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Bacterial behavior and virulence during human infection is diffi-
cult to study and largely unknown, as our vast knowledge of
infection microbiology is primarily derived from studies using
in vitro and animal models. Here, we characterize the physiology
of Porphyromonas gingivalis, a periodontal pathogen, in its native
environment using 93 published metatranscriptomic datasets
from periodontally healthy and diseased individuals. P. gingivalis
transcripts were more abundant in samples from periodontally
diseased patients but only above 0.1% relative abundance in one-
third of diseased samples. During human infection, P. gingivalis
highly expressed genes encoding virulence factors such as fim-
briae and gingipains (proteases) and genes involved in growth
and metabolism, indicating that P. gingivalis is actively growing
during disease. A quantitative framework for assessing the accu-
racy of model systems showed that 96% of P. gingivalis genes
were expressed similarly in periodontitis and in vitro midlogarith-
mic growth, while significantly fewer genes were expressed simi-
larly in periodontitis and in vitro stationary phase cultures (72%)
or in a murine abscess infection model (85%). This high conserva-
tion in gene expression between periodontitis and logarithmic
laboratory growth is driven by overall low variance in P. gingivalis
gene expression, relative to other pathogens including Pseudo-
monas aeruginosa and Staphylococcus aureus. Together, this
study presents strong evidence for the use of simple test tube
growth as the gold standard model for studying P. gingivalis biol-
ogy, providing biological relevance for the thousands of labora-
tory experiments performed with logarithmic phase P. gingivalis.
Furthermore, this work highlights the need to quantitatively
assess the accuracy of model systems.

Porphyromonas gingivalis j metatranscriptomics j periodontitis j
laboratory models

The ultimate goal of the vast majority of microbiology research
is to understand the processes that shape microbial behavior,

ecology, and evolution, ranging from studies of the microbial role
in pathogenesis to the microbial contribution to nutrient cycling
in the oceans. Experimental laboratory models such as in vitro
culture, microcosms, and animal models are the workhorses of
these studies and have greatly advanced our understanding of
microbial physiology. However, the relationship between an
experimental model system and a microbe’s native environment
is often not well understood, and recent work has shown that the
in situ gene expression signature is distinct from that in experi-
mental model systems for some opportunistic pathogens (1–3).

Microbes in the oral cavity involved in periodontitis, or gum
disease, live in the subgingival pocket between the tooth and
gum surfaces, where they are in contact with a diverse microbial
community, the human immune system, and a unique nutritional
environment (4). The ability to directly sample communities
from the human subgingival environment has provided a real-
time snapshot of microbial gene expression during periodontitis,

including establishing the importance of virulence factor expres-
sion and butyrate synthesis in periodontitis at the community
level (5, 6). However, the majority of these studies have not had
the depth and breadth to examine the gene expression of indi-
vidual taxa within the human oral cavity (7).

Here, we performed a meta-analysis of 93 human oral meta-
transcriptomes, focusing on the gene expression patterns of the
oral pathogen Porphyromonas gingivalis (8). P. gingivalis is an obli-
gate anaerobe and is asaccharolytic, using amino acids as its pri-
mary carbon source. This microbe is often associated with
chronic periodontitis, and it has been characterized as a keystone
pathogen because of its ability to alter the oral immune environ-
ment, leading to dysbiosis of the microbial community as a whole
(9). We discovered that P. gingivalis highly expressed a number of
virulence factors, including the Arg- and Lys-gingipains, and
genes related to growth and metabolism during periodontal dis-
ease. However, a comparison to 122 transcriptomes from experi-
mental model systems revealed that the P. gingivalis periodontitis
transcriptome was not distinct from growth in some common lab-
oratory conditions, specifically logarithmic growth in rich media.
Finally, we showed that the global conservation of P. gingivalis
gene expression between periodontitis samples and certain
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laboratory environments is related to low variance in gene
expression across environments for P. gingivalis in contrast to
other pathogens.

Results
Validation of Mapping Approach and P. gingivalis Pangenome. The
goal of this work was to analyze the gene expression of P. gingi-
valis in the human oral cavity. A challenge in this and similar
analyses is that metatranscriptomes include short sequencing
reads from diverse microbes. Thus, it is important to ensure
sequencing reads are assigned to the correct microbe. In our
case, human oral subgingival metatranscriptomes often contain
reads from over 100 species and may contain multiple strains of
P. gingivalis. Our objective was to identify P. gingivalis–derived
reads from across the strain diversity of this species while mini-
mizing the inclusion of non–P. gingivalis–derived reads. Correct
mapping depends on a number of factors, including sequence
read length and the identity of the reference sequence. To test
these two factors, we built 10 mock oral metatranscriptomes,
each containing 658 bacterial genomes from the Human Oral
Microbiome Database and each with a different read length
ranging from 15 to 50 base pairs (bp). Then, we mapped the
mock metatranscriptomes to the P. gingivalis American Type
Culture Collection (ATCC) 33277 genome and to a pangenome
of P. gingivalis strains. This pangenome was constructed to repre-
sent the taxonomic diversity of the species using 27 high-quality
genomes (Fig. 1A and Dataset S1A). For the mock metatran-
scriptome with 15-bp reads, 25% of all the reads mapped to
P. gingivalis ATCC 33277, but only 10% of mapped reads origi-
nated from P. gingivalis, indicating high levels of mapping from
other members of the in silico community (Fig. 1B). However,
as the read length in the metatranscriptome increased, the per-
centage of mapped reads originating from P. gingivalis increased,
plateauing at 99% with 25-bp reads and longer. When mapped
to the pangenome, the pattern was similar, with at least 95% of
mapped reads originating from P. gingivalis at 25-bp read length
and longer. Based on this analysis, we chose 22 bp as the mini-
mum read length for our biological samples to balance the spe-
cificity of mapping with the short reads in many of the biological
samples (Fig. 1B, Dataset S2A, and SI Appendix, Table S1).
Although this approach may detect some reads from other
microbes in the community, it is highly selective for P. gingivalis
reads. Furthermore, the average read length of the biological
samples analyzed below was 61 bp, and the 50-bp mock meta-
transcriptome analysis shows that these longer reads provide
additional stringency (Fig. 1B and SI Appendix, Table S1). Addi-
tionally, we asked how many of the total P. gingivalis reads in the
mock metatranscriptome were identified via mapping. When we
aligned the 22-bp mock metatranscriptome to the single P. gingi-
valis strain, 81% of the total P. gingivalis reads mapped, but
when we aligned to the pangenome, 94% of the total P. gingivalis
reads mapped (Fig. 1C and SI Appendix, Table S1). Therefore,
we identified more of the P. gingivalis reads when mapping to the
pangenome, likely because of the additional accessory genes in
the pangenome, and we chose to map our biological samples to
the P. gingivalis pangenome.

After deciding on the minimum read length of 22 bp and to
map to the pangenome, we next defined orthologous genes
across all 27 genomes in the pangenome. This step was important
to allow for gene-based analyses of the biological samples. We
identified 4,643 clusters of genes in our P. gingivalis pangenome
(Fig. 1D and Dataset S1). Note that the 27 P. gingivalis genomes
each have 1,929 protein coding genes on average. A total of 1,261
clusters included genes from all 27 genomes, and 1,342 clusters
only included a single gene (Fig. 1D). Only 16 clusters contained
multiple genes from the same genome. A total of 85% of the clus-
ters with genes from all 27 genomes have a functional annotation,

while 54% of the clusters containing only one gene are annotated
as hypothetical, indicating that many of the known functions are
represented by the shared orthologs. Collectively, these orthologs
and the mock metatranscriptome benchmarking provide a rigor-
ous and validated approach to analyze the P. gingivalis transcrip-
tional profile in complex metatranscriptomes.

P. gingivalis Transcripts Are Enriched in Metatranscriptomes from
One-Third of Periodontally Diseased Patients. We analyzed 93 previ-
ously published metatranscriptomes from six studies for P. gingivalis
transcripts (Table 1 and Dataset S2A) (10–15) using the frame-
work determined using the mock metatranscriptomes above and
shown in SI Appendix, Fig. S1. These metatranscriptomes
included 61 periodontally diseased samples from 38 individuals,
including patients with gingivitis, aggressive periodontitis, and
chronic periodontitis. In addition, the metatranscriptomes
included 32 periodontally healthy samples, each from a separate
patient. Most of the samples were collected directly from the
human subgingival pocket, but 10 diseased and 10 healthy sam-
ples were from saliva. For each metatranscriptome, we mapped
all reads longer than 22 bp to the pangenome of 27 P. gingivalis
strains. Reads mapping to P. gingivalis protein-coding genes con-
stituted at least 0.1% of the total metatranscriptome in 21 of 61
diseased samples (34%) but not in any of the 32 healthy samples
(Fig. 2A and Dataset S2A). Reads mapping to P. gingivalis tended
to be more abundant in diseased samples (Mann–Whitney U
test, P = 0.07). Similarly, MetaPhlAn identified that P. gingivalis
constituted at least 0.1% of the community in 22 of 61 periodon-
tally diseased samples but only 1 of 22 periodontally healthy sam-
ples and that P. gingivalis was significantly enriched in the dis-
eased samples (Mann–Whitney U test, P = 0.002; Fig. 2B and
Dataset S2). In addition, P. gingivalis was the dominant Porphyro-
monas species across diseased samples (Dataset S2B). It is
important to note that these findings represent the transcrip-
tional abundance of P. gingivalis, and transcript levels do not
always correlate with DNA levels in the oral cavity (12). By ana-
lyzing the number of genes with mapped reads in each sample,
we narrowed our study to 12 human diseased samples with high
coverage of the P. gingivalis pangenome (Fig. 2C). These 12 sam-
ples are from four different publications and from both chronic
and aggressive periodontitis patients. In addition, these samples
are each dominated by a single strain of P. gingivalis, but across
these samples, there is diversity in the dominant strain (SI
Appendix, Fig. S2).

We also compared the clinical parameter, pocket depth, to
P. gingivalis relative abundance (Dataset S2A). Pocket depth
measures the separation between the gum and tooth and is one
assessment of disease severity; a pocket depth of 1 to 3 mm
often indicates periodontal health or gingivitis, while a pocket
depth ≥ 4 mm often indicates periodontitis (16). All samples
with high coverage of the P. gingivalis genome that were chosen
for downstream analysis had a pocket depth of at least 5 mm
(SI Appendix, Fig. S3). Together, this meta-analysis of 93 human
metatranscriptomes shows that P. gingivalis transcripts are
detected rarely in healthy samples and are more abundant in
periodontally diseased samples.

Housekeeping and Virulence Functions Are Highly Expressed in
Periodontitis. To probe the physiology of P. gingivalis during peri-
odontitis, we first analyzed the function of the 258 most highly
expressed P. gingivalis genes on average across the 12 peri-
odontitis samples. This gene set was chosen using an inflection
point analysis of the ranked average transcripts per kilobase
million (TPM) gene expression counts (SI Appendix, Fig. S4
and Dataset S3). These genes were enriched for clusters of
orthologous groups of protein (COG) categories C (energy pro-
duction and conversion), J (translation, ribosomal structure, and
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biogenesis), O (posttranslational modification, protein turnover,
and chaperones), and U (intracellular trafficking, secretion, and
vesicular transport) (Fig. 3A). In addition, COG category X
(Mobilome: prophages and transposons) was underrepresented
in the highly expressed genes, although one putative IS982 fam-
ily transposase not classified by COG was among the highly
expressed genes. Thus, much of the highly expressed genes were
involved in key cellular functions such as translation, protein
secretion, and ATPase activities.

This finding was further supported using hand-annotated func-
tional categories of genes known to be important for growth,
pathogenicity, and colonization (Fig. 3B and Dataset S3) with the
caveat that, in this classification scheme, many genes are assigned
to multiple functional categories. A total of 53 of 54 ribosomal
proteins (98%) were among the top 258 most highly expressed
genes, as were 19 of 27 genes (70%) annotated as part of the

oxidative stress regulon, including the oxidative stress-responsive
regulator OxyR. Functions related to pathogenesis were also
significantly enriched. A total of 11 genes annotated as fimbrial
proteins were among the 258 most highly expressed genes,
including both putative major and minor fimbrial subunits, and
genes encoding proteins involved in iron acquisition were sig-
nificantly enriched in the highly expressed gene set. In addi-
tion, the putative Arg- and Lys-gingipains were among the
highly expressed genes (rgpA, rgpB, and kgp). Finally, these
proteases and the citrullinating peptidylarginine deiminase
(ppad) were among the 11 highly expressed genes classified as
encoding Type IX Secretion System (T9SS) cargo proteins (11
of 30, 37%), and a gene annotated as a Type VI Secretion sys-
tem needle protein Hcp was also highly expressed. This analy-
sis shows that P. gingivalis is actively growing and dividing in the
human oral cavity, and during periodontitis, P. gingivalis
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expresses genes that contribute to pathogenesis such as those
encoding adhesins, iron acquisition proteins, proteases, and
secretion system–related proteins.

The P. gingivalis In Situ Transcriptional Profile Clusters with
Transcriptomes from Logarithmic Growth. An alternative approach
to understanding the physiology of P. gingivalis in the human oral
cavity is through comparison to in vitro growth conditions that
have known physiologies. Thus, we compared P. gingivalis gene
expression in the 12 periodontitis samples to 122 transcriptomes
of wild-type P. gingivalis collected during growth in experimental
model systems (Table 2 and Dataset S2C). A total of 117 of these
transcriptomes were from in vitro culture from 12 publications,
mostly from growth in rich media under laboratory conditions
(17–29). Of these transcriptomes, 85 were from monoculture
and 32 from pairwise coculture with either Streptococcus gordo-
nii, Acinetobacter baumannii, or Candida albicans. These in vitro
datasets include data from four P. gingivalis strains (Table 2 and
Fig. 1). The remaining five transcriptomes are from a murine
abscess model of infection using P. gingivalis ATCC 33277 and
were generated for this study. To ensure that any differences in
gene expression were not due to differences in gene content

between the strains in the experimental model systems or the
human specimens, we identified a core gene set for all compar-
ative analyses. This core set consisted of 1,500 genes that met
at least one of two criteria: 1) present in at least 26 of the 27
genomes in the pangenome and/or 2) had aligned sequencing
reads in all 12 human metatranscriptomes with high P. gingivalis
coverage and all 122 experimental model system transcriptomes
(Dataset S1).

A principal component analysis (PCA) of the regularized log
(rlog)-normalized gene expression across these samples showed
that the P. gingivalis periodontitis transcriptomes do not cluster
separately from the in vitro transcriptomes (Fig. 4 and SI
Appendix, Fig. S5). This finding suggests that at a global level, P.
gingivalis messenger RNA levels are not distinct between in vitro
culture and the human oral cavity. However, the samples did sep-
arate across the first principal component (PC1). Specifically, the
periodontitis transcriptomes clustered with in vitro transcriptomes
collected during logarithmic phase growth or on agar plates and
distinct from transcriptomes collected during stationary phase
growth, pelleted cells, or the murine abscess (Fig. 4). Of note,
both the soft and hard agar samples were from actively growing
cultures collected 24 to 30 h after inoculation, before significant
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Table 1. Human oral metatranscriptomic datasets

Reference Diseased samples Healthy samples

Belstrøm et al., NPJ Biofilms and Microbiomes, 2017. (saliva) (10) 10 (chronic periodontitis) 10
Duran-Pinedo et al., ISME J, 2014 (11). 7 (chronic periodontitis) 6
Jorth et al., mBio, 2014 (12). 3 (aggressive periodontitis) 3
Nowicki et al., mBio, 2018 (13). 3 (gingivitis) 3
Szafra�nski et al., NPJ Biofilms and Microbiomes, 2015 (14). 6 (chronic periodontitis) 10
Yost et al., Genome Medicine, 2015 (15). 16 (chronic periodontitis, stable site);

16 (chronic periodontitis, progressing site)
0
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colony biofilm formation (26). These findings are supported by a
heatmap of Euclidian distances between the read counts of the
samples in which the periodontitis samples cluster with midlogar-
ithmic phase and soft agar transcriptomes and separately from
cultures grown to late-logarithmic or stationary phase, collected
from cell pellets, or harvested from murine abscesses (SI
Appendix, Fig. S6). In the Euclidian distance and PCA, the experi-
mental model systems also cluster strongly by the individual
RNA sequencing (RNA-seq) studies from which the data were
obtained (SI Appendix, Figs. S5A and S6). However, the model
systems do not cluster by the P. gingivalis strain used in the experi-
ments (SI Appendix, Figs. S5B and S6).

We further identified the genes that had strong correlations with
PC1 in the PCA, as this axis separated the samples by growth con-
dition. Putative stress-related genes, including those annotated as
RpoE, universal stress protein, and DNA starvation/stationary
phase protection protein were positively correlated with PC1, as
were transposases and a number of genes encoding proteins with
T9SS sorting domains, indicating that these functions had higher
expression in stationary phase grown cells, pelleted cells, and within
murine abscesses than in the periodontitis metatranscriptomes or
during logarithmic growth. In contrast, genes encoding for the
heme import system (HmuRY), tetrahydrofolate metabolism, histi-
dine degradation, and transcription- and translation-related pro-
teins were negatively correlated with PC1, indicating that these
functions had higher expression in periodontitis and logarithmic
growth datasets than in the stationary phase, pelleted, and murine
abscess datasets. Thus, while P. gingivalis does not have a distinct

periodontitis transcriptome, cells in situ are more transcriptionally
similar to those in actively growing cultures than those in nutrient-
limited, nongrowing cultures or in the murine abscess.

Growth in Midlogarithmic Phase and on Agar Plates Are Highly
Transcriptionally Accurate Infection Models. To quantify the extent
to which P. gingivalis gene expression in each model mimics that
in the human oral cavity, we used an accuracy score (AS) frame-
work recently developed in our laboratory (30). This quantitative
framework determines the fraction of genes in an experimental
model whose normalized expression falls within a specified num-
ber of SDs of the mean of the expression in situ (periodontitis in
this case), providing an easily interpretable gauge of model per-
formance. As in our previous studies, we have chosen to focus on
genes whose expression falls within two SDs (termed AS2) of the
mean in the in situ metatranscriptomes, as two SDs encompass
the expression range of ∼95% of the in situ samples for each
gene. For example, if a model has an AS2 of 90%, then expres-
sion of 90% of a microbe’s genes fall within two SDs of the means
of the genes in the in situ metatranscriptomes. While the AS
score can be calculated using other SD ranges, such as an AS1 or
AS1.5, the false-negative rate increases with more stringent crite-
ria; for example, an AS1.5 has a false-negative rate of ∼13%,
while the false-negative rate for AS2 is ∼5% (30). This AS metric
is valuable in that it uses P. gingivalis periodontitis gene expres-
sion as a benchmark, and it determines accuracy of model sys-
tems using all of the core genes.
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Before assessing the accuracy of model systems, we performed
a control experiment to assess the accuracy of subsampled P. gingi-
valis periodontitis transcriptomes with the rationale that these
analyses will provide an upper AS2 benchmark for the experimen-
tal models. To accomplish this, we calculated the AS2 for
P. gingivalis gene expression in the periodontitis metatranscrip-
tomes by randomly choosing two P. gingivalis periodontitis tran-
scriptomes as the “model” and comparing their gene expression
to the remaining 10 periodontitis transcriptomes and then repeat-
ing this analysis 500 times. This analysis resulted in a mean AS2
value of 96%, indicating that across the periodontitis transcrip-
tomes, 96% of the core genes fell within two SDs of the mean
expression (Fig. 5A, periodontitis resampled). These results set
the upper benchmark for model systems at 96%, as this is the
accuracy of the periodontitis samples themselves.

Next, we calculated the AS2 for common growth models
(Fig. 5A, and Dataset S3D). The AS2 values for liquid midlogar-
ithmic growth and soft agar were 96%, equal to the benchmark
AS2 of the periodontitis samples. Thus, these P. gingivalis in vitro
growth conditions are indistinguishable from periodontitis tran-
scriptomes using this metric. In contrast, in the murine abscess,
85% of the P. gingivalis genes fell within two SDs of the mean
periodontitis expression, and stationary phase growth had the
lowest AS2 of 73%. When the AS2 was calculated for individual
replicates, the P. gingivalis transcriptional profile during growth
in soft agar and in liquid midlogarithmic phase were significantly
more accurate than that in stationary phase (Dunn’s multiple

comparison test, Padj < 0.001), and growth on soft agar was sig-
nificantly more accurate than in murine abscesses (Dunn’s multi-
ple comparison test, Padj = 0.04; SI Appendix, Fig. S7A).

Accuracy of Experimental Growth Conditions across Functional
Categories. To understand the transcriptional changes driving
these differences in accuracy score, we determined the AS2 for
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Table 2. P. gingivalis transcriptomic datasets from experimental model systems

Reference P. gingivalis strain(s) Growth conditions* Transcriptomes

Belvin et al., Infect Immun, 2019 (17). W83 Midlogarithmic phase, mycoplasma media
± nitrite

4 per condition (8 total)

Cheng et al., Metallomics, 2019 (18). ATCC 33277 Logarithmic phase, THK ± ranitidine
bismuth citrate added at
midlogarthmic phase and then sampled
at 30, 60, 180, and 360 min

4 per condition, 1 per time
point (8 total)

Coats et al., Infect Immun, 2019 (19). ATCC 33277 and 381 Stationary phase, TYHK 3 per strain (6 total)
Dou et al., Mol Oral Microbiol,

2018 (20).
W83 Late-logarithmic phase, BYHK with

hydrogen peroxide
3 total

Hendrickson et al., Front Microbiol,
2017 (21).

ATCC 33277 Pelleted cells, held anaerobically in
phosphate-buffered saline for 0, 5, 30,
60, 120, 240, and 360 min ± S. gordonii
DL1, ± DMSO, or ± 4-aminobenzoate

2 to 3 per condition and
time point (36 total)

Hovik et al., J Bacteriol, 2012 (22). W83 Hard agar, blood agar plates + HK;
midlogarithmic phase, THK;
midlogarithmic phase, chemically
defined minimal liquid media

1 per condition (3 total)

Jain et al., J Bacteriol, 2019 (23). ATCC 33277 Stationary phase, TYHK 3 total
Kin et al., J Oral Microbiol, 2020 (24). W50 Logarithmic phase, Oral Bacterial Growth

Medium ± Treponema denticola spent
media

3 per condition (6 total)

Miller et al., Mol Oral Microbiol,
2018 (25).

ATCC 33277 Pelleted cells, held aerobically
in phosphate-buffered saline for
180 min ± A. baumannii AB0057

4 monoculture, 8 coculture
(12 total)

Moradali et al., ISME J, 2019 (26). W83 and 381 Hard and soft agar, 0.3 and 1.5% blood
agar plates + THK

3 per condition per strain
(12 total)

Moye et al., Appl Environ Microbiol,
2019 (27).

W83 Midlogarithmic phase, THK ± 0.1%
galactose

3 per condition (6 total)

Shen et al., Mol Oral Microbiol,
2020 (28).

ATCC 33277 Logarithmic phase, TYHK 5 total

Sztukowska et al., mBio, 2018 (29). ATCC 33277 Logarithmic phase, CaGHK ± C. albicans
hyphae or C. albicans spent media

3 per condition (9 total)

This study. ATCC 33277 Murine inner thigh abscess model 5 total

*Abbreviations: T = tryptic soy broth; B = brain–heart infusion; H = hemin; K = vitamin K; Y = yeast extract; DMSO = dimethyl sulfoxide; CaG = yeast
nitrogen base, 10 mM NaH2PO4 buffer (pH 7.0), 0.05% Bacto tryptone, and 0.4% glucose.
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individual functional categories (Fig. 5 B and C, SI Appendix,
Fig. S7B, and Dataset S3D). These categories include the hand-
curated functional classifications used in Fig. 3B and

hierarchical TIGRFAM categories, which were hand curated to
assign putative sub roles, main roles, and meta roles for all core
P. gingivalis genes (Dataset S1) (30–32). Transcript levels of
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metabolic functions were highly similar between midlogarithmic
phase growth and periodontitis, but metabolism is largely dysre-
gulated in stationary phase relative to periodontitis (Fig. 5C). An
especially inaccurate metabolic functional category was the tri-
carboxylic acid (TCA) cycle, which only had high accuracy dur-
ing midlogarithmic growth (AS2 = 92%) and was the least
accurate functional category during growth on soft agar (AS2
= 58%). Low accuracy in the TCA cycle in most growth condi-
tions was due to lower expression in periodontitis of an oxaloac-
etate decarboxylase, three subunits of the fumarate reductase/
succinate dehydrogenase, three subunits of the 2-oxoglutarate
oxidoreductase, and an adjacent ferredoxin. In addition, the
TIGRFAM meta role “genetic information processing” had
decreased accuracy in stationary phase relative to other condi-
tions, including low AS2 values for transposon functions (13%,
overexpressed relative to periodontitis), protein
stabilization–related genes (47%, predominately overexpressed
relative to periodontitis), and transfer RNA aminoacylation
genes (60%, both over- and underexpressed relative to periodon-
titis; Fig. 5C). This is also evident in the low accuracy of the
“stress” functional category (AS2 = 21%), which includes overex-
pressed genes in stationary phase relative to periodontitis encod-
ing for chaperones, Clp protease, universal stress protein, and
DNA starvation/stationary phase protection protein (Fig. 5B).
However, ribosomal proteins and oxidative stress genes within
the OxyR regulon had high accuracy across growth conditions
(Fig. 5 B and C).

Virulence-related functions also varied in their accuracy scores.
The T9SS AS2 values ranged from 77% in stationary phase tran-
scriptomes to 100% for soft agar transcriptomes (Fig. 5 B and C).
In addition, the accuracy scores varied for genes encoding the
Arg- and Lys-gingipains and gingipain-associated proteins; the
gingipain functional category had an AS2 of 100% in midlogar-
ithmic phase transcriptomes but 67% in stationary phase.
Finally, adhesins (Fig. 5B) and pathogenesis (Fig. 5C) had low
accuracy in mid- and late-logarithmic phase and a higher accu-
racy in stationary phase. It is likely that strain differences in fim-
briae expression influence these differences, as stationary phase
transcriptomes included in the accuracy score analysis were
derived using the closely related P. gingivalis strains ATCC
33277 and 381, while the transcriptomes from mid- and late-
logarithmic growth were derived using strain W83 (Fig. 1 and
Table 2), and W83 is known to have lower fimbriae expression
(33). However, strain differences did not fully explain low accu-
racy in the adhesin and pathogenesis categories, as the murine
abscess, infected with P. gingivalis ATCC 33277, had an AS2 of
67% in both adhesins and pathogenesis functional categories.
Also, hard agar and soft agar each have replicates from both
strain types, but differ in their AS2 for these functions.

We also identified four genes that were not accurately cap-
tured by any of the experimental models within two SDs. These
genes encode three hypothetical proteins, including one con-
served hypothetical protein thought to be involved in iron
acquisition, and rubrerythrin, which is important for oxidative
stress. Together, this analysis shows that across the majority of
functional categories, midlogarithmic growth in liquid culture
and growth on soft agar largely recapitulate the P. gingivalis
gene expression patterns in the human oral cavity.

P. gingivalis Gene Expression Has Low Variance. Our analyses
showed that for almost all functional categories, the P. gingivalis
transcriptome was highly similar between midlogarithmic phase
growth, growth on soft agar, and during periodontal disease
(Figs. 4 and 5 and SI Appendix, Fig. S6). In contrast, similar
analyses for other microbes have found distinct gene expression
profiles between human infection and growth in laboratory or
animal models using PCAs (1–3). These distinct profiles result
in an AS2 of 84 and 90% for P. aeruginosa and S. aureus in

midlogarithmic growth, respectively (Fig. 6A). In addition, an
analysis of P. aeruginosa across diverse experimental model sys-
tems found AS2 values ranging from 81 to 86% for all
genes (30).

Therefore, we wanted to better understand the high accuracy
scores for P. gingivalis in certain experimental model systems.
First, as the AS2 metric is based on the variance of the in situ
gene expression, high accuracy of an experimental model system
could result from high in situ gene expression variance. To ask if
the high AS2 scores were due to high variance in P. gingivalis gene
expression during periodontitis, we recalculated the AS2 scores,
excluding 54 genes with a high SD during periodontitis. The
resulting accuracy scores of the experimental models remained
high (SI Appendix, Fig. S8). In addition, we found that the
range of the SD of rlog-normalized read counts was smaller for
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Fig. 6. Gene expression variance of P. gingivalis, P. aeruginosa, and S. aureus
in human patient samples and in laboratory models. (A) The percentage of
genes that fall within two SDs of the mean in situ gene expression (AS2)
during midlogarithmic growth. For P. gingivalis, 16 in vitro transcriptomes
collected during midlogarithmic growth were compared to 12 periodontitis
metatranscriptomes; for P. aeruginosa, 11 in vitro transcriptomes collected
during midlogarithmic growth were compared to 20 sputum metatran-
scriptomes from people with cystic fibrosis; and for S. aureus, 14 in vitro
transcriptomes collected during midlogarithmic growth were compared to
10 sputum metatranscriptomes from people with cystic fibrosis. (B) Histo-
gram of the variation in gene expression across human samples. Histogram
was constructed with a bin size of 0.1 using the variation in rlog-
normalized bacterial gene expression levels across metatranscriptomes col-
lected from periodontitis (P. gingivalis; n = 12) and from cystic fibrosis spu-
tum (P. aeruginosa and S. aureus; n = 20 and n = 10, respectively). (C) Histo-
gram of the variation in gene expression across diverse growth conditions.
Histogram was constructed with a bin size of 0.1 using rlog-normalized bac-
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of 134 samples were analyzed for P. gingivalis, 92 for P. aeruginosa, and 34
for S. aureus.
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P. gingivalis transcriptomes from periodontitis samples than
for P. aeruginosa or S. aureus transcriptomes from sputum sam-
ples from people with cystic fibrosis (Fig. 6B). Thus, the high
P. gingivalis accuracy scores are not due to high variance in peri-
odontitis, and in fact, P. gingivalis has a smaller in situ gene
expression variance than these other microbes.

Alternatively, we asked if the high accuracy scores of P. gingiva-
lis were due to overall smaller deviations in gene expression for
this microbe. We calculated the SD of the rlog-normalized expres-
sion of each gene for P. gingivalis, P. aeruginosa, and S. aureus
across a wide range of growth conditions, including in situ growth,
mouse models, and laboratory growth conditions (Fig. 6C). The
SD of P. gingivalis gene expression had a smaller distribution than
that for the other two microbes. Specifically, for P. gingivalis, 95%
of genes across all conditions had an SD of 1 or less. In contrast,
for P. aeruginosa and S. aureus, the 95th percentile was an SD of
1.5 and 1.7, respectively. Together, these findings indicate that the
gene expression levels for P. gingivalis are more stable across
growth conditions and provide insight into the high similarity of
the P. gingivalis transcriptome between rich media in laboratory
conditions and the human oral cavity.

Discussion
Next-generation sequencing has provided a portal to under-
standing the behavior of microbes in their native environments.
This study leverages 93 publicly available metatranscriptomes
from the human oral cavity to further our understanding of the
physiology of P. gingivalis during infection and to identify which
experimental model systems best encapsulate this physiology.
We discovered that P. gingivalis in the diseased oral cavity has
highly similar gene expression to that during midlogarithmic
phase in vitro growth. This finding is in contrast to previous work
comparing gene expression between infection and laboratory
models for diverse bacterial pathogens (1–3, 7, 30). Thus, while
great effort is required to develop accurate in vitro models for
other opportunistic pathogens such as P. aeruginosa (1, 30, 34, 35),
P. gingivalis human gene expression is highly mimicked in a com-
mon, easily accessible laboratory model. These data also provide
strong support for a need to continuously and quantitatively evalu-
ate current model systems using sceintific data, rather than alter-
ing current models or developing new models based on intuition.
We anticipate that for many bacteria, particularly niche specialists
such as P. gingivalis, simple in vitro growth conditions may be
highly useful, biologically relevant model systems.

Our discovery that P. gingivalis gene expression during peri-
odontitis is similar to that in logarithmic in vitro cultures offers
important context for understanding the biology of this patho-
gen. First, these results provide biological relevance for the
thousands of in vitro and in vivo experimental results published
on this bacterium. The fact that a midlogarithmic test tube
model highly recapitulates gene expression in situ significantly
advances our understanding of this bacterium during periodon-
tal infection. Logarithmic growth in vitro is generally the most
common system used to study P. gingivalis and most other bacte-
ria, and there are decades of data on P. gingivalis physiology dur-
ing logarithmic phase growth. Furthermore, laboratory growth
in rich media offers an accessible, inexpensive experimental
model for testing future hypotheses. Second, while one might
expect the oral cavity to be a hostile environment because of
competition for resources with other microbes and interactions
with the host immune system, our findings indicate that in the
periodontitis samples analyzed here, P. gingivalis is growing in a
nutrient-rich, relatively stress-free environment. Although the
transcriptional profile of P. gingivalis was comparably stable dur-
ing periodontitis in this sample set (Figs. 4 and 6), we cannot
rule out that other experimental models best capture P. gingivalis
growth under certain conditions, for instance, at very low

abundance in the oral cavity or at alternative disease sites such
as the human brain in connection to Alzheimer’s disease (36).
Thus, this study provides a framework for future analyses of
how the transcriptome of P. gingivalis changes relative to its
abundance, across disease sites, over longitudinal studies of dis-
ease and treatment, or in the presence of different coinfecting
microbes. Also, this study focused on the transcription of P. gin-
givalis during disease at the population level, primarily using
core genes, and it would be interesting in the future to consider
the role of strain-level differences and population-level hetero-
geneity as well as the accuracy of accessory genes.

In addition, we have specifically identified experimental model
systems that best capture the few genes not well mimicked in log-
arithmic phase in vitro cultures (Fig. 5 and Dataset S3). For
example, the murine abscess model was not highly accurate over-
all, including increased expression of stress-related genes,
increased nutrient limitation, and decreased fimbria expression in
the abscesses relative to periodontitis (Fig. 5 B and C); how-
ever, there are 49 genes captured by this model that were not
accurately mimicked by midlogarithmic phase in vitro cultures
(Dataset S3). These genes include a putative hemolysin virulence
factor as well as several metabolic genes. Thus, if one is interested
in this small subset of genes, the mouse would be a preferred
model over midlogarithmic phase in vitro culture. Our accuracy
score framework also presents future opportunities to characterize
the utility of other animal models (37). Moreover, while gene
expression is a major determinant of physiology, certain biological
questions may additionally require the accurate capture of factors
such as gene essentiality, bacterial fitness, or host–microbe inter-
actions. For example, studying disease outcomes requires the use
of animal models. Furthermore, a similar accuracy score approach
could be used to compare host gene expression between human
infection and animal models of periodontitis.

In our framework, the accuracy of experimental models
depends both on the variance of gene expression in situ and the
differences in gene expression between in situ and laboratory
growth. A model could be considered accurate because its gene
expression is highly similar to that in situ or because the in situ
gene expression is so highly variable that it encapsulates large
deviations in model gene expression. We found that P. gingivalis
accuracy is likely due to the former, as it has low variability in
gene expression across environments, including periodontitis
(Fig. 6). Despite this low variability, in vitro stationary-phase cells
had a low AS2 (73%), indicating a specific change in gene expres-
sion at this growth phase compared to periodontitis. In contrast,
the high AS2 for S. aureus during midlogarithmic growth (90%)
was due to highly variable gene expression within the in situ spu-
tum samples (Fig. 6). We hypothesize that these differences in
S. aureus and P. gingivalis gene expression variability result from
the fact that S. aureus is a generalist and P. gingivalis a specialist.
Indeed, S. aureus is an opportunistic pathogen that can be found
in multiple sites on the body and on multiple hosts (38). In com-
parison, P. gingivalis is specific to the oral cavities of humans and
old-world primates and is predominantly an oral pathogen (Fig. 2)
(39). Although P. gingivalis has been proposed to contribute to
disease at other body sites, fitness in these alternative sites is
likely not a primary driver of this microbe’s evolution. Therefore,
it is not unreasonable that a bacterium that is highly niche spe-
cific has evolved stable gene expression patterns to be fit in its
environment, and these stable expression patterns are mani-
fested in other, nonnative environments. We propose that P. gin-
givalis has not evolved the transcriptomic plasticity to adapt to
diverse habitats, and this smaller regulatory need is also evi-
denced by the small regulon in P. gingivalis relative to many other
bacteria, even relative to genome size (40, 41).

In sum, we further a recently developed framework for study-
ing bacterial in situ gene expression, relative to experimental
model systems, including the analyses to determine minimum

M
IC
RO

BI
O
LO

G
Y

Lewin et al.
A quantitative framework reveals traditional laboratory growth is a highly
accurate model of human oral infection

PNAS j 9 of 11
https://doi.org/10.1073/pnas.2116637119

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116637119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116637119/-/DCSupplemental


read length for mapping and the accuracy score metric (30).
Through curating hundreds of datasets, this work reveals that
P. gingivalis gene expression during periodontitis is highly similar
to midlogarithmic in vitro cultures, providing strong evidence
for the use of a simple test tube model as the gold standard
model for studying P. gingivalis biology. These results have signif-
icant implications to bacteriology, as they provide a framework
to quantitatively assess the biological relevance of the tens of
thousands of in vitro experiments performed in this basic labora-
tory model system.

Materials and Methods
A summary of the analysis approach is available in SI Appendix, Fig. S1.

Pangenome Construction. The phylogeny of 62 P. gingivalis strains (all strains
in The National Center for Biotechnology Information [NCBI] excluding dupli-
cates as of January 2021) was built in Kbase using the “Build Microbial Spe-
ciesTree” app version 1.7.1 (42). Briefly, this analysis constructs a tree using 49
core genes defined by COG gene families. These core genes were inserted into
curated multiple sequence alignments for each COG family, the alignments
were concatenated, and the maximum likelihood phylogenetic tree was con-
structed using FastTree2 version 2.1.10 (43). The tree was annotated using
Interactive Tree Of Life (iTOL) v5 (44). Strains chosen for the pangenome
included the 20 strains with complete genomes and seven additional genomes
to ensure coverage of the species diversity (Fig. 1 and Dataset S1). Gene clus-
ters (orthologs) were constructed for these 27 P. gingivalis genomes using
Roary with the flag -i 90 (45). After minimal manual curation, pangenome locus
tags were assigned based on the genome fragment order in the Roary output
(Dataset S1). TIGRFAM annotations for each gene were assigned using KBase,
Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were assigned
using both BlastKOALA and KofamKOALA, and COG termswere assigned using
KEGG’s binary relationships to COG in the BRITE database (46, 47).

Mock Metatranscriptome Analysis. We built our mock metatranscriptome
using 658 genomes downloaded from the Human Oral Microbiome Database
with habitat labeled as “Oral” or “Nasal, Oral” spanning 82 genera and
including 19 P. gingivalis genomes, 10 of which are also in our pangenome
(48). Art v.2.5.8 was used to simulate metatranscriptomic reads from the cod-
ing sequences of this mock community at 10 lengths varying from 15 to 50 bp
with 1× coverage (49). The reads were mapped using Bowtie2 v2.3.5 to the
P. gingivalis ATCC 33277 genome and to concatenated genomes of the
27 strains in the pangenome (50). This workflow is available at https://github.
com/glew8/Pgingivalis_Metatranscriptome_Analyses.

Murine Abscess RNA-Seq. The murine inner thigh abscess was performed by
inoculating Balb/c mice with 1.5 × 109 P. gingivalis ATCC 33277 cells collected in
the midlogarithmic growth phase and washed with sterile, prereduced phos-
phate-buffered saline (PBS). Abscess material was collected 48 h postinoculation
by making a small incision adjacent to the abscess and collecting the secreted
material using a sterile cotton swabwhichwas then dispersed into sterile, prere-
duced PBS. Each sample was briefly centrifuged at 150 × g for 3 min at 4 °C to
pellet any eukaryotic cells present from the abscess, afterwhich the supernatant
was centrifuged at 5,000 × g at 4 °C for 5 min to pellet bacterial cells. After
removing the supernatant, the bacterial pellet was used for total RNA extrac-
tion using the Invitrogen TRIzol Max Bacterial RNA Isolation Kit (Thermo Fisher
Scientific) following the manufacturer’s protocol. Ribosomal RNA depletion,
strand-specific library construction, and 150-bp paired-end RNA sequencing
were performed by Novogene using the Illumina NovaSeq 6000 platform.

Quality Analyses, Mapping, and Counting of RNA-Seq Datasets. Using only
the forward reads from each dataset if paired end, RNA-seq sequencing read
quality was confirmed with FastQC v0.11.8 (51). Reads were trimmed to
remove adapters from the 30 end of the reads using Cutadapt 2.6 (AGA TCG
GAA GAG CAC ACG TCT GAA CTC CAG TCA C and AAG TCG GAG GCC AAG
CGG TCT TAGGAAGAC AA for Illumina- and BGISEQ-sequenced reads, respec-
tively) (52). Trimmed reads that were at least 22 bp were mapped to the
concatenated genomes of 27 P. gingivalis strains (Dataset S1) using Bowtie2
v2.3.5 with default parameters (50). featureCounts (subread-2.0.1) was used
to assign reads to protein-coding genes with the flags -s 0 (unstranded) and
-O (allowMultiOverlap) in R 4.0.2 (53, 54) so that each read was assigned to a
single locus or to neighboring genes. Then, read counts were summed for
each ortholog to account for strain-level differences across samples. At each
step,MultiQC v1.9 was used to track analysis quality (55).

MetaPhlAn and StrainPhlAn Analyses. The taxonomy of the human periodonti-
tis datasets was estimated using MetaPhlAn 3.0.6 with marker gene version
mpa_v30_CHOCOPhlAn_201901, the minimum read length set to 22 bp, and
viruses included (56). The dominant P. gingivalis strain in themetatranscriptomes,
relative to the 27 reference genomes in the pangenome, was determined using
StrainPhlAn 3.0 with the minimum read length set to 22 bp (56, 57). iTOL v5 was
used to visualize the population structure (44).

Gene Expression Analyses. Gene counts were normalized using TPM by divid-
ing the raw counts by the average length for each ortholog to determine reads
per kilobase (RPK), summing the RPK for each sample and dividing by
1,000,000 to determine the scaling factor, and then dividing the RPK by the
scaling factor for each gene. Highly expressed genes based on TPM were iden-
tified using R package inflection version 1.3.4 (58). Enrichmentwas determined
using a two-sided Fisher’s exact test, and P values were corrected for multiple
testing using the Benjamini–Hochberg method in R. rlog normalization of core
genes was performed on all metatranscriptomes and transcriptomes together
using DESeq2 with blind = TRUE in R (59). The PCA was built using rlog-
normalized counts of the 500 core genes with highest variability across samples
using the command plotPCA in DESeq2. The Euclidian distance matrix was cal-
culated from the rlog-normalized counts of the 1,500 core genes using the R
function dist, and the heatmapwas produced in pheatmap version 1.0.12 (60).

AS Analyses. Accuracy scores were calculated and graphed using rlog-
normalized read counts for the 1,500 P. gingivalis core genes (Dataset S1C) in
R version 4.0.2 with the following packages: tidyverse version 1.3.0, cowplot
version 1.0.0, readr version 1.3.1, dplyr version 1.0.2, tidyr version 1.1.2, tibble
version 3.0.3, purrr version 0.3.4, ggsunburst version 0.3.0, zeallot version 0.1.
0, ggplot2 version 3.3.2, and reshape version 0.8.8 (61–71). Scripts are modi-
fied from Cornforth et al. and are available at https://github.com/glew8/
Pgingivalis_Metatranscriptome_Analyses (30). This analysis calculates the
mean and SD of normalized read counts for each gene in a target environ-
ment, in this case periodontitis. Then, using these values, the analysis deter-
mines the number of SDs away from the target mean gene expression for
each gene in each replicate in a model (the z-score). The median z-score across
replicates is identified for each gene, and this value is outputted as the
“penalty.” Finally, the AS2 is calculated by determining the percentage of
penalties that fall between �2 and 2. For AS2 calculations across functional
categories, the approach is the same, but only the genes within the given
functional category are considered. To understand how transcriptionally vari-
able genes during periodontitis impact the AS, the AS2 analysis was also per-
formed excluding 54 genes with a SD of rlog-normalized read counts greater
than 1 across the 12 periodontitis samples (Dataset S3C).

P. aeruginosa and S. aureus Analysis. Raw read counts of P. aeruginosa tran-
scriptomes in experimental model systems, human sputum, and human
wounds were obtained from Cornforth et al. (30). P. aeruginosa analyses were
limited to 4,945 soft core genes that were 1) present in 277 of 291 (95%) high-
quality genomes as analyzed by Roary using the same parameters as the P. gin-
givalis pangenome construction above and 2) had orthologs in P. aeruginosa
PAO1. Raw read counts of S. aureus transcriptomes in experimental model sys-
tems, human sputum, and human wounds were obtained from Ibberson and
Whiteley (2). S. aureus analyses were limited to 1,960 core genes in a 15-strain
pangenome (2). Raw gene counts were rlog normalized with DESeq2, and the
AS2 analysis was performed.

Data Availability. RNA-seq reads from P. gingivalis infection for the five
murine abscesses are available in the NCBI Sequence Read Archive in BioPro-
ject PRJNA762090 at https://www.ncbi.nlm.nih.gov/bioproject/762090. The
other 210 datasets used in this publication are previously published as shown
in Tables 1 and 2, and Dataset S2. The orthologs and curated annotations for
the pangenome are available in Dataset S1. P. aeruginosa and S. aureus data-
sets are available from refs. 2 and 30.
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