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Injury and disease affect neural processing and increase individual variations in patients when compared with
healthy controls. Understanding this increased variability is critical for identifying the anatomical location of el-
oquent brain areas for pre-surgical planning. Here we show that precise and reliable language maps can be in-
ferred in patient populations from resting scans of idle brain activity. We trained a predictive model on pairs of
resting-state and task-evoked data and tested it to predict activation of unseen patients and healthy controls
based on their resting-state data alone. A well-validated language task (category fluency) was used in acquiring
the task-evoked fMRI data. Although patients showed greater variation in their actual languagemaps, ourmodels
successfully learned variations in both patient and control responses from the individual resting-connectivity fea-
tures. Importantly, we further demonstrate that a model trained exclusively on the more-homogenous control
group can be used to predict task activations in patients. These results are the first to show that resting connec-
tivity robustly predicts individual differences in neural response in cases of pathological variability.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

When presentedwith the same task, each person's brain tends to re-
spond in an idiosyncratic way (Penfield and Roberts, 1959; Ojemann et
al., 1989). From the point of view of task-based fMRI, these individual
differences can be seen as distinct spatial patterns of neural activation.
Although there are strong similarities between individual brains,
which allow for group studies to be carried out, group averages lack
the specificity of single-subject fMRI. This is critical for the use of fMRI
in pre-surgical planning where the degree of individual variability is
typically higher in patients compared to non-surgical controls. Single-
subject task-based fMRI therefore provides a valuable tool for the iden-
tification of neural tissues associated with key functions such as lan-
guage processing (Binder et al., 1997; Price, 2012), particularly as the
exact location and extent of higher-order cortical areas cannot, in gener-
al, be determined from gross anatomy (Fischl et al., 2008). One specific
challenge is that task-based fMRI requires subjects to perform experi-
mental tasks. However, not all pre-surgical patients are able to perform
these tasks—for reasons that range from patient compliance or fatigue,
to the ability to perform or even comprehend the task instructions.
Furthermore, the choice of task can be limited by constraints on scan
time. For patients who cannot perform the relevant task, a ‘task-free’
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method for mapping brain functions would therefore fill an important
gap. In this paper, we ask whether individual variation in activation
maps can be predicted for a clinically-relevant language task in pre-
surgical patients, using only resting-state fMRI and with no explicit
experimental task.

We acquired resting-state and task-evoked fMRI from71pre-surgical
patients and 32 healthy controls (103 subjects total). The pre-surgical
patients had been diagnosed with conditions that represent potential
use cases: operable brain tumours, temporal lobe epilepsy, and vascular
lesions (specifically, arteriovenus malformations and cavernomas). We
acquired task-based fMRI to infer individual task activation maps
whichwere thenused to both develop/train andevaluate ourmodel pre-
dictions. For the task we used category fluency, which is known to acti-
vate language-processing areas in the inferior frontal cortex using the
contrast [category fluency N fixation baseline] (Paulesu et al., 1997;
Costafreda et al., 2006). Healthy volunteer subjects were included in
the study to compare the variability of task activity with that of patients,
and to compare within-group and between-group predictions. The pre-
dictions were produced using a supervised approach (see Methods).
Briefly, the resting-state data were pre-processed into individual
subjects' resting-connectivity features, which were then used to train a
set of regression models to predict whole-brain task activation maps.
This allowed us to produce, from their resting-connectivity features
alone, the unseen test subjects' predicted task activation maps (Fig. 1).

In prior work, we applied this method to predict task activation
maps from resting-connectivity features using healthy control data
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Individual task-contrasts can be predicted from connectivity measures derived from resting-state fMRI. Above: observed task-contrasts (red) for the category-fluency task in four
subjects (three patients). Below: predicted task-contrasts (blue) generated using each subject's resting scan (results from the leave-one-out analysis). Predictions best resemble their
paired observations both in healthy and in pathological cases.

Table 1
Subject details. Thirty-two of 103 subjects were healthy controls (CON). The remaining 71
represented five neurosurgical conditions: temporal lobe epilepsy (TLE); brain tumour
(TUM); cavernoma (CAV); arteriovenusmalformation (AVM); and focal cortical dysplasia
(FCD). Wada test results are expressed as a real number ranging from −1 (right-hemi-
sphere dominant) to 1 (left-hemisphere dominant). Fluency results reflect the total num-
ber of VEGETABLES the subjects named overtly, out-of-scanner in 1 min.

Subject group

CON TLE TUM CAV AVM FCD

n 32 42 20 5 3 1
Sex 17 male 20 male 10 male 1 male 2 male 0 male
Age:

Range 19–48 16–60 14–65 30–59 20–32 17–17
Mean 32 35 40 44 28 17

Handedness:
right 27 37 19 4 1 1
left 4 5 1 1 0 0
both 1 0 0 0 2 0

Wada:
n – 29 3 1 – –
Mean – 0.6 0.7 1 – –

Fluency:
n – 41 10 – – –
Mean – 20 20 – – –
R0061nge – 8–44 9–28 – – –
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from the Human Connectome Project (Tavor et al., 2016). In that paper,
wewere able to predict high-fidelity task-activationmaps across a wide
range of task domains. Important questions however remained unan-
swered, the most critical being whether our approach could be usefully
applied in a clinical setting, given shorter, lower quality data sets and
given greater individual variability in patients than in controls. These
questions are tackled in the present paper; in addition, we explore the
possibility of training a single model on data from healthy controls
alone, and then using the model to predict each patient's task activity.
This ‘transfer-learning’ would make it possible, in theory, to predict
activity for additional task domains without the need to acquire task-
based fMRI training data in patients, potentially opening the doors to a
novel and powerful approach to pre-surgical mapping.

2. Materials and methods

2.1. Subjects

All subjects gave informed consent prior to participating in the
study, which was approved by the London Surrey Borders Research
Ethics committee.

We report data from 103 subjects: 71 patients and 32 healthy con-
trols. The patients underwent language mapping as part of the study
and no patients recruited were excluded from our analyses. Patients
presented with pathology in frontal and temporal lobes and were
being considered for neurosurgery. The pathologies were: temporal-
lobe epilepsy (TLE), brain tumour (TUM), cavernoma (CAV), arteriove-
nous malformation (AVM), and focal cortical dysplasia (FCD). Because
there were relatively few cases of CAV, AVM, and FCD, we combined
these into one ‘other’ group (n = 9). The healthy controls (CON) were
selected to match the distribution of sex, age, and handedness in the
patient group. All subjects had normal or corrected-to-normal vision.
This was important as the experiment required subjects to read task
instructions from a visual prompt.

In addition to information on sex, age, and handedness, a subset of
patients (n = 33) further participated in an intracarotid sodium
amobarbital procedure (‘Wada test’). Another subset of 51 patients
provided out-of-scanner behaviour scores for the category fluency
task (see Table 1).

2.2. In-scanner behaviour

Subjects performed a (covert) category fluency task in scanner. This
involved subjects receiving semantic categories as cues before imagin-
ing asmanynouns in that category as possible. The categories presented
were ANIMALS, TOOLS, COUNTRIES, VEHICLES, and FRUITS. Categories were pre-
sented as written words on a screen viewable in-scanner. Before begin-
ning the experiment, subjects were instructed to respond covertly, that
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is imagining their responses but without speaking aloud. Outside of the
scanner, all subjects also completed an overt fluency task for the catego-
ry VEGETABLES, from which behavioural scores were recorded for 51 pa-
tients. We used a block design with 5 repeats of 30 s in the active
condition (task) and 30 s in an inactive condition (baseline).

2.3. Image acquisition

All imaging data were acquired at Oxford's Centre for Functional
Magnetic Resonance Imaging of the Brain (FMRIB) on a 3T Siemens
Verio MRI scanner equipped with a 32-channel head coil. We acquired
anatomical T1-weighted structural scans using MPRAGE and functional
T2*-weighted scans using an EPI sequence. One high-resolution struc-
tural scan was acquired per subject at a resolution of 1 mm isotropic
voxels (174 × 192 × 192 total voxels). In the resting fMRI (rfMRI) ses-
sions, we collected 85 volumes (TR=3.5 s; TE=30ms) from each sub-
ject at a resolution of 2 mm isotropic voxels (54 slices, 96 × 96 matrix),
and in the task fMRI (tfMRI) sessions we collected 101 volumes (TR =
3 s; TE=28ms) at a final resolution of 3mm isotropic voxels (44 slices,
64× 64matrix). Each subject spent 5min on an rfMRI session and 5min
on a tfMRI session. We also created lesion masks for the 27 relevant pa-
tients with large AVMs, CAVs, or TUMs, whichwere defined on the T1w
anatomical scan manually (N.L.V.).

2.4. Preprocessing

Functional data were brain-extracted using BET (Smith, 2002), tem-
porally high-pass filtered at 100 s, motion corrected using MCFLIRT
(Jenkinson et al., 2002), spatially smoothed at 4 mm FWHM (full-
width half maximum), linearly co-registered to individual structural
scans with BBR (Greve and Fischl, 2009), and non-linearly registered
to MNI152 space with a 10 mm warp resolution with FNIRT (www.
fmrib.ox.ac.uk/fsl/fnirt). A contrast of interest was defined for
task N baseline and modelled in FEAT using a boxcar design with dou-
ble-gamma HRF (hemodynamic response function), temporal deriva-
tives, and temporal filtering. The resulting volumetric data were then
projected onto a standard surface using trilinear interpolation in
Connectome Workbench (http://www.humanconnectome.org),
producing data on 91,282 ‘grayordinates’ that included cortical surface
vertices and subcortical voxels (Glasser et al., 2013).

2.5. Feature extraction

The features thatwe input into themodelwere individual-level rest-
ing-state networkmaps,whichwere derived from individual rfMRI data
through Dual Regression as described by (Filippini et al., 2009).

Before the Dual Regression step, we first defined a set of group-level
connectivity features in the following way. Independent data (rfMRI
scans) were selected for 100 random subjects from the minimally pre-
processed HCP database (Q3 release). These data were high-quality
rfMRI scans acquired over four 15-min sessions (for a total of 1 h) per
subject (Glasser et al., 2013).

Next we applied incremental PCA to the time series datasets in order
to reduce the data dimensionality (Smith et al., 2014) (keeping 1000 di-
mensions), and then used group-ICA to factorise the concatenated data
into a set of 40 spatial components per hemisphere. We excluded com-
ponents that did not replicate in both hemispheres, as a way to reduce
the number of visible artefacts. This resulted in a final set of 33 group-
level connectivity features (Beckmann et al., 2005).

We then used these group-level results in a Dual Regression analysis
(Filippini et al., 2009) in order to infer individual-level versions of the
group ICA maps for all 103 subjects (patients and controls).

In the first Dual Regression step, each subject's rfMRI time-series
data was regressed against the group-level ICA maps (multiple regres-
sion), which produced a set of individual time courses × components.
We then regressed each subject's rfMRI time-series (single regressions)
against their individual time courses × components, in the second re-
gression step, in order to produce a set of components × individual spa-
tial maps. Unlike Tavor et al. (2016), here we used single regressions in
the second step of the dual regression, due to the lower number of time
points. The resulting 103 spatial maps were normalised to zero mean
and unit norm and then used as individual connectivity features,
which were input to the predictive model.

2.6. The predictive model

A simple piecewise linear-regression approach was used to predict
spatial task-activation maps. In the first training regime, we used
leave-one-out cross-validation to test on each subject. In the second
regime, we split the data into controls and patients, training on the
controls and testing on the patients (transfer analysis).

For each subject in the training set, i, we paired i's input features X(i)

(an n× (1+33) designmatrixwhere thefirst columnmodels the inter-
cept and n=91.282) and i's observed n× 1 task activationmap y(i). The
regression coefficients β(i) were then inferred analytically:

β ið Þ ¼ pinv X ið Þ
� �

∙y ið Þ

For any test subject j, we generated a predicted task activation map

ŷð jÞ from j's input features X(j) and from an estimated model coefficient
β̂:
ŷ jð Þ ¼ X jð Þ∙β̂

In the leave-one-out regime, the estimated model coefficients β̂
were derived from the mean of all m−1 individual β values, where
test subject j's actual β value was excluded:

β̂ ¼ 1
m−1

∑
m

i¼1:i≠ j
β ið Þ

For the analysis that trained on controls and tested on patients, β̂was
just the mean of all 32 control subjects' βs.

Although it is possible to invert the full rank 91,282 × 34 matrix, we
found this worked less well than using a piece-wise linear approach, in
which the brain is first parcelled into non-overlapping parcels and then
linear models are fitted and predictions generated within each parcel
separately. The resulting predictions can be concatenated to produce a
predicted task activation map for the whole brain.

The parcels we used were derived using group-ICA on 100 rfMRI
scans taken from an independent dataset: the HCP (see section on
Feature extraction).We usedwinner-takes-all on a set of 50 ICA compo-
nents, so that each vertex was assigned to exactly one of the 50 compo-
nents. These 50 cortical parcels ranged in size from 316 to 6771 vertices
(see Supplementary Fig. 1).

2.7. Model evaluation

For each subject, we asked howwell the predictionmatched the ob-
served-task activation map by calculating the Pearson correlation coef-
ficient between actual and predicted spatial maps.

We hypothesised that these correlations would be higher when the
observed and predicted maps came from the same subject, rather than
from different subjects (Fig. 2a). We therefore took the inner product
of all subjects' observed maps and all subjects' predicted maps, for the
leave-one-out analysis, which produced a 103 × 103 matrix of correla-
tions (Fig. 2b). In Fig. 2b, the rows and columns of this similarity matrix
have been re-ordered to separate patients and controls, then row- and
column-normalised. A strong diagonal visually indicates that the
model predicts individuals well, and best matches predictions of indi-
vidual subjects with their actual activation maps.

http://www.fmrib.ox.ac.uk/fsl/fnirt
http://www.fmrib.ox.ac.uk/fsl/fnirt
http://www.humanconnectome.org


Fig. 2.Model predictions correlate with observed activations across subjects. (a) Visualising the overlapping activation between two example subjects'maps (i.e., subjects (a) and (c) from
Fig. 1). For illustrative purposes, these maps have been thresholded and binarised. Binary overlaps were quantified using the Dice coefficient, which is highest along the diagonal
(representing each subject's observed and predicted maps). The off-diagonals pair different subjects' maps. (b) The pattern in (a) generalises across most subjects, producing a
similarity matrix of correlated maps. The strong diagonal shows that similarity is strongest within subjects' maps. Pixel intensities show correlations (Pearson coefficients); these have
been normalised across the rows and columns to make the results comparable between scans. (c) Histograms of the correlations in (b). The off-diagonals (blue) appear normally
distributed around zero, the diagonals (yellow) are not. The diagonal and off-diagonal distributions differed significantly (t(102.8) = 25.09, p ≪ 0.001).
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To quantify our ability to predict individual task activationmaps, we
computed a t-test for each subject's observed map. This compared the
correlation with the same subject's prediction against the correlations
with all other subjects' predictions (this is schematised below in
Fig. 3). We built up a statistical test by first subtracting, for each subject,
the diagonal from the extra-diagonal elements of the correlationmatrix.
We then used a non-parametric t-test with 10,000 sign-based permuta-
tions to generate a null distribution for each subject. This resulted in
group-level t-statistics and p-values for each of the 103 subjects,
where the significance level was set to p = 0.05.

In Fig. 2a we used thresholded binary images and calculated Dice
coefficients of overlap (Dice, 1945).

2.8. Thresholding

Thresholding was used for visualising the results (see Fig. 1, Fig. 2,
and Fig. 5) and did not affect any of the statistical results reported
(e.g. correlations), which were performed on the full, unthresholded
maps.

To visualise the results, we thresholded the task activation maps
using a combination of cluster-masses and a mixture model.

The mixture model was a combination of one Gaussian and two
Gamma distributions (Beckmann and Smith, 2004). The Gaussian was
intended to fit the noise in each image so the Gammas could fit the pos-
itive and negative activations. As our interest was on the positive con-
trast task N baseline, we excluded values below the median of the
upper Gamma distributions (see Supplementary Fig. 2).

Separate mixture models were fitted to each task and predicted
map, producing 103 subject-specific thresholds for the task maps and
103 subject-specific thresholds for the prediction maps (this was also
repeated for the leave-one-out and split analyses).

The mixture models were used to threshold images by activation
height. To limit extent of activation in the visualisations, we used cluster
mass thresholds (Bullmore et al., 1999; Hayasaka and Nichols, 2004).
The mass of each cluster can be calculated as

c ¼ ∑
v∈K i

T vð Þ

where T(v) is the (thresholded) statistical image (map), indexed by
a set of vertices v in the clusterKi. Intuitively, the mass of a cluster is the
sumof its vertex values. So a very narrow clusterwith high valuesmight
have equivalent mass to a very wide cluster with low values. Clusters
with masses below a set threshold were excluded from the
visualisations. Signal strength was lower in the predicted maps. So,
while a cluster-mass threshold of 240 was used for the observed task



Fig. 3. Significance Testing. To evaluate how well each subject's prediction (from resting fMRI) matched his or her observed activation map (from task fMRI), we constructed a statistical
baseline. (a) The top panel shows the correlations for all subjects' predictions (rows) against one subject's observed task activationmap, with all other subjects' data having beenmasked
out in blue. (b) A baseline null distribution was constructed from all between-subject correlations (yellow histogram), where the diagonal element (blue ‘x’) represents the correlation
between example subject's observed and predicted maps. Non-parametric t-tests were used to compare subject prediction against baseline using sign randomisation. We expected to
find significant differences (green arrow) for models that distinguished between baseline and prediction. (c) The bottom panels report t-stats and p-values for all subjects with the
results divided into controls (left) and patients (right). Significant values have been presented in blue and non-significant values in red. For the main analysis (leave-one-out),
individual maps were better predicted than the baseline in 93/103 cases.
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activation maps, we used a cluster-mass threshold of 120 for the pre-
dicted task activation maps. As this was constant across all subjects,
there was no risk of biasing our visualisations of individual results by
having different thresholds for predictions and observations.
2.9. Quality control

To evaluate data quality, we quantified in-scanner head movement
and computed a temporal signal-to-noise ratio (tSNR) as a measure of
changes to the MRI signal in time across the whole-brain (Murphy et
al., 2007) for each scan (resting state and task data). We further used
the movement parameters as estimated by MCFLIRT in combination
with the task design to quantify stimulus-correlated motion. We corre-
lated each of these three measures with the individual t-statistics de-
scribed above to test whether model performance was related to the
quality of the data (see Model evaluation).
2.10. Code availability

Code available upon request.
3. Results

In line with prior literature, the observed task activation maps (de-
rived from task-evoked fMRI) showed pronounced activity in the left
frontal lobe (Paulesu et al., 1997; Costafreda et al., 2006), with clusters
that varied between subjects in shape, size, and strength. Predicted
task activation maps (derived from resting-state fMRI) varied qualita-
tively between subjects in a similar way while closely resembling
their intended target maps (Fig. 1).

We quantified these results by calculating correlations between all
subjects' observed and all subjects' predicted maps (Fig. 2). We expect-
ed these correlations to be stronger within-subjects (‘matched’
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predictions) than between-subjects (‘unmatched’) for any model cap-
turing individual variability in task response. We therefore compared
the matched and unmatched predictions for each subject, expressing
the result as a t-statistic (Fig. 3; see Methods). The leave-one-out anal-
ysis showed that 90.3% of the matched predictions were significantly
better than the unmatched predictions (i.e., p b 0.05 in 93/103 subjects).
The analysis predicted task activity better in healthy controls (31/32,
96.9%) than in the more heterogeneous patient group (62/71, 87.3%),
with the between-group difference being significant (t(101) = 2.13,
p = 0.04). However, the type of pathology (epilepsy, tumour, or
other) did not affect the accuracy of patient predictions (F(2,68) =
0.23, p = 0.79). A potential confound was that subject-specific lesions
were common to both observed and predicted maps, and might there-
fore have driven the subject-wise correlations. To address this, we re-
ran the analyses above after excluding the union of all patient lesions
(a large binary mask) from all subjects' data. We found that lesions
did not explain the predictive ability reported above Fig. 4.

To understand why some individuals were better predicted than
others, we ran post-hoc correlations on individual t-statistics and
three quality-controlmeasurements: (i) task-correlated in-scannermo-
tion, (ii) task tSNR, and (iii) rest tSNR. The correlations reveal individual
predictions degrading with the quality of the resting-state scans (r =
0.23, p = 0.02). Behavioural or demographic measures, such as sex,
age, or out-of-scanner behaviour, did not significantly explain model
performance (Supplementary Table 1).

The results of the leave-one-out and transfer-learning analyses were
nearly identical for patients. This is important because it means that a
Fig. 4. Correlations are not driven by lesions. a) A potential confound in the analyses of patien
lesions. This concern is motivated by the fact that lesions are the same in each subject's obse
black); and because little to no neural activity was observed within the lesion masks. To check
excluding the union of all lesion masks (see Supplementary Fig. 4). b) The lesions did not
predicted language maps). For example, a heavy diagonal was again found in both controls (u
similar as before, with 90/103 individuals identified better than baseline (cf. 93/103). Of the
Consequently, removing the lesion masks resulted in a decrease in accuracy of only one patien
model trained on a relatively homogenous group (controls) can extrap-
olate its predictive power to predict the neural responses observed in a
more variable group (patients) (see Fig. 5). Indeed, the larger variability
in patients compared to controls was seen in both observed activation
maps but also in our model predictions (Fig. 5b), which illustrates the
power of ourmodel to extrapolate from controls to patients. In practical
terms, this result means that additional models might be trained on one
group (healthy volunteers) and then applied to another group (pa-
tients) without the need for the latter group to perform any additional
experiments. Repeating the evaluation procedure above, we found
that the transfer-learning analysis predicted 84.5% of the patients better
than baseline (60/71). This was only two patients fewer than the leave-
one-out analysis (62/71) and the similarities between predicted and ac-
tual maps from the two analyses were very highly correlated (r= 0.98,
see Fig. 5). Because each subject's predicted task maps resulted from
only two pieces of information—(i) the model parameters, and (ii)
model input (connectivity features)—and because the model parame-
ters were held constant between all patients in the transfer-learning
analysis, we conclude that the variability observed between-subjects
was driven by differences in the individual connectivity features.

4. Discussion

Using clinical-grade neuroimaging data and a regression-based ma-
chine learning approach, we found that between-subject variations in
observed language maps, inferred from task-based fMRI, were closely
predicted by individualmeasures of resting connectivity both in healthy
t data is that the correlations between observed and predicted maps might be driven by
rved and predicted maps (shown here for one example subject with the lesion mask in
that the results were not driven by lesions, we repeated the main analyses above while
strongly affect the results, as shown by the similarity matrix (between observed and
pper-left) and patients (lower-right quadrant). c) The repeated t-test analysis was very
three subjects previously identified but not identified here, two were control subjects.
t.



Fig. 5. Training on controls, predicting patients. (a) Schematics for the two analyses. Above: in the leave-one-out (LOO) analysis, data for one subjectwas removed from the training set and
used to evaluate the model prediction. The procedure was then repeated for each subject, resulting in 103 subject models and predictions. Below: we performed a one-time split of data
into patient and controls groups in the transfer analysis. Using the control data,we trained a singlemodel thatwas used tomake predictions for all patients. Example predictions are shown
(to the right of each schematic) for one subject (patient (d) from Fig. 1). The examples show that the two analyses produce qualitatively similar predictions. (b) Histograms of correlations
between subjectmaps show greater variability in the patient group. Both in the observed task-activationmaps (upper panel, red) and in the predicted task-activationmaps (lower panel,
blue), patients varied more than controls. The solid bars show three standard deviations from the distribution means. The results here are from the LOO analysis, because the transfer
analysis applied only to patients. (c) Scatter plot showing the correlation in patients between observed and predicted task maps (dotted line shows x = y; light blue line shows the
best liner fit). The predicted maps were nearly identical in LOO and transfer analyses (r = 0.98). The transfer analysis therefore predicted variability in patients virtually as well as the
leave-one-out analysis did, even though the transfer-analysis was not trained on a single patient.
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controls and in pre-surgical patients (Fig. 1, Fig. 2). The predictionswere
marginally better in controls, which is unsurprising given that greater
variability is observed in patients (Fig. 5b). Importantly, the model cor-
rectly predicted there to be higher variability in patients (as seen in the
actual activation maps). Moreover, we were able to predict the more
highly variable patientmaps from amodel trained only on homogenous
controls. These transfer-learningpredictionswere almost identical to the
ones obtained in models trained on both patients and controls (Fig. 5c).

Many studies have previously pointed to a relationship between task
activation maps and resting connectivity (e.g. Smith et al., 2009; Cole et
al., 2014), suggesting the existence of an ‘intrinsic’ architecture of func-
tional organisation. This relationshipwas previously exploited to under-
stand and model individual variations in task-activations across a wide
range of behavioural domains, including a receptive (as opposed to ex-
pressive) language task (Tavor et al., 2016). It has relatedly been shown
that resting-state connectivity can be used to identify individuals (Finn
et al., 2015) and predict their behavioural performances (Rosenberg et
al., 2016). Yet the present paper is the first to explore the relationship
of resting-state connectivity and task fMRI beyond young and healthy
control subjects, specifically in the more highly-variable cases of pa-
tients diagnosed with drug-resistant epilepsy, brain tumours, and vas-
cular abnormalities.

The emphasis on these patient populations was motivated by the
potential use of resting-state fMRI for pre-surgical planning. Because
damage to areas in the brain that support key functions like language
may cause lasting aphasias and other deficits, the identification of
these regions plays a central role in surgical planning (Ojemann et al.,
1989). As noted in the introduction, language mapping with fMRI is
often limited by patient fatigue, linguistic ability, or patient compliance,
and clinicians are typically constrained by time to probe a limited num-
ber of task contrasts. Consequently, the ability to identify critical brain
regions potentially involved in multiple behavioural domains (Tavor
et al., 2016) from short resting scans, which do not place active de-
mands on patients and which are readily available on all modern MRI
scanners, would provide a valuable alternative strategy when no other
options are available.

Although we found our results to be highly robust across subjects
(Supplementary Fig. 3), theywere not perfect.Whenwe correlated pre-
diction performance with behaviour, demographic information, and
quality control measures from the scanner, we discovered that at least
part of the predictive shortcomings could be attributed to poor-quality
resting scans (Supplementary Table 1). This result is useful because
scan-quality can be assessed before using these models. In future
work, we plan to develop additional quality control measures on the
fMRI data, to assess the applicability of a trained model and suitability
of predictions.

Although we know that the quality of the model predictions can be
further improved by increasing scan duration and temporal sampling
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times (Smith et al., 2013; Tavor et al., 2016), it was nonetheless remark-
able to achieve the present results using only 5 min of resting data. This
speaks to the robustness and potential clinical use of the method. We
deliberately did not attempt to optimise the feature extraction step or
the parcellation that feeds into the piecewise linear model and instead
employed the same approach used by Tavor et al. (2016). Themain rea-
son for this is that we did not wish to overfit themodel to this particular
cohort of subjects. Futureworkmight nonetheless improve upon the re-
sults by using nested cross-validation to optimise the feature selection
and parcels on a separate validation set.

Further improvements to the resolution and accuracy of the predict-
edmapsmight be gained by incorporatingmulti-modal data from other
sources, such as diffusion tractography (Saygin et al., 2012; Osher et al.,
2016). However, before any predictive method is used in a clinical set-
ting, it will be imperative to perform more validation studies.

Herewe used task-evoked fMRI as ‘ground truth’ of neural activation
patterns. Alternative behavioural ‘ground truths’ include direct cortical
stimulation and post-operative neurocognitive outcomes (Penfield
and Roberts, 1959; Ojemann et al., 1989). Ultimately, for clinical appli-
cability, it will be important to determine how well model predictions
foretell intra- or post-operative behavioural outcomes in comparison
to task fMRI. Despite their use in pre-surgical planning, fMRI-based lan-
guage maps are liable to produce false positives (apparent activation in
regions where surgical damage would not result in significantly differ-
ent cognitive or behavioural outcomes) and false negatives (apparent
lack of activity where surgical intervention could result in aphasias).
Therefore a combination of direct cortical stimulation and subject test-
ing is advocated wherever possible as a final check before excising
brain tissue during surgery.

To summarise, more work will be needed to validate and build on
ourmethod before itmay be used in clinic, butwe hope that the present
results, showing that predictions based on resting fMRI can reasonably
approximate task-evoked language maps in both patients and controls,
will have laid a solid foundation.
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