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The therapeutic landscape for lymphomas is quite diverse and includes active

surveillance, chemotherapy, immunotherapy, radiation therapy, and even stem cell

transplant. Advances in the field have led to the development of targeted therapies,

agents that specifically act against a specific component within the critical

molecular pathway involved in tumorigenesis. There are currently numerous

targeted therapies that are currently Food and Drug Administration (FDA)

approved to treat certain lymphoproliferative disorders. Of many, some of the

targeted agents include rituximab, brentuximab vedotin, polatuzumab vedotin,

nivolumab, pembrolizumab, mogamulizumab, vemurafenib, crizotinib, ibrutinib,

cerdulatinib, idelalisib, copanlisib, venetoclax, tazemetostat, and chimeric antigen

receptor (CAR) T-cells. Although these agents have shown strong efficacy in

treating lymphoproliferative disorders, the complex biology of the tumors have

allowed for themalignant cells to develop variousmechanisms of resistance to the

targeted therapies. Some of themechanisms of resistance include downregulation

of the target, antigen escape, increased PD-L1 expression and T-cell exhaustion,

mutations altering the signaling pathway, and agent binding site mutations. In this

manuscript, we discuss and highlight the mechanism of action of the above listed

agents as well as the different mechanisms of resistance to these agents as seen in

lymphoproliferative disorders.

KEYWORDS

lymphoma, targeted therapy, resistance, mechanism of action, CAR T-cells,
tazemetostat, cerdulatinib
Introduction

Lymphomas are a group of malignancies characterized by the uncontrolled

proliferation of either mature B-lymphocytes or T-lymphocytes. Lymphomas can be

further classified as Hodgkin or non-Hodgkin based on the presence or absence of Reed-

Sternberg cells, respectively. The treatment for lymphomas includes active surveillance,

chemotherapy, immunotherapy, radiation therapy, and even stem cell transplant. In

terms of chemotherapy, for Hodgkin lymphoma (HL), the front-line therapy has been
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ABVD (doxorubicin, bleomycin, vinblastine, dacarbazine), but

despite great overall survival rates, around 30-40% of patients

relapse within the first two years after treatment (1). On the

other hand, for non-Hodgkin lymphoma (NHL), R-CHOP

(rituximab, cyclophosphamide, doxorubicin, vincristine, and

prednisone) has been the front-line therapy, and despite

complete responses, around 40-50% of patients develop

refractory/relapsed (R/R) disease (2). It should be noted that it

took decades of trial and error of trying to improve upon the

backbone of ABVD and CHOP to eventually develop the

brentuximab vedotin + AVD (3) and rituximab + CHOP

treatment regimens that are now part of the first-line

therapies. One such example of the trial-and-error process is

that after a pivotal trial found unacceptable levels of pulmonary

toxicity with brentuximab vedotin + ABVD, bleomycin was

removed from the regimen (4). In addition, after many trials,

polatuzumab vedotin was also found to significantly improve the

R-CHP treatment regimen in the first-line treatment setting for

NHLs (5, 6). To address high R/R rates, technological advances

have led to the development of targeted therapies against driver

molecular aberrations that have emerged as highly effective

treatment options in patients whose malignancies harbor the

allotted target (7–9). A targeted therapy can be defined as an

agent that targets a critical molecular pathway involved in

tumorigenesis (10). Furthermore, advances facilitating rapid

genomic profiling have allowed for the formation of

hypotheses regarding which patients may benefit more from a

targeted therapy based on their genetic subtype (11). However,

many cancers have strategically developed means to outsmart

the highly precise medicines to confer resistance. Thus, we will

discuss the mechanisms of escape to various targeted therapies

noted in lymphoproliferative disorders.
Targeted therapies

Rituximab

A chimeric monoclonal antibody, rituximab targets the

CD20 antigen expressed on lymphocytes and induces cell lysis

upon binding antibody-dependent cellular cytotoxicity

(ADCC) and complement-dependent cytotoxicity (CDC).

Rituximab is used in a variety of disorders, and when it

comes to malignancies, it is mainly used to treat NHLs and

chronic lymphocytic leukemia. Currently, the FDA has

approved rituximab for use in treating NHLs, chronic

lymphocytic leukemia (CLL), rheumatoid arthrit is ,

granulomatosis with polyangi i t is , and microscopic

polyangiitis. Mechanisms of resistance to rituximab are not

completely understood, since the therapy relies on the host

immune system to mount an immune response, and thus, host
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factors can also significantly impact efficacy (12). However,

three main mechanisms are postulated. The first is that tumor

cells have developed ways to block CDC; analysis of rituximab-

resistant cell lines has shown that these cells express high levels

of membrane complement regulatory proteins (mCRP) – such

as CD46, CD55, and CD59 – and these inhibitory proteins

block the activation of the complement cascade (13). This

theory has been supported by preclinical studies displaying that

neutralizing mCRPs with antibodies lead to increased

effectiveness of rituximab (14). Next, though rituximab

inhibits B-cell lymphoma 2 (Bcl-2) expression to promote

cell apoptosis, a study found that prolonged exposure to

rituximab led to the downregulation of pro-apoptotic

proteins Bcl-2 antagonist/killer (BAK) and Bcl-2 associated X

(BAX), conferring resistance (15). Finally, the most supported

mechanism of resistance is downregulation of CD20, the target

antigen. Studies have identified C-terminal deletions in the

CD20 gene as well as decreased expression of CD20 mRNA in

cells found to be CD20 negative after rituximab exposure (16,

17). Since rituximab is utilized throughout many phases of

lymphoma treatment – first-line, maintenance, and salvage –

studies are being conducted to develop strategies for navigating

these mechanisms of resistance.
Brentuximab vedotin

A chimeric antibody-drug conjugate, brentuximab vedotin

targets the CD30 antigen expressed on lymphocytes to trigger cell

death. It has been FDA-approved to treat classical HL and systemic

anaplastic large cell lymphoma. Additionally, brentuximab vedotin

is a part of the front-line therapy for HL and T-cell NHL (18, 19).

CD30 is expressed on activated lymphocytes thus it is an attractive

target for therapies (20). Upon binding, the drug is internalized into

the cell and subsequently releases the potent microtubule inhibitor

monomethyl auristatin E (MMAE) to inhibit cell differentiation and

induce apoptosis (20). An in vitro study analyzing brentuximab

vedotin resistant cells found that CD30 expression was not

significantly lowered in these cells (21). Instead, the resistant cells

upregulated the expression of the multi-drug resistance (MDR1)

gene and its subsequent product, P-glycoprotein, to confer

resistance (21). Additionally, the cells displayed decreased

intracellular accumulation of MMAE and increased efflux of

MMAE, allowing the cells to avoid death (21). This mechanism

of resistance has been further supported by a phase 1 study

evaluating the effects of two broad multi-drug resistance

modifiers, cyclosporine A and verapamil, on brentuximab vedotin

resistance in patients with brentuximab vedotin-resistant HL (22).

This study found that inhibiting MDR1 restored sensitivity to

brentuximab vedotin, increased intracellular MMAE levels, and

improved overall brentuximab vedotin activity (22).
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Polatuzumab vedotin

Polatuzumab vedotin is another antibody-drug conjugate that

targets the CD79b antigen expressed on lymphocytes, and it has

been FDA-approved for treating R/R diffuse large B-cell lymphoma

(DLBCL). When antigens bind to the B-cell receptor (BCR), the

ligand-receptor complex gets internalized into the cell so that the

antigen can be presented on major histocompatibility complex

(MHC) class II molecules on the B-cell surface. This process

relies heavily on the proper functioning of CD79, a heterodimer

of CD79a and CD79b, and within this, CD79b is the dominant

player (23). Since CD79b is expressed on most cells of B-cell

lymphomas and leukemias, it serves as a prime target for

therapies such as polatuzumab vedotin (23). Upon binding to

CD79b, polatuzumab vedotin induces cell death in a similar

manner to brentuximab vedotin (23). Though polatuzumab

vedotin is currently approved (in combination with bendamustine

plus rituximab) for use in the R/R setting for DLBCL (24), the

POLARIX study found that among 879 patients, the risk of disease

progression, relapse, or death was lower in the group treated with

polatuzumab vedotin + R-CHP when compared to the group

treated with standard R-CHOP – highlighting that polatuzumab

vedotin + R-CHPmay soon emerge as a part offirst-line therapy for

DLBCL (5). POLARIX was a confirmatory phase 3 trial based on

the positive toxicity profile seen regarding the use of Polatuzumab

in the phase 1-2b study in patients with previously untreated

DLBCL (25). Utilizing flow cytometry to analyze CD79b cell-

surface expression, one study identified that a minimal threshold

of 6.82 geometric mean fluorescence intensity units for CD79b

expression must be present for anti-CD79b ADCC to be effective

(25). Therefore, the primary mechanism of resistance to

polatuzumab vedotin is downregulation of CD79b expression

(25). However, the ROMULUS phase 2 clinical trial identified

resistance to MMAE as another mechanism in patients with R/R

diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma

(FL) (26). This trial compared polatuzumab vedotin to

pinatuzumab vedotin – another antibody-drug conjugate targeted

at CD22 (26). In this trial, six patients who had no response

originally switched to the other antibody-drug conjugate, and

none of these patients responded to the other drug – highlighting

that their malignancies had developed resistance to MMAE, not the

respective CD drug targets (26). Strategies to overcome resistance to

polatuzumab vedotin are being devised and studied (27), and

indeed many combinatorial approaches are under development in

clinical trials including PolaR-ICE (rituximab, ifosfamide,

carboplatin, and etoposide) (NCT04665765), polatuzumab

vedotin + GemOX (gemcitabine and oxaliplatin) (NCT04182204),

and polatuzumab vedotin +mosenutuzumab (NCT03671018) (28).
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Nivolumab

Nivolumab is a monoclonal antibody that binds to and blocks

the programmed death receptor-1 (PD-1). It has been FDA-

approved to treat classical Hodgkin lymphoma (cHL), melanoma,

non-small cell lung cancer, malignant pleural mesothelioma, renal

cell carcinoma, squamous cell carcinoma of the head and neck,

urothelial carcinoma, colorectal cancer, hepatocellular carcinoma,

esophageal cancer, and gastric cancer. Also known as CD279, PD-1

is a checkpoint protein on T-cells and B-cells that binds to

programmed death-ligand 1 and 2 (PD-L1 and PD-L2) on other

cells of the body to prevent immune cells from attacking other cells

in the body (29). Malignant cells express high levels of PD-L1 to

help shield them from an immune system response (29).

Additionally, the genes for PD-L1 and PD-L2 are located on

chromosome 9p24.1, and amplification of 9p24.1 was found to be

associated with increased expression of PD-L1 in HL (30).

Therefore, blocking the interaction between PD-1 and PD-L1

enhances the immune system’s anti-tumor response and delays

tumor growth (29). Mechanisms of resistance to immune

checkpoint inhibition involve inadequate T-cell attraction and

activation in addition to impaired T-cell effector functions. In

cHL, the Hodgkin Reed-Sternberg (HRS) cells produce vascular

endothelial growth factor (VEGF) which induces regulatory T-cell

proliferation and increases the expression of inhibitory receptors,

including PD-1 (31). This, in turn, leads to T-cell exhaustion (31).

Thus, a tumor microenvironment with a higher proportion of

regulatory T-cells and inhibitory receptors can alter the efficiency of

PD-1 blockade therapy (31). Next, tumor cells can have absent or

aberrant HLA expression which compromises antigen presentation

and affects immune checkpoint inhibition efficacy (32). In fact, in

around 70% of cHL cases, HLA class I surface expression is lost

(32). Tumor cells can resist PD-1 blockade therapy by increasing

the production of indoleamine 2,3-dioxygenase (IDO), the initial

and rate-limiting enzyme involved in the degradation of tryptophan

(33). Finally, HRS cells have decreased levels of adenosine

deaminase, the enzyme involved degrading the purine adenosine

(34). This increases levels of adenosine in cHL cells which activates

the alternative degradation pathway involving CD32, CD203a, and

CD73 (35). However, increased CD73 expression has been shown

to directly reduce the effectiveness of PD-1 blockade therapy (36).

Thus, increased adenosine levels in cHL cells confers resistance to

immune checkpoint inhibitors such as nivolumab. Strategies to

overcome resistance to nivolumab are currently being developed

and studied (37), and certainly many combinatorial approaches are

under development in clinical trial including nivolumab + AVD

(NCT03907488) and brentuximab + nivolumab with or without

ipilimumab (NCT01896999) (38).
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Pembrolizumab

Like nivolumab, pembrolizumab is another monoclonal

antibody that binds to and blocks PD-L1 (39). It has been

FDA-approved for cHL, primary mediastinal large B-cell

lymphoma, melanoma, non-small cell lung cancer, small cell

lung cancer, head and neck squamous cell cancer, urothelial

carcinoma, colorectal cancer, gastric cancer, esophageal cancer,

cervical cancer, hepatocellular carcinoma, Merkel cell

carcinoma, renal cell carcinoma, endometrial carcinoma,

cutaneous squamous cell carcinoma, and triple-negative breast

cancer. Mechanisms of resistance to pembrolizumab are similar

to those outlined for nivolumab. Currently, studies have

identified ways to circumvent resistance to immune

checkpoint inhibition in solid tumors (40, 41); however,

studies are being conducted to develop strategies to overcome

resistance in lymphoproliferative disorders (42, 43).
Mogamulizumab

A monoclonal antibody, mogamulizumab targets the C-C

chemokine receptor 4 (CCR4) to inhibit this signal

transduction pathway. This, subsequently, prevents the

chemokine-mediated migration and proliferation of T-cells

(44). Since CCR4 is expressed on almost all T-cells in

cutaneous or peripheral T-cell lymphomas or leukemias,

mogamulizumab has emerged as an attractive therapeutic

option (44). It is currently FDA-approved for use in

treating R/R mycosis fungoides and Sézary syndrome. A

study on 19 patients with either mycosis fungoides or

Sézary syndrome found that though all patients had T-cells

with CCR4 expression prior to starting treatment, all of them

had to discontinue mogamulizumab due to lack or loss of

response to therapy (45). After stopping treatment, in 57% of

patients, CCR4 expression was no longer detected by

immunohistochemistry (45). Targeted DNA-sequencing of

these samples found that loss of CCR4 expression occurred

both with and without genomic alterations in the CCR4 gene

(45). Additionally, the study identified that none of the

patients that experienced a loss of CCR4 expression

benefitted from a second course of mogamulizumab (45). It

should also be noted that this study also identified a subset of

patients with high CCR4 expression and an undetermined

mechanism of resistance to mogamulizumab (45). Further

investigations are currently underway to better understand

these mechanisms of resistance and devise strategies to

overcome them. Many combinatorial approaches are under

development in clinical trials including mogamulizumab plus

magrolimab (NCT04541017) and mogamulizumab plus

natural killer cells (NCT04848064) (46).
Frontiers in Oncology 04
Vemurafenib

A small-molecule kinase inhibitor, vemurafenib inhibits the

BRAF serine/threonine protein kinase with the V600E or V600K

mutation. Cells with this aberrant molecule have unregulated cell

growth through the mitogen activated protein kinase (MAPK)

pathway (47, 48). Thus, this targeted therapy has been effectively

used for treating melanoma and hairy cell leukemia (HCL).

However, it is currently FDA-approved for unresectable or

metastatic melanoma with the BRAF V600E mutation as detected

by an FDA-approved test. Furthermore, it is also FDA-approved for

patients with Erdheim-Chester disease, which is a rare histiocytic

disorder (49, 50), that carry the BRAF V600E mutation (51). Initial

studies on vemurafenib in HCL found a missense mutation in

insulin receptor substrate 1 (IRS1) in addition to the BRAF V600E

mutation that induced the MAPK pathway through activation of

extracellular signal-regulated kinase (ERK) (52). By allowing BRAF

to be bypassed to activate ERK, the IRS1 mutation conferred

resistance to treatment (52). Additionally, the study identified a

mutation in the Kirsten rat sarcoma (KRAS) gene, a protein

involved in the RAS/MAPK pathway, that also mediated

resistance to vemurafenib (52). Thus, this study outlined both

ERK dependent and independent mechanisms of resistance to

vemurafenib in HCL (52). Another study also found IRS1 and

KRAS mutations in vemurafenib-resistant HCL cell lines, however,

this study also found loss-of-function mutations in the

neurofibromatosis 1 and 2 genes (NF1 and NF2) which

contributed to the lack of response (53). To address these

mechanisms of resistance, a study was conducted on a 74-year-

old patient with vemurafenib-resistant HCL with many resistance-

conferringmutations (includingKRAS) present in the cell lines (54).

MEK is a protein kinase upstream of ERK in the MAPK pathway,

and with the addition of the MEK inhibitor cobimetinib to

vemurafenib, the patient responded to such combination therapy

(54). The bonemarrow showed suppression of ERK activity (54). At

12 month follow up, the patient showed continued response and

remained asymptomatic – highlighting MEK inhibition as a

potential option for navigating resistance to vemurafenib (54).
Crizotinib

A tyrosine kinase receptor inhibitor, crizotinib specifically

targets anaplastic lymphoma kinase (ALK), hepatocyte growth

factor receptor (HGFR, c-MET), and Recepteur d’Origine Nantais

(RON). It is currently FDA-approved for treating metastatic non-

small cell lung cancer with ALK or ROS-1 positivity per an FDA-

approved test, ALK-positive anaplastic large cell lymphoma,

and ALK-positive inflammatory myofibroblastic tumors. In

non-small cell lung cancer, studies found a chromosomal

rearrangement creating a gene fusion product that resulted in
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a constitutively active ALK protein as the oncologic driver (55).

Other studies on anaplastic large cell lymphoma, the most

common T-cell NHL in children, found that tumor progression

was primarily driven by a fusion product between ALK and

mainly nucleophosmin 1 (NPM1) called NPM-ALK (56). For

these reasons, crizotinib has emerged as an effective therapy for

these malignancies. In cases where crizotinib resistance

developed, studies identified ALK mutations conferring

resistance; however, studies are being conducted to see if this

can be overcome by using newer-generation ALK inhibitors

such as alectinib, ceritinib, brigatinib, and lorlatinib (57). In

other cases where crizotinib resistance developed and ALK

mutations were not identified, a study used genome-wide

clustered regularly interspaced short palindromic repeats

(CRISPR) analysis to look for overexpressed genes that could

be conferring resistance (58). This study found that in around

30% of crizotinib-resistant cell lines, the IL10RA gene for the

IL-10 signaling pathway was overexpressed in cells both with

and without ALK mutations (58). Through further

investigation, this study identified how the IL-10 pathway

ultimately activated signal transducer and activator of

transcription 3 (STAT3), a molecule that promotes cell

survival (58). Furthermore, STAT3 was found to bind to the

promoter for IL10RA and upregulate its expression –

ultimately creating a feedback loop that bypasses NPM-ALK

and promotes cell survival through increased STAT3 activity

(58). However, the authors of this study did note that further

investigation of this mechanism of resistance is needed (58).

Strategies to overcome resistance have been identified in non-

small cell lung cancer, but studies are needed to develop these

strategies in lymphoproliferative disorders (59).
Ibrutinib

Constitutive B-cell receptor signaling pathway activation

has been implicated in numerous B-cell malignancies. One
Frontiers in Oncology 05
enzyme in this pathway is Bruton tyrosine kinase (BTK), and

this enzyme plays a crucial role in modulating cytokine and

integrin expression for B-cell trafficking and proliferation (60).

Thus, ibrutinib was developed to specifically inhibit BTK

(although other enzymes are indirectly affected too) and

provide a therapeutic effect in malignancies such as CLL,

mantle cell lymphoma (MCL), DLBCL, and Waldenström’s

macroglobulinemia (WM) (60). It is currently FDA-approved

for use in treating MCL, CLL, small lymphocytic lymphoma

(SLL), WM, MZL, and chronic graft versus host disease. For

understanding mechanisms of resistance, early studies utilized

whole-exome sequencing to compare baseline and relapse

genomes of patients with CLL who had been treated with

ibrutinib (61). One study concluded that resistance developed

due to the BTKC481S mutation in the binding site on BTK for

ibrutinib (61). This study also identified a mutation in the 1-

phosphatidylinositol-4,5-bisphosphate phosphodiesterase

gamma-2 enzyme (PLCG2) – an enzyme that is further

downstream of BTK in the B-cell signaling pathway; however

its implication in resistance development was not entirely clear

(61). Further investigations identified that this mutation did in

fact contribute to ibrutinib-resistance in both CLL and WM

(62, 63). It should be noted that within each malignancy, other

genetic mutations have been identified conferring resistance to

ibrutinib; however, the BTK and PLCG2 mutations are the

most common in patients with CLL. BTK and PLCG2

mutations conferring resistance to ibrutinib have also been

documented in MZL (64). In MCL specifically, studies have

identified sustained distal B-cell receptor signaling pathway

activation through the classical and alternative NFkB pathways

as a mechanism underlying primary resistance to ibrutinib

(65). In WM, BTK and PLCG2 mutations have been identified

as mechanisms of resistance (66), however, responses to

ibrutinib are also highly dependent on whether patients have

the CXCR4WHIM mutation that confers resistance to ibrutinib

(67, 68). Table 1 summarizes the mutated genes that lead to

resistance to ibrutinib resistance in lymphoproliferative
TABLE 1 Summary table of the mechanisms of resistance to targeted therapies in lymphoproliferative disorders.

Agent Target Primary
clinical

indications

FDA-approval Mechanism of
resistance

Rituximab CD20 NHLs, CLL NHLs, CLL, rheumatoid arthritis, granulomatosis with polyangiitis, and microscopic
polyangiitis

Expression of inhibitory
proteins that block
complement activation
(13)

Downregulation of BAK
and BAX (15)

Downregulation of CD20
(16, 17)

(Continued)
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TABLE 1 Continued

Agent Target Primary
clinical

indications

FDA-approval Mechanism of
resistance

Brentuximab
vedotin

CD30 cHL,
anaplastic
large cell
lymphoma

cHL and systemic anaplastic large cell lymphoma Increased expression of
MDR1 and P-
glycoprotein (21)

Polatuzumab
vedotin

CD79b DLBCL R/R DLBCL Downregulation of
CD79b expression (25)

Resistance to MMAE
(26)

Nivolumab PD-1 cHL cHL, melanoma, non-small cell lung cancer, malignant pleural mesothelioma, renal cell
carcinoma, squamous cell carcinoma of the head and neck, urothelial carcinoma, colorectal

cancer, hepatocellular carcinoma, esophageal cancer, and gastric cancer

Altered tumor
microenvironment with
increased regulatory T-
cells and inhibitory
receptors (31)

Absent or aberrant HLA
expression (32)

Increased IDO
production (33)

Increased levels of
adenosine that increases
CD73 expression (34, 36)

Pembrolizumab PD-1 cHL, B-cell
lymphoma

cHL, primary mediastinal large B-cell lymphoma, melanoma, non-small cell lung cancer, small
cell lung cancer, head and neck squamous cell cancer, urothelial carcinoma, colorectal cancer,

gastric cancer, esophageal cancer, cervical cancer, hepatocellular carcinoma, Merkel cell
carcinoma, renal cell carcinoma, endometrial carcinoma, cutaneous squamous cell carcinoma,

and triple-negative breast cancer

Same mechanisms above
as nivolumab

Mogamulizumab CCR4 Cutaneous T-
cell lymphoma

R/R mycosis fungoides and Sézary syndrome Loss of CCR4 expression
(45)

Vemurafenib BRAF Hairy cell
leukemia

Unresectable or metastatic melanoma with the BRAF V600E mutation, Erdheim-Chester
disease

IRS1 mutation (52)

KRAS mutation (52)

Loss of function
mutations in NF1 and
NF2 (53)

Crizotinib ALK Anaplastic
large cell
lymphoma

Metastatic non-small cell lung cancer with ALK or ROS-1 positivity, ALK positive anaplastic
large cell lymphoma, ALK positive inflammatory myofibroblastic tumor

ALK mutation (57)

Overexpression of
IL10RA in the IL-10
signaling pathway (58)

Increased STAT3 activity
(58)

Ibrutinib BTK CLL MCL, CLL, SLL, WM, MZL, and chronic graft versus host disease. BTKC481S mutation (61)

PLCG2 enzyme mutation
(69)

Overexpression of
CD79B (70)

Overexpression of MYC
(71)

Cerdulatinib JAK-
STAT

T-cell
lymphoma

Orphan drug designation for peripheral T-cell lymphoma Generation of MYB-
TYK2 fusion gene (72)

Hyperactivity of JAK-
STAT signaling pathway
(72)

EP300 mutation (73)

Idelalisib PI3K CLL Approved January 2014; Withdrawn January 2022 Increased IGF1R
expression (74)

(Continued)
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disorders. In terms of molecular changes that contribute to

resistance, studies have found that resistant DLBCL lines

overexpress CD79B while resistant MCL lines overexpress

MYC (70, 71). Increased expression of XPO1 and loss of

TRAIL-induced apoptosis has been identified as a

mechanism of resistance to ibrutinib in CLL (84, 85), while

deletions on chromosomes 6q and 8p have been identified in

WM (86, 87). Hence, not every lymphoproliferative disorder

will display the same mechanism of resistance when exposed to

BTK inhibitors. Resistance to ibrutinib has been overcome

through the development of second-generation BTK inhibitors
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that target BTK with much more specificity compared to

ibrutinib. Table 1 also summarizes therapeutical strategies to

circumvent resistance.
Cerdulatinib

In the pathogenesis of B-cell malignancies, the Janus kinase and

Signal Transducer and Activator of Transcription (JAK-STAT)

pathway produces an active STAT3 molecule that promotes cell

survival even in a hostile tumor microenvironment (88). Studies
TABLE 1 Continued

Agent Target Primary
clinical

indications

FDA-approval Mechanism of
resistance

KRAS, BRAF, and
MAP2K1 mutations (75)

Copanlisib PI3K FL Relapsed FL Upregulation of IL-6 to
induce STAT3 and
STAT5 pathways (76)

Downregulation of genes
involved in cell adhesion,
antigen presentation, and
interferon response (77)

Upregulation of cytokine,
NF-KB, MAPK, and
JAK-STAT pathways and
negative regulators of
apoptosis (77)

Venetoclax Bcl2 CLL, SLL CLL, SLL, and AML G101V and D103Y
mutations in Bcl2 (78)

BTG1 and BRAF
mutations (79)

CDKN2A/B deletions
(79)

Amplification of PD-L1
expression (79)

Tazemetostat EZH2 FL Epithelioid sarcomas and R/R FL Increased activation of
IGF1R and MEK, PI3K
pathways (80)

Acquired mutations in
EZH2 altering drug
binding (80)

CAR T-cells CD19,
CD20

DLBCL, FL,
MCL

DLBCL, FL, MCL, B-cell ALL, and multiple myeloma (please refer to Table 3 for further
breakdown)

Nonsense mutation
mediated CD19 decay
(81)

Downregulation of CD20
expression (69)

B-cell lineage switching
from lymphoid to
myeloid through MLL
(82)

Increased PD-L1
signaling leading to T-cell
exhaustion (83)
frontiersin.org

https://doi.org/10.3389/fonc.2022.948513
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Deshpande and Munoz 10.3389/fonc.2022.948513
showed that inactivating either JAK or STAT3 decreased cell

proliferation and increased apoptosis, and this provided the

rationale for developing cerdulatinib – a small-molecule ATP-

competitive inhibitor of SYK, JAK1, JAK2, JAK3, and TYK2 (88).

This therapy has FDA orphan drug designation for treating

peripheral T-cell lymphoma. It should be noted that studies have

highlighted that cerdulatinib can overcome ibrutinib-resistance in

R/R CLL (89). Preliminary data has also shown the drug’s efficacy in

treating small lymphoplasmacytic lymphoma (SLL), FL, DLBCL,

ALL, and peripheral T-cell lymphoma (PTCL). In vitro studies have

modeled several mechanisms of resistance to cerdulatinib in ALL

(72). The first was that long-term exposure to the drug facilitated

the generation of the MYB-TYK2 fusion gene that conferred

resistance (72). Next, resistant cells with the MYB-TYK2 fusion

protein displayed hyperactivation of the JAK/STAT signaling

pathway, leading to no response to the drug (72). However,

withdrawing the drug for a brief period did re-sensitize the cells

to treatment (72). In a phase 1 trial, eight patients with R/R CLL

were given cerdulatinib, and two patients were found to have

disease progression with treatment (73). These patients were

found to have mutations in BTK, TP53, and EP300. Furthermore,

it was proposed that the mutation in EP300, a gene encoding a

histone acetyltransferase, was the mostly likely mechanism of

resistance of cerdulatinib (73). Strategies to overcome resistance

to cerdulatinib are highly awaited. For example, there was a phase 2

trial combining cerdulatinib with or without rituximab in patients

with lymphoma (73).
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Idelalisib

In many cancers, the phosphoinositide 3-kinase (PI3K)

signal transduction pathway is highly active, which is why

developing agents targeting PI3K was previously attractive

(90). However, a challenge that arises is that four distinct

PI3K isoforms exist with partially overlapping functions and

differing toxic effects (90). One such agent is idelalisib, a

selective inhibitor of the delta isoform of PI3K, which has

shown strong efficacy in treating B-cell malignancies with an

acceptable side-effect profile (90). This drug was previously

FDA-approved for treating CLL, FL, and SLL (90). However,

there was a voluntary withdrawal of the indication for SLL

and FL in 2022 (91). Table 2 illustrates select PI3K inhibitors,

their clinical indications, and FDA-approval status. In vitro

studies evaluating idelalisib resistance in CLL found that it is

associated with increased expression of the insulin-like

growth factor 1 receptor (IGF1R) (74). Furthermore, this

study also found that cells became re-sensitized to

treatment when an IGF1R inhibitor was utilized (74).

Another study found that CLL cells became resistant to

idelalisib with increased and constitutive MAPK pathway

activation, and this allowed for communication between the

PI3K and MAPK pathways that circumvented PI3K

inhibition (75). This study also identified that increased

MAPK pathway activation was associated with the

acquisition of mutations in KRAS, BRAF, and MAP2K1 (75).
TABLE 2 Summary of mechanisms of resistance to ibrutinib in lymphoproliferative disorders and strategies to overcome resistance.

Mutated gene/
Aberration

Mechanism of resistance Conditions Possible treatment strategy References

CLL MCL MZL DLBCL WM

BTK (covalent) Reversible ibrutinib binding + + + + Third generation BTK inhibitors, PROTAC-
BTK, inhibitors of LYN and SYK

(61–124)

PLCG2 BTK-independent activation + + + + Inhibitors of RAC2, LYN, and SYK (61–120,
125, 126)

CARD11 Increased NFkB signaling + + + + Proteasome or MALT1 inhibitor (63, 127–
129)

BIRC3, TRAF2,
TRAF3

Increased NFkB signaling + MP3K14 inhibitor (130, 131)

CCND1 Cell cycle progression + (132)

CCDKN2A Cell cycle progression + PRMT5 inhibitor (133)

TNFAIP3 Increased NFkB signaling + (129)

KLHL14 Increased MYD88-TLR9-BCR
super-complex signaling

+ Inhibition of BCR-dependent NFkB activation/
mTOR inhibitors

(134)
fr
+: Some pre-clinical or clinical evidence available that this particular pathway may play a role regarding resistance at the time of publication. Possible treatment strategies to overcome
resistance are mainly theoretical based on pre-clinical hypotheses. The intention for this table is to show that the mechanisms of resistance may differ among lymphoproliferative disorders.
This table is not meant to be comprehensive as there may be more mechanisms of resistance and more possible treatment strategies to overcome resistance involved in a particular pathway
for any of these conditions particularly as our knowledge evolves over time.
*Non-genetic mechanisms of resistance to ibrutinib in lymphoproliferative disorders include PI3K-Akt pathway activation (which can possibly be overcome by PI3K, mTOR, or XPO1
inhibitors) (84, 135–143), JAK-STAT pathway activation (which can possibly be overcome by dual SYK/JAK-STAT inhibitors) (89), MYC activation (which can possibly be overcome by an
HSP90 inhibitor) (71), MAPK pathway activation (which can possibly be overcome by an MEK inhibitor) (144, 145), BCL2 activation (which can possibly be overcome by an BCL2
inhibitor) (146–149), metabolic reprogramming (which can possibly be overcome by an oxidative phosphorylation inhibitor) (133, 150), integrin-mediated protection (which can possibly
be overcome by VLA4 inhibition) (151, 152), and resistant cancer stem cells (which can possibly be overcome by an Wnt pathway inhibitor) (153).
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Copanlisib

Similar to idelalisib, copanlisib is a highly selective and potent

intravenous PI3K inhibitor, yet it is unique because it can target

multiple isoforms of PI3K, making it a pan-PI3K inhibitor (92, 93).

For example, its unique affinity to the alpha isoform of PI3K (which

is present in the pancreas) explains some of its toxicities including

hyperglycemia (94). Furthermore, the intravenous route of

administration as well as intermittent dosing schedule of the drug

have been suggested to portray a more favorable tolerability profile

compared to oral PI3K inhibitors (95). Nevertheless, the

intravenous administration can also be cumbersome for patients

that live far from a cancer center. It has been FDA-approved for

relapsed FL. For mechanisms of resistance, a study on B-cell

lymphoma resistant cells identified upregulation of IL-6, and IL-6

was able to independently activate STAT3 or STAT5 pathways to

confer resistance to PI3K inhibition (76), thus the STAT pathway

may be a relevant mechanism of resistance for some

lymphoproliferative disorders (96). In resistant MZL cells, gene

expression profiling showed upregulation of cytokine, NF-KB,

MAPK, and JAK-STAT signaling pathways as well as the

negative regulators of apoptosis (77), CD44 and JUN, as a

mechanism underlying resistance (77). Furthermore, the cells

showed decreased expression of genes involved in cell adhesion

(ITGA4, ITGB1), antigen presentation, and interferon response

(PARP12, GBP6) (77). This study also used flow cytometry to

identify increased CXCR4 surface expression on resistant cells, and

subsequently, the addition of a CXCR4 inhibitor overcame

resistance to copanlisib (77).
Venetoclax

Venetoclax is an inhibitor of B-cell lymphoma 2 (Bcl2), a

pro-survival molecule that regulates the intrinsic apoptosis

pathway. This drug is currently FDA-approved to treat CLL,

SLL, and acute myeloid leukemia (AML). By binding to Bcl2,

venetoclax enables the Bim and BH3 proteins to activate the pro-

apoptotic molecules, Bax and Bak. Activation of these molecules

commits the cell to apoptosis through the intrinsic

mitochondrial pathway and prohibits further cell proliferation.

However, malignant cells have developed many mechanisms of

resistance to the drug. Some studies have identified mutations in

the BH3 binding groove of Bcl2 that led to a protein

conformation change hindering the ability of venetoclax to

bind to Bcl2 and ultimately conferring resistance (97).

Additionally, G101V and D103Y mutations in Bcl2 were

identified which also interfere with the drug binding to Bcl2

(78). Other studies looking at patients with R/R CLL identified

many genetics aberrations in cancer-related genes that conferred

resistance to treatment. These included: mutations of BTG1 and

BRAF, deletions in CDKN2A/B, and amplification of PD-L1
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expression – suggesting multiple mechanisms of resistance (79).

Combination treatment strategies have been developed to

improve the clinical efficacy and studies have shown improved

response rates with venetoclax in combination with various

agents including cytarabine, ibrutinib, rituximab, or

bendamustine (98). Additional studies are currently being

conducted to develop optimal combination regimens (98).
Tazemetostat

Enhancer of zeste homolog 2 (EZH2) is a part of the

polycomb group gene (PcG) family, and this is a group of

epigenetic regulators that represses transcription (99). Aberrant

EZH2 expression and signaling has been implicated in the

pathogenesis of various cancers, which led to the development

of the EZH2 inhibitor, tazemetostat (99). This agent is FDA-

approved to treat epithelioid sarcomas and R/R FL. Although the

agent is FDA approved for FL, we are still trying to elucidate the

mechanisms of resistance to tazemetostat in FL (80, 100). For

example, it has been described that resistance to EZH2 inhibitors

in DLBCL occurs due to the activation of survival pathways and

acquired EZH2 mutations that prevent drug binding (80).

Resistant DLBCL cells have been found to display increased

activation of IGF1R as well as the MEK and PI3K pathways,

conferring resistance to EZH2 inhibition (80). Additionally, this

study identified acquired mutations in the gene for EZH2 that

included EZH2Y641F, EZH2C663Y, EZH2E720G, and EZH2Y726F

(80). These mutations prevented drug binding to the EZH2

mutants which decreased the effectiveness of treatment (80).

Strategies to overcome resistance to tazemetostat are highly

awaited in lymphoproliferative disorders.
CAR T-cells

CAR T-cell therapy has emerged as the breakthrough

treatment for numerous hematological malignancies. The

basic principle behind this autologous therapy is genetically

engineering and modifying a person’s T-cells to display a

tumor antigen-binding receptor that directs the T-cells to

mount a response against tumor cells (101). A CAR construct

is a genetically engineered antigen receptor that binds to a

target antigen (101). The CAR construct, of the 3 FDA

approved constructs currently in the market for lymphoma,

is made to target cluster of differentiation (CD) molecules

that are expressed on malignant cells (101). For example, in

numerous B-cell malignancies, CD19 is a primary target since

this is highly expressed throughout all stages of B-cell

development and differentiation (101). CAR T-cell therapy

has shown great efficacy in treating DLBCL, FL, MCL, B-cell

ALL, and multiple myeloma. In fact , studies have
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corroborated CAR T-cell therapy efficacy and toxicity with

standard of care products in real-world investigations (102).

Additionally, CAR T-cells are FDA-approved in multiple

lymphoproliferative disorders including DLBCL (103–105),

MCL (106–108), and FL (109). Table 3 summarizes the

currently available CAR T-cell therapies and their FDA-

approved clinical indications as of July 31, 2022. Seeing as

how effective CAR T-cell therapy has been in the R/R setting

for lymphoproliferative disorders, studies are currently being

conducted to investigate incorporating CAR T-cell therapy in

earlier lines of therapy (110, 111). The main toxicities

associated with CAR T-cell therapy are cytokine release

syndrome (CRS) and immune effector cell-associated

neurotoxicity syndrome (ICANS). Studies have shown that

certain therapies utilized prior to CAR T-cell therapy –

including bridging and prophylaxis – may influence toxicity

profiles and outcomes, hence we need to choose prior

therapies carefully (112–116). To minimize the occurrences

of CRS and ICANS, studies are investigating combinatorial

approaches with the hope that these approaches could

potentially be used to decrease toxicity and increase efficacy

(117). As a cautionary note, not all combinations will serve as

effective therapies; for example efficacy outcomes and peak

CAR T-cell levels seem to be similar between patients treated

with axicabtagene ciloleucel plus atezolizumab (an immune

checkpoint inhibitor) as part of the ZUMA-6 trial compared

to historical outcomes as part of the ZUMA-1 trial for

axicabtagene ciloleucel alone (118). These malignancies

have developed resistance to therapy through alteration of

the CD19 marker itself through mechanisms such as

frameshift mutations leading to nonsense mutation

mediated CD19 decay (81). Other studies found that

resistance to anti-CD20 CAR T-cell therapy arose from the

tumor cells downregulating the expression of CD20 (69). In
Frontiers in Oncology 10
B-cell ALL, studies found that the tumor cells switch from B-

cell lineage to myeloid lineage after CAR T-cell therapy

th r ough a m ix ed - l i n e a g e l e uk em i a (MLL ) g en e

rearrangement on chromosome 11q23 (82). Finally, in almost

all B-cell malignancies, studies have identified T-cell

exhaustion as a contributing factor to the poor persistence of

CAR T-cells after infusion. Furthermore, studies have found

that enhanced PD-L1 pathway signaling directly contributes to

T-cell exhaustion (83). In fact, increased PD-L1 signaling

downregulates CD28 co-domain signaling – a signal that is

essential for the proper activation of CAR T-cells after the CAR

molecule binds to the antigen on tumor cells (83). Thus, PD-L1

interferes with the proliferation and cytotoxicity of T-cells,

conferring resistance to therapy (83). Strategies to overcome

resistance are being developed and studied – including the

addition of small molecules and monoclonal antibodies (102).
Conclusion

Targeted therapies in lymphoproliferative disorders have

made great breakthroughs in treating aggressive malignancies.

However, tumor cells continually develop new strategies for

survival, and thus mechanisms of resistance to even the most

specific agents. We have discussed the currently understood

mechanisms of resistance to the most utilized targeted agents in

lymphoproliferative diseases, and this has been summarized in

Table 4.

We also have discussed the general common themes regarding

mechanisms of resistance to targeted agents, and we illustrated

this in Figure 1. We eagerly await further studies that identify

methods to re-sensitize tumor cells to treatment to increase

response rates.
TABLE 3 Summary of PI3K inhibitors, their clinical indications, and FDA status as of July 31, 2022.

Agent Target Isoform IC50 Clinical
indication

FDA status Black box warnings

PI3K
alpha

PI3K
beta

PI3K
gamma

PI3K
delta

Idelalisib PI3K delta 820 565 89 2.5 FL and SLL Approved January 2014;
Withdrawn January
2022

Fatal and serious toxicities: hepatic, severe
diarrhea, colitis, pneumonitis, and intestinal
perforation

Copanlisib PI3K alpha and
delta

0.5 3.7 6.4 0.7 3L FL Approved June 2021 None

Umbralisib PI3K delta and
casein kinase CK1-

epsilon

>1000 1116 1065 22 2L MZL and
4L FL

Approved February
2021; Withdrawn June
2022

Not applicable

Duvelisib PI3K delta and
gamma

1602 85 27 2.5 CLL and SLL Approved September
2018

Fatal and serious toxicities: infections, diarrhea,
colitis, cutaneous reactions, and pneumonitis
*Parsaclisib is a PI3K delta inhibitor which was being explored in clinical trials for 3L FL; nevertheless, its application was withdrawn in January 2022. Zandelisib is a PI3K delta inhibitor
that is currently still being explored in clinical trials for 3L FL at the time of this publication.
*IC50, half maximal inhibitory concentration; PI3K, phosphatidylinositol-3-kinase; CK1, casein kinase.
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FIGURE 1

An illustrative summary of the general themes regarding mechanisms of resistance to targeted therapies.
TABLE 4 Summary table of the currently available CAR T-cell therapies and their FDA-approved clinical indications as of July 31, 2022.

Indication Tisagenlecleucel Axicabtagene
ciloleucel

Brexucabtagene
autoleucel

Lisocabtagene
maraleucel

Idecabtagene
vicleucel

Citacabtagene
autoleucel

R/R/ DLBCL Yes Yes No Yes No No

R/R/ High-Grade B-cell
Lymphoma

Yes Yes No Yes No No

R/R Primary Mediastinal B-cell
Lymphoma

No Yes No Yes No No

R/R DLBCL Arising from
Follicular Lymphoma

Yes Yes No Yes No No

R/R/ DLBCL Arising from
Indolent Lymphoma

No No No Yes No No

R/R Follicular Lymphoma G1-
3A

Yes Yes No No No No

R/R Follicular Lymphoma G3B Yes Yes No Yes No No

R/R Mantle Cell Lymphoma No No Yes No No No

R/R B-cell precursor acute
lymphoblastic leukemia

Yes* No No No No No
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