounced in glucocorti-

coid-treated cells (ref/alt ratio GC = 6.85, 95% CI = 3.4,10.2; untreated = 1.78, 95% CI =

1.23,2.32, permutation test P = 5.1x10-3) (Fig 4F). We also observed evidence that rs10168523

was an islet eQTL for SIX3 and SIX2 (SIX3 P = 5.1x10-23, SIX2 P = 8.2x10-10; Fig 4G), where
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the T2D risk allele was correlated with reduced expression of both genes. Glucose level and

T2D association at this locus was strongly co-localized with the SIX3 and SIX2 eQTLs (BBJ

T2D shared SIX3 PP = 89%, SIX2 PP = 98%; BBJ blood sugar shared SIX3 PP = 98%, SIX2
PP = 99%) (Fig 4G).

These results reveal that variants associated with T2D and glucose level are enriched in glu-

cocorticoid-responsive chromatin sites in islets, including variants such as rs12712928 at the

SIX2/3 locus which interact with glucocorticoid signaling directly to affect islet regulation.

Discussion

Our study demonstrates the relevance of islet chromatin dynamics in response to corticoste-

roid signaling to T2D pathogenesis, including T2D risk variants that interact with corticoste-

roid activity directly to affect islet chromatin. In a similar manner, variants mediating

epigenomic responses of pancreatic islets to proinflammatory cytokines were recently shown

to contribute to genetic risk of T1D [34]. Numerous environmental signals and external condi-

tions modulate pancreatic islet function and contribute to the pathophysiology and genetic

Fig 4. Type 2 diabetes and glucose associated variants affect glucocorticoid-responsive islet regulatory programs.

(A) Enrichment of variants associated with type 1 diabetes (T1D), type 2 diabetes (T2D) and blood sugar (glucose)

levels for differential chromatin sites in high-dose and low-dose glucocorticoid-treated islets. Values represent log

enrichment estimates and 95% confidence intervals. (B) Multiple fine-mapped T2D variants at the SCD5/TMEM150C
locus mapped in a glucocorticoid-responsive islet accessible chromatin site. Both the SCD5 and TMEM150C genes had

increased expression in glucocorticoid-treated islets. Genome browser tracks represent RPKM normalized ATAC-seq

signal, and bar plots represent mean expression and standard error. (C, D) Variant rs12712928 with evidence for blood

sugar and T2D association mapped in a glucocorticoid-responsive chromatin site at the SIX2/3 locus. Both the SIX2
and SIX3 genes had increased expression in glucocorticoid-treated islets. Genome browser tracks represent RPKM

normalized ATAC-seq signal, and bar plots represent mean expression and standard error. (E) Variant rs12712928 had

significant allelic effects on enhancer activity in gene reporter assays in MIN6 cells. Values represent mean and

standard deviation. (F) The allelic effects of rs12712928 were more pronounced in glucocorticoid-treated relative to

untreated islets. Values represent fold-change and 95% CI. (G) The T2D association signal at SIX2/3 was colocalized

with an eQTL for SIX3 expression in islets. For panels B, C and D the values shown are from results using high-dose

treatment. For panels B and D, the fold-change (FC) in accessible chromatin signal in glucocorticoid treatment

compared to untreated is indicated at highlighted sites. ���P<1x10-4, ��P<1x10-3, �P<1x10-2.

https://doi.org/10.1371/journal.pgen.1009531.g004
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basis of diabetes, yet the epigenomic and transcriptional responses of islets to disease-relevant

stimuli have not been extensively measured. Future studies of islet chromatin and gene regula-

tion exposed to additional stimuli will therefore likely continue providing additional insight

into diabetes risk.

Glucocorticoid signaling led to broad changes in accessible chromatin, which up-regulated

the expression of proximal genes enriched for processes related to ion channels and transport,

in particular potassium channels. Potassium ion concentrations modulate calcium influx and

insulin secretion in beta cells [43], and in disruption of ion channel function leads to impaired

glucose-induced insulin secretion and diabetes [44]. Glucocorticoids have been shown to sup-

press calcium influx while preserving insulin secretion via cAMP [7], and in line with this find-

ing we observed evidence for increased activity of potassium channel and cAMP signaling

genes and decreased activity of phosphodiesterase genes. Up-regulated genes were also strong

enriched in lipid metabolism pathways, which has been shown to regulate insulin secretion

and contribute to diabetes [45,46]. Several up-regulated genes PER1 and CRY2 are also compo-

nents of the circadian clock, and previous studies have shown that endogenous glucocorticoid

release is under control of circadian rhythms and therefore may contribute to downstream

regulation of the clock [47]. Conversely, glucocorticoid signaling down-regulated inflamma-

tory programs, in line with previous reports and the known function of glucocorticoids

[2,17,48], as well as key genes involved in islet function such as NKX6-1, PAX6, RFX6, and

ISL1. Our findings further suggest that down-regulation of gene activity in glucocorticoid sig-

naling is mediated through the activity of STAT and other TFs at proximal accessible chroma-

tin sites, either through reduced TF expression or inhibition by GR. We also observed

enrichment of FOXA binding in sites both up- and down-regulated in glucocorticoid signal-

ing, suggesting these TFs mark sites that are broadly responsive to signal-dependent TF activ-

ity in islets in line with their known function as pioneer factors.

Genetic variants near the homeobox TFs SIX2 and SIX3 influence glucose levels [49,50], and

our results provide evidence that both of these TFs operate downstream of glucocorticoid signal-

ing and that the variants interact with this signaling program directly to influence glucose levels

and risk of T2D. A previous study identified association between this locus and glucose levels in

Chinese samples and demonstrated allelic effects of the same variant on islet enhancer activity

and binding of the TF GABP [50], further supporting the likely causality of this variant. SIX2 and

SIX3 have been widely studied for their role in forebrain, kidney and other tissue development

[51–56]. In islets, both SIX2 and SIX3 have been shown to increase expression in adult compared

to juvenile islets, and induction of SIX3 expression in EndoC-βH1 cells and juvenile islets

enhanced islet function, insulin content and secretion and may contribute to the suppression of

proliferative programs [57]. In line with this finding, the glucose-lowering and T2D protective

allele of the likely causal variant increased islet enhancer activity and SIX2/3 expression.

Our in vitro experimental model mimics the environment of pancreatic islets under hor-

mone signaling, albeit for a small number of treatments and conditions. Given the similarity

in binding motifs of many nuclear hormone receptors and the enrichment of glucocorticoid

responsive sites for androgen and progesterone receptor motifs, the effects of GR on islet gene

regulation may overlap with other nuclear receptors by acting on shared chromatin sites [58].

Studies of other tissues have profiled glucocorticoid signaling across a broader range of experi-

mental conditions and identified dose- and temporally-dependent effects on gene regulatory

programs [14,15], and in islets dose- and temporally-dependent effects of glucocorticoids may

impact insulin secretion and other islet functions. Future studies profiling the genomic activity

of nuclear receptors in islets across a greater breadth of experimental conditions will therefore

help further shed light into the role of hormone signaling dynamics in islet gene regulation

and diabetes pathogenesis.
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Methods

Ethics statement

All studies were approved by the Institutional Review Board of the University of California

San Diego.

Human islet samples

Human islet samples were obtained through the Integrated Islet Distribution Program (IIDP),

University of Alberta and Prodo labs. Islet samples were further enriched using a dithizone

stain. Islets were cultured for 24hr at approximately 10mL media/1k islets in 10cm dishes at

37C, 5% CO2 in CMRL 1066 media supplemented with 10% FBS, 1X pen-strep, 8mM glucose,

2mM L-glutamine, 1mM sodium pyruvate, 10mM HEPES, and 250ng/mL Amphotericin B.

Treated islets had dexamethasone (Sigma) added in the culture media at either 100 ng/mL for

24hr, 4ng/mL for 24hr or 4 ng/mL for 6hr.

ATAC-seq assays

Islet samples were collected and centrifuged at 500xg for 3 minutes, then washed twice in

HBSS, and resuspended in nuclei permeabilization buffer consisting of 5% BSA, 0.2% IGE-

PAL-CA630, 1mM DTT, and 1X complete EDTA-free protease inhibitor (Sigma) in 1X PBS.

Islets were homogenized using a chilled glass dounce homogenizer and incubated on a tube

rotator for 10 mins before being filtered through a 30uM filter (sysmex) and centrifuged at

500xg in a 4C microcentrifuge to pellet nuclei. Nuclei were resuspended in Tagmentation

Buffer (Illumina) and counted using a Countess II Automated Cell Counter (Thermo).

Approximately 50,000 nuclei were transferred to a 0.2mL PCR tube and volume was adjusted

to 22.5uL with Tagmentation Buffer. 2.5uL TDE1 (Illumina) was added to each tagmentation

reaction and mixed with gentle pipetting. Transposition reactions were incubated at 37C for

30 minutes. Tagmentation reactions were cleaned up using 2X reaction volume of Ampure XP

beads (Beckman Coulter) and eluted in 20uL Buffer EB (Qiagen). 10uL tagmented DNA pre-

pared as described above was used in a 25uL PCR reaction using NEBNext High-Fidelity Mas-

ter Mix (New England Biolabs) and Nextera XT Dual-Indexed primers (Nextera). Final

libraries were double size selected using Ampure XP beads and eluted in a final volume of

20uL Buffer EB. Libraries were analyzed using the Qubit HS DNA assay (Thermo) and Agilent

2200 Bioanalyzer (Agilent Biotechnologies). Sample libraries were sequenced on Illumina

HiSeq 4000 using 100bp paired-end reads except for samples Isl10, Isl11 and Isl12 which were

sequenced on Illumina NovaSeq 6000 using 100bp paired-end reads.

RNA-seq assays

RNA was isolated from treated and untreated islets using RNeasy Mini kit (Qiagen) and sub-

mitted to the UCSD Institute for Genomic Medicine to prepare and sequence ribodepleted

RNA libraries. Sample libraries were sequenced on Illumina HiSeq4000 using 100bp paired-

end reads except for samples Isl10, Isl11 and Isl12 which were sequenced on Illumina NovaSeq

6000 using 100bp paired-end reads.

ATAC-seq data processing

We trimmed reads using Trim Galore with options ‘–paired’ and ‘–quality 10’, then aligned

them to the hg19 reference genome using BWA [59] mem with the ‘-M’ flag. We then used

samtools [60] to fix mate pairs, sort and index read alignments, used Picard (http://

broadinstitute.github.io/picard/) to mark duplicate reads, and used samtools [60] to filer reads
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with flags ‘-q 30’, ‘-f 3’, ‘-F 3332’. We then calculated the percentage of mitochondrial reads

and percentage of reads mapping to blacklisted regions and removed all mitochondrial reads.

We calculated a TSS enrichment score for each ATAC-seq experiment using the Python pack-

age ‘tssenrich’. To obtain read depth signal tracks, we used bamCoverage [61] to obtain bigWig

files for each alignment with signal normalization using RPKM.

Identifying differential chromatin sites

We first used Irreproducible Discovery Rate (IDR) to define a set of canonical ATAC-seq sites

for differential analysis. In brief, for each condition separately, we pooled reads across all assays

and randomly split the pooled reads into two ‘pseudo-replicates’. For the pooled and ‘pseudo-

replicate’ data we called candidate peaks using MACS2 [62] with the parameters ‘—extsize 150

–keep-dup all–shift -75 –nomodel -p 0.01’. We applied IDR to the ‘pseudo-replicate’ candidate

peak calls and obtained the number of peaks at an IDR threshold of .01. We then sorted and fil-

tered the pooled candidate peak calls based on this number. Finally, we merged the resulting

peaks across conditions, where if two peaks overlapped, we retained the more significant peak,

and considered these canonical sites for downstream analyses.

The set of alignments for each assay were then supplied as inputs to the R function feature-

Counts from the Rsubread [63] package to generate a matrix of read counts within each

canonical site. We applied the R function DESeqDataSetFromMatrix from the DESeq2 [64]

package to the read count matrix with default parameters then applied the DESeq function

including donor as a variable to model paired samples. We considered sites differentially

accessible with FDR<0.1, as computed by the Benjamini-Hochberg method.

We determined the percentage of differential sites with increased activity in glucocorticoids

that overlapped a site active in untreated samples, as well as the percentage of differential sites

proximal to a gene promoter defined as 5kb upstream of the transcription start site.

Principal components analysis

We first defined input sites by merging overlapping (1bp or more) peaks identified in at least

two experiments across all ATAC-seq experiments. We then constructed a read count matrix

using edgeR [65] and calculated normalization factors using the ‘calcNormFactors’ function.

We applied the voom transformation [66] and used the ‘removeBatchEffect’ function from

limma [67] to regress out batch effects and sample quality effects (using TSS enrichment as a

proxy for sample quality). We then restricted the read count matrix to the 100,000 most vari-

able peaks and performed PCA analysis using the core R function ‘prcomp’ with rank 2.

TF enrichment analysis

Differentially accessible chromatin sites were analyzed for sequence motif enrichment com-

pared to a background of all chromatin sites tested for differential activity using HOMER [68]

and a masked hg19 reference genome with the command ‘findMotifsGenome.pl <bed file>

<masked hg19><output dir> -bg<background bed file> -size 200 -p 8 -bits -preparse -pre-

parsedDir tmp‘. We used the TF sequence motif database provided with the HOMER software.

For TF ChIP-seq enrichment, we obtained ChIP-seq binding sites for 160 TFs generated by

the ENCODE project [69] and tested for enrichment of binding in differential accessible chro-

matin sites compared to a background of all remaining chromatin sites genome-wide without

differential activity. For each TF we calculated a 2x2 contingency table of overlap with differen-

tial sites and non-differential sites, determined significance using a Fisher test and calculated a

fold-enrichment of overlap in differential compared to non-differential sites.
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RNA-seq data processing and analysis

Paired-end RNA-Seq reads were aligned to the genome using STAR [70] (2.5.3a) with a splice

junction database built from the Gencode v19 gene annotation [71]. Gene expression values

were quantified using the RSEM package (1.3.1) and filtered for >0.1 TPM on average per

sample. Raw expression counts from the remaining 20,480 genes were normalized using vari-

ance stabilizing transformation (vst) from DESeq2 [64] and corrected for sample batch effects

using limma removeBatchEffect. Principal component analysis was performed in R using the

prcomp function. To identify differentially expressed genes between treated and untreated

samples we obtained raw expression counts from RSEM [72] for the 20,480 genes and applied

DESeq2 [64] with default settings including donor as a cofactor to model paired samples. To

identify enriched GO terms in up and down-regulated genes, we applied GSEA [73] using

Gene Ontology terms and KEGG/REACTOME pathway terms. We excluded gene sets with

large numbers of genes in enrichment tests.

Proximity of differential chromatin sites to differentially expressed genes

We calculated the percentage of differential accessible chromatin sites mapping within 100kb

of (i) all differentially expressed genes, (ii) up-regulated genes and (iii) down-regulated genes

compared to non-differentially accessible sites, and determined the significance and odds ratio

using a Fisher exact test. We calculated a relative distance metric with bedtools [74] (reldist

function) using either differential chromatin sites or a background of all islet accessible chro-

matin sites as the "a" argument and differentially expressed genes as the "b" argument. We

compared the distribution of relative distances from differential sites to the distribution from

background sites using a Kolmogorov-Smirnov test.

Sample genotyping and imputation

Non-islet tissue was collected for seven samples during islet picking and used for genomic

DNA extraction using the PureLink genomic DNA kit (Invitrogen). Genotyping was per-

formed using Infinium Omni2.5–8 arrays (Illumina) at the UCSD Institute for Genomic Med-

icine. We called genotypes using GenomeStudio (v.2.0.4) with default settings. We then used

PLINK [75] to filter out variants with 1) minor allele frequency (MAF) less than 0.01 in the

Haplotype Reference Consortium (HRC) [76] panel r1.1 and 2) ambiguous A/T or G/C alleles

with MAF greater than 0.4. For variants that passed these filters, we imputed genotypes into

the HRC reference panel r1.1 using the Michigan Imputation Server with minimac4. Post

imputation, we removed imputed genotypes with low imputation quality (R2< .3).

Allelic imbalance mapping

We identified heterozygous variant calls in each sample with read depth of at least 10 in both

untreated and treated cells, and then used WASP [77] to correct for reference mapping bias.

We retained variants in each sample where both alleles were identified at least 3 times across

untreated and treated cells. We then merged read counts at heterozygous SNPs from all sam-

ples in untreated and treated cells separately. We fit a beta-binomial model to the observed

allele counts using the method of NPBin [78]. The parameters of the beta-binomial model

were α = 40.78 and β = 39.26 with over-dispersion of .012 for untreated samples and α = 41.76

and β = 40.10 with over-dispersion of .012 for glucocorticoid-treated samples. We called

imbalanced variants from the merged counts using a beta-binomial test, and then calculated q-

values from the resulting beta-binomial p-values. We considered variants significant at FDR<

.10.
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Heterogeneous allelic imbalance

For all variants with significant allelic imbalance in either glucocorticoid-treated or untreated

conditions, we tested for heterogeneity in imbalance between conditions. We used Pearson’s

chi-squared test as implemented in the "prop.test" function of R. We calculated q-values from

the resulting p-values and considered variants significant at FDR< .10.

Genetic association analysis

We tested glucocorticoid-responsive chromatin sites for enrichment of diabetes association

using genome-wide association data for T1D [79], T2D from the DIAMANTE consortium

[22], and blood sugar (glucose) from the Japan Biobank study [49]. For each study we retained

variants with minor allele frequency (MAF)>.05 and tested for enrichment of high-dose and

low-dose differential sites using fgwas [40] with a window size of 1Mb.

We then cataloged all variants in glucocorticoid-responsive chromatin sites in T2D and glu-

cose fine-mapping data and with nominal association (P< .005) genome-wide. For DIA-

MANTE, we used fine-mapping results provided with the study. For the Japan Biobank, we

fine-mapped signals ourselves using summary statistics. We calculated approximate Bayes fac-

tors (ABF) for each variant as described previously [80]. We compiled index variants for each

locus and defined variants within a 5 Mb window and at least low linkage (r2>0.1) in the East

Asian subset of 1000 Genomes [81] with each index. For each variant, we calculated posterior

probabilities of associations (PPA) by dividing the variant ABF by the sum of ABF for the

locus. We defined 99% credible sets by sorting variants by descending PPA and retaining vari-

ants up to a cumulative probability of 99%. For each variant in glucocorticoid-responsive chro-

matin, we identified protein-coding genes in GENCODE v33 with differential expression and

where the gene body mapped within 100kb of the variant.

Expression QTL analyses

We obtained islet expression QTL data from a published study [82]. We extracted variant asso-

ciations at the SIX2/SIX3 locus and tested for colocalization between T2D and blood sugar

association in the Biobank Japan study and SIX2 and SIX3 eQTLs using a Bayesian approach

[83]. We considered signals colocalized with shared PP greater than 80%.

Gene reporter assays

To test for allelic differences in enhancer activity at the SIX2/3 locus, we cloned human DNA

sequences (Coriell) containing the reference allele upstream of the minimal promoter in the

luciferase reporter vector pGL4.23 (Promega) using the enzymes Sac I and Kpn I. A construct

containing the alternate allele was then created using the NEB Q5 SDM kit (New England Bio-

labs). The primer sequences used were as follows:

• Cloning FWD AGCTAGGTACCCCTCATCTGCCTTTCTGGAC

• Cloning REV TAACTGAGCTCCAGTGGGTATTGCTGCTTCC

• SDM FWD TGCATTGTTTcCTGTCCTGAAGACGAGC

• SDM REV GGGGGTGCCTGCATCTGC

MIN6 cells were seeded at approximately 2.5E05 cells/cm^2 into a 48-well plate. The day

after passaging into the 48-well plate, cells were co-transfected with 250ng of experimental fire-

fly luciferase vector pGL4.23 containing the alt or ref allele in the forward direction or an

empty pGL4.23 vector, and 15ng pRL-SV40 Renilla luciferase vector (Promega) using the
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Lipofectamine 3000 reagent. Cells were fed culture media and stimulated where applicable 24

hours post-transfection. For stimulation 100 ng/mL dexamethasone (Sigma) was added to the

culture media. Cells were lysed 48 hours post transfection and assayed using the Dual-Lucifer-

ase Reporter system (Promega). Firefly activity was normalized to Renilla activity and normal-

ized results were expressed as fold change compared to the luciferase activity of the empty

vector. The python package ‘luciferase’ was then used to remove batch effects. A two-sided t-

test was used to compare the luciferase activity between the two alleles or between treatments.

A permutation test was used to compare the allelic ratio of luciferase activity between the two

treatments, based on 100,000 permutations of the allele labels.

Supporting information

S1 Fig. Gene expression in islets in response to different doses and durations of glucocorti-

coid treatment. Expression level of (A) ZBTB16, (B) VIPR1 and (C) IL11 in high-dose (100ng/

mL for 24hr), low-dose (4ng/mL for 24hr or 6hr) glucocorticoid-treated or untreated islets.

Values represent mean expression and standard error.

(TIF)

S2 Fig. Islet accessible chromatin signal across replicate samples at ZBTB16. RPKM nor-

malized ATAC-seq signal for individual islet sample in high-dose glucocorticoid treated and

untreated islets. Sites with differences in chromatin accessibility across conditions are

highlighted.

(TIF)

S3 Fig. Islet accessible chromatin signal across replicate samples at VIPR1. RPKM normal-

ized ATAC-seq signal for individual islet sample in high-dose glucocorticoid treated and

untreated islets. Sites with differences in chromatin accessibility across conditions are

highlighted.

(TIF)

S4 Fig. Accessible chromatin signal in islets in response to low dose glucocorticoid treat-

ment. RPKM normalized ATAC-seq signal in low-dose (4ng/mL for 6hr) glucocorticoid

treated and untreated islets at the (A) ZBTB16 and (B) VIPR1 loci. Sites induced by glucocorti-

coid treatment are highlighted.

(TIF)

S5 Fig. Islet accessible chromatin signal at IL11. RPKM normalized ATAC-seq signal in

high-dose glucocorticoid treated and untreated islets at the IL11 locus. The IL11 promoter

which has reduced accessibility in glucocorticoid treated islets at high dose is highlighted.

(TIF)

S6 Fig. Differential chromatin accessibility in high- and low-dose glucocorticoid treat-

ment. (A) Venn diagram of overlap in sites with differential activity in high-dose (100ng/mL

for 24hr, n = 6) and low-dose (4ng/mL for 6hr, n = 3) glucocorticoid treatment. (B) Effects of

high-dose and low-dose glucocorticoid treatment on sites with significant differential activity

in either treatment.

(TIF)

S7 Fig. Differential gene expression in high- and low-dose glucocorticoid treatment. (A,B)

Volcano plot of differential gene expression in glucocorticoid-treated islets at low dose for

24hr or 6hr compared to untreated islets. Genes with significant differential expression (FDR

< .10) are highlighted in red, and genes with most pronounced changes in expression are
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listed. (C) Venn diagram of overlap between genes differentially expressed in 24hr high

(n = 6), 24hr low (n = 3), 6hr low (n = 3) glucocorticoid treatment. (D) Effects of 24hr high-

and low-dose treatment on genes with significant differential expression in either treatment.

(E) Effects of 24hr high- and 6hr low-dose treatment on genes with significant differential

expression in either treatment.

(TIF)

S8 Fig. T2D-associated variants in differential chromatin sites. (A) Multiple variants at the

FBXW7/TMEM154 locus mapped in a site with decreased activity and FBXW7 had decreased

expression in glucocorticoid stimulation. (B) A variant at the NPY locus mapped in a site with

increased activity and NPY had increased expression in glucocorticoid stimulation. Genome

browser tracks represent RPKM normalized ATAC-seq signal, and expression bar plots repre-

sent mean expression and standard error. Values shown are from high-dose treatment. The

fold-change (FC) in accessible chromatin signal in glucocorticoid treatment compared to

untreated is indicated at highlighted sites.

(TIF)

S1 Table. Human islet donor samples. Islet samples used for genomic assays in this study and

donor characteristics.

(XLSX)

S2 Table. Islet accessible chromatin sites. Complete list of 127,228 reproducible islet accessi-

ble chromatin sites identified by IDR.

(XLSX)

S3 Table. Islet chromatin sites with differential activity in glucocorticoid treatment. List of

islet accessible chromatin sites with differential activity in each treatment dose and duration

using DESeq2.

(XLSX)

S4 Table. TFs enriched in differential chromatin sites. Sequence motifs and TF binding sites

enriched in differential islet accessible chromatin sites in each treatment dose and duration.

(XLSX)

S5 Table. Genetic variants with allelic imbalance in islet chromatin. List of variants with sig-

nificant effects on accessible chromatin in untreated or glucocorticoid treated islets.

(XLSX)

S6 Table. Genes with differential expression in glucocorticoid-treated islets. Genes with dif-

ferential expression in each treatment dose and duration using DESeq2.

(XLSX)

S7 Table. Gene sets enriched in glucocorticoid-treated islets. Gene ontology and pathway

terms enriched among genes with differential expression in each treatment dose and duration

using GSEA.

(XLSX)

S8 Table. Diabetes risk variants in islet glucocorticoid-responsive chromatin sites. Genetic

variants in 99% credible sets from fine-mapping data or with nominal association in genome-

wide summary statistic data from the DIAMANTE and Japan Biobank studies that mapped in

islet accessible chromatin sites with differential activity.

(XLSX)
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S1 Data. Source data. Data underlying Figs 2F and 4E in the manuscript.

(XLSX)
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