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Even in the age of big data in Biology, studying the connections between the biological

processes and the molecular mechanisms behind them is a challenging task. Systems

biology arose as a transversal discipline between biology, chemistry, computer science,

mathematics, and physics to facilitate the elucidation of such connections. A scenario,

where the application of systems biology constitutes a very powerful tool, is the study

of interactions between hosts and pathogens using network approaches. Interactions

between pathogenic bacteria and their hosts, both in agricultural and human health

contexts are of great interest to researchers worldwide. Large amounts of data have

been generated in the last few years within this area of research. However, studies

have been relatively limited to simple interactions. This has left great amounts of

data that remain to be utilized. Here, we review the main techniques in network

analysis and their complementary experimental assays used to investigate bacterial-

plant interactions. Other host-pathogen interactions are presented in those cases where

few or no examples of plant pathogens exist. Furthermore, we present key results

that have been obtained with these techniques and how these can help in the design

of new strategies to control bacterial pathogens. The review comprises metabolic

simulation, protein-protein interactions, regulatory control of gene expression, host-

pathogen modeling, and genome evolution in bacteria. The aim of this review is to

offer scientists working on plant-pathogen interactions basic concepts around network

biology, as well as an array of techniques that will be useful for a better andmore complete

interpretation of their data.

Keywords: networks, bacterial pathogens, plant pathogens, host-pathogen interactions, pathogenicity

INTRODUCTION

Biology has entered a new era of scientific discoveries as a consequence of the development
of new technologies, and the production of massive amounts of biological data at the cellular
and subcellular levels. Researchers can now formulate new hypotheses and diverse manners of
testing them. They can design new experiments based on multiple environmental, temporal,
and physiological conditions on a single cell, populations, or communities of species. The
reduction in costs of next-generation sequencing (NGS) technologies coupled with the advances in
metabolomics and proteomics has made high-throughput data more accessible (Hou et al., 2015).
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The levels of information that can be obtained from biological
entities range from genes, genomes, transcriptomes, proteomes,
and metabolomes to phenotypes.

Despite these advances, the amount of collected data is larger
than the amount being analyzed. Molecular biologists tend to
focus on a single level of information (e.g., specific genes,
protein-protein interaction, etc.), ignoring the different levels of
interactions and connections present within complex biological
systems. In the case of quantitative experiments in the areas
of genomics and transcriptomics, the amount of available data
exceeds the capacity of the common computational systems as
well as the ability for researchers to interpret them. Thus, the
challenge resides in building models that accurately represent
nature and gaining biological insights from data that is inherently
noisy and heterogeneous. Systems biology attempts to bridge this
multi-level understanding of living systems (Karr et al., 2012).

Systems biology is a discipline that studies biological entities as
a whole. Here, parts of the organism (genes and their regulation,
signaling cascades, interacting proteins, structural compounds,
and metabolic pathways) interact among them and with the
environment (which, in turn, gives a context to the organism)
to produce a given phenotype. When the biological parts of
an organism are interconnected, new properties arise that are
dependent on the context and the biological system. Systems
biology uses different sources of biological data, mathematical
approaches, and computational methods and techniques, to
model the organism in a computer (in silico). The computational
model allows researchers to make predictions and to generate
new hypotheses that may then be experimentally validated.
Experimentation can fulfill this function and serve to better
parameterize and tune different theoretical models.

One of the fields within systems biology which has been
fundamental for studying biological organisms at a large-scale
is network analysis. Network analyses are a set of mathematical
and computational approaches that may be used to study
the interactions between the components of a network such
as computers connected through the internet, electrical nodes
within a network, or biological components within an organism.
In the context of biology, the network approach or network
biology allows to reconstruct molecular interactions and uncover
biological properties that may be difficult to uncover when
studying a single or few interactions.

This review presents the main approaches in network
biology and their complementary experimental assays used
to investigate bacteria-plant interactions. When necessary,
examples of human-pathogen interactions were included to
illustrate analyses that may potentially be applied to study plant-
pathogen interactions. Pathogenicity is an ecological interaction
influenced by many different factors. Understanding molecular
and ecological interactions may help explain the mechanisms
by which pathogens colonize their host plant as well as the co-
evolutionary history among the two or more-interacting species.

The review is divided into five sections. First, we describe
the basic concepts in network biology; second, we illustrate the
importance of metabolic pathways in bacterial pathogenicity;
third, we review different approaches used to study protein-
protein interactions; fourth, we review themodeling of regulatory

networks; and fifth, we describe how this information, may be
used to understand processes of adaptation of pathogens to
recent and former hosts. The aim of this review is to offer
scientists in the field of host-pathogen interactions, the most
important concepts around network biology, as well as an array
of techniques that will be useful for a better and more complete
interpretation of their data.

NETWORK ANALYSES IN SYSTEMS
BIOLOGY

Network biology has arisen as a new subfield of systems biology
(Box 1) useful in molecular biology studies. The high amounts
of data produced by omics technologies nowadays, as well as the
increasing number of studies on bacterial pathogenesis allows
the use of network biology to mathematically model large-scale
bacterial systems. Network biology, is a top-down approach
(Box 1) that allows the reconstruction of genome-scale biological
systems.

The biological networks represent the relationships among
molecular components within the context of a cellular function
(Box 2). The methods derived from the mathematical framework
of networks can be applied to diverse fields such as electrical,
social, and Internet networks. As biological systems can be
represented as networks, the mathematical concepts behind
network analyses can be applied to biomolecular systems.

Types of Biological Networks
In the context of networks and molecular biology, we can
represent an organism, or parts of it, using four different kinds
of networks: regulatory, metabolic, protein-protein interaction
networks (PPINs), and signaling networks (a special type of
PPIN). Furthermore, these networks can be integrated into a
single model by using a combination of different networks
connected into a single computational model. It is important to
note that the classification of regulatory, metabolic, and PPINs
is arbitrary and has been done to facilitate the construction of
scientific knowledge. This review, focuses on these three methods
due to the availability of omics data from pathogens that may
be used to construct these types of networks. The omics data
that have been generated have been mostly used to investigate
specific research questions, leaving large amounts of data yet
to be explored. Network analyses provide an opportunity to
further analyze this information to develop new hypotheses
related to mechanisms of pathogenesis or general life style of
these microorganisms.

One type of network is the transcriptional regulatory
network (TRN). TRNs are used to mathematically represent
gene expression profiles and their regulation by transcription
factors or other regulatory elements (e.g., sRNA). Through
these TRNs, one can simulate the effect of different biological
and environmental conditions on the expression profile of an
individual. The TRNs may be constructed for specific groups of
genes, such as those related to pathogenicity, or for the whole
organism. In a topological sense, the TRN is defined as a bipartite
network (Box 2) with directionality. Some nodes correspond
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BOX 1 | Systems biology.

Systems biology comprises different combinations of mathematical and computational approaches used with diverse kinds of the biological data; as a result, the

starting scale of the model (whether it takes into account a small subsystem or a whole system) will vary. Therefore, systems biology may use two approaches

that are complementary depending on the nature of the data, and the mathematical and computational approaches used: bottom-up and top-down approaches

(Bruggeman and Westerhoff, 2007).

The bottom-up approach precisely reconstructs biological subsystems from their parts (genes, proteins, and metabolites) until a full model of the subsystem is

obtained (mainly at a small scale). This kind of approach allows to deduce fundamental principles inherent to all biological systems such as the physical and

mathematical laws that govern it. The data used for the model are obtained from single cell experiments, from the in vitro assessment of rate parameters from

enzymatic reactions, transport phenomena, or regulatory processes.

The top-down approach reconstructs the biological system from high amounts of data to initially obtain a full draft model of the whole system, with subsequent

refinings. This kind of approach allows to induce properties of the system in a biological state. The data used for these models arise from omics experiments

(genomics, transcriptomics, metabolomics, etc.), and they allow the reconstruction of the whole model.

BOX 2 | Biological networks.

A biological network is a mathematical abstraction of nature which represents biological entities such as genes, transcription factors, metabolites, and proteins, as

nodes or vertices and the relations between them as edges or links (regulatory mechanism, transformation reactions, protein-protein interactions such as signaling

cascades). We can find directed (regulation of A to B, directionality of an enzymatic reaction, Figure 1A) or undirected (a pair of interacting proteins, Figure 1B)

networks, depending on whether the relationship between the nodes has directionality or not, or if this can be determined. Furthermore, there are unipartite networks

where the nodes have the same biological feature (e.g., protein-protein interaction networks) and bipartite or two-mode networks, composed of different biological

components (e.g., a regulatory network where regulatory proteins and regulated genes interact or, metabolic networks where substrates are connected to reactions

and reactions with substrates) (Newman, 2010).

FIGURE 1 | Type of networks. (A) Directed networks are composed of nodes representing biological entities as proteins, metabolites, or genes. These nodes are

interconnected by directed edges (or arrows) that symbolize a directed relationship between two or more biological species, as a gene regulated by a transcription

factor or a reaction that is connected downstream to another reaction forming metabolic pathways. (B) Undirected networks are composed of nodes, that represent

proteins, for example. These nodes are interconnected by edges that symbolize an interaction between two or more biological species, as for example signaling

proteins.

to regulatory proteins and others to target genes (that can be
transcriptionally switched on or off by the regulatory protein).
One regulatory protein can be connected to several target genes;
in turn, genes can be regulated and connected by one or a small
number of regulatory proteins.

Metabolic networks are substrate-product transformation
networks mediated by enzymatic reactions. In the metabolic
networks, the substrates and products can be proteins, lipids,
and other cellular components. These are represented as
nodes and the transformation reactions mediated by enzymes
are represented as edges. This representation of metabolic
networks can be analyzed by computational methods to perform

associations between the genotype and the metabolic phenotype
of an organism, as constraint based modeling does (Box 3).
Metabolic networks may be coupled to the regulatory networks
of an organism to model a more complex representation of the
molecular machinery of the organism.

A PPIN reflects physical interactions between two or more
proteins. In this category, we can find signaling networks, but
it is also possible to find proteins involved in the formation of
macromolecular complexes related to structural and molecular
types of machinery of the cell. The Signaling Network contains
a series of proteins that are transformed to carry a signal inside
or outside of the cell. Signaling cascades are of special interest
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BOX 3 | Systems biology.

The metabolism of an organismmay be represented in a matrix based on the stoichiometry of the reactions in the constraint-basedmodeling (CBM) approach (Orth

et al., 2010). The stoichiometric matrix can be analyzed to assess the metabolic phenotype of the organism under different conditions (e.g., environment, mutants,

etc.). To analyze the metabolic phenotype, the stoichiometric matrix may be solved using a Flux Balance Analysis (FBA). A FBA is a computational optimization

method. The final solution of the metabolic system is the distribution of the reaction rates or fluxes (moles over time). In the FBA, assumptions and constraints of the

system are defined. For example, it assumes a steady-state (thermodynamic equilibrium) and defines upper and lower boundary constraints for the fluxes throughout

the reactions. Furthermore, an objective function must be defined to achieve a unique solution of the system. The objective function is a reaction or a combination

of reactions that represent a biological feature of the organism e.g., biomass. In other words, models based on CBM approach represents the metabolism of an

organism only with the information of the reactions catalyzed by enzymes that are coded in the genome.

Another alternative approach that does not require the calculation of an optimal flux distribution is the elementary flux mode analysis (EFMA) (Zanghellini et al.,

2013). In this analysis, the metabolic network is decomposed in its main pathway components.

A complementary analysis in metabolic modeling is gene set enrichment analysis (GSEA) (Hung et al., 2012). When applied to a genome-scale, set of genes

differentially expressed can be classified into metabolic categories or pathways giving information related with the most represented pathways in a determined

scenario.

in molecular pathosystems since they are tightly related to the
regulation of the response to attack and defense of the pathogen
and the host, respectively.

When a biological network follows the power law distribution
several biological interpretations based on the network metrics
can be stated (Box 4). However, these interpretations must be
carefully reviewed from the biological point of view of the
researcher. We recommend the work of Winterbach et al.
(2013), which provides detailed description of these statistics
(Winterbach et al., 2013). For a more extensive revision of the
mathematical foundations of biological networks, please refer to
De Smet andMarchal (2010), Képès (2007), and Newman (2010).

METABOLIC NETWORKS AND
PATHOGENICITY

In this section, we will review studies on metabolic modeling of
plant pathogenic bacteria. Given that the information may be
limited, we will also include examples of animal pathogens. First,
we will describe the constraint-based modeling (CBM) approach,
commonly used for in silico metabolic modeling. Second, we
will review the biological results produced by these studies and
their main conclusions; of special interest will be the objective
function. Third, we will review themultiscalemetabolicmodeling
approach that integrates different sources of data and constraint-
based metabolic models. Finally, we will discuss how CBM is a
hypothesis-driven approach used in metabolic networks and the
possibilities to improve metabolic models based on experimental
results.

Constraint-Based Modeling
The metabolic interactions within an organism can be modeled
and analyzed using different mathematical approaches, among
others, deterministic kinetic models, stochastic models,
elementary flux mode analysis, CBM, and pathway enrichment
analysis (Box 4; Puchałka and Kierzek, 2004; Hung et al.,
2012; Zanghellini et al., 2013). Every one of these methods has
advantages and disadvantages. The CBM approach has been
established as a standard for metabolic model formulations;
there are approximately 165 models of organisms that are
finished and experimentally validated (http://sbrg.ucsd.edu/

InSilicoOrganisms/OtherOrganisms). This method has been
widely employed given that it is a top-down approach (Box 1)
that may incorporate whole-genome data and chemical
information that is publicly available, as well as knowledge
obtained through experimentation into a genome-scale
metabolic model. With this approach, several analyses can be
performed and relevant biological questions can be addressed
(Oberhardt et al., 2009). Other mathematical approaches, such
as the mass-action kinetic model (Horn and Jackson, 1972) or
the biochemical system analysis (Savageau, 1969), rely on several
parameters such as rates of transformation of molecules involved
in metabolic reactions of the cell. These parameters are difficult
to calculate experimentally at a whole-genome level (that is, all
the possible reactions catalyzed by all the enzymes coded by the
genome). Thus, the CBM offers a powerful approach to assess
metabolic phenotypes in distinct environmental conditions by
relying on physicochemical constraints that restrict the metabolic
phenotype1 of the organism.

The first part of the CBM approach is the genome-scale
reconstruction of the metabolic network (Figure 2). There
are five main steps in obtaining a high-quality metabolic
reconstruction of an organism: (i) genome annotation; (ii)
gene-protein and protein-reaction associations; (iii) model
curation; (iv) validation through experimental analyses; and
(V) improvement of the metabolic model by incorporating the
feedback obtained through experimentation.

Genome annotation can be performed using different
bioinformatics tools, such as the Rapid Annotation using System
Technology (RAST; Aziz et al., 2008; Richardson and Watson,
2013; Kalkatawi et al., 2015). After the genomes have been
automatically annotated, they must be manually curated. Once
a high-quality genome annotation is obtained, proteins involved
in metabolic reactions are assigned. Commonly used databases
for the assignment of proteins to metabolic pathways include the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
and Goto, 2000), MetaCyc (Caspi et al., 2014), MetaNetx (Ganter
et al., 2013), and Biochemical, Genetic and Genomic (BiGG)
knowledge base (Schellenberger et al., 2010).

1The metabolic phenotype is the distribution of the biochemical reactions rates

(fluxes) in a determined set of conditions (physicochemical constraints).
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BOX 4 | Topological features of biological networks.

The most basic topological measure of a network is the average (or mean) degree, that is the average number of nearest nodes connected to a specific node.

More informative is the distribution of these nearest nodes in a network. A feature of some types of biological networks, particularly in metabolic and protein-protein

interaction networks is that they follow a power law distribution (or a scale-free degree distribution). That is, most of the nodes have few neighbors and the minority

of them have hundreds or thousands of neighboring nodes (highly connected nodes or hubs) (Barabási and Albert, 1999). Particularly the biological networks have

a specific topology that tends to be small-world; in other words, their organization makes possible the existence of hubs as central focal points of interactions (Aloy

and Russell, 2004), e.g., proteins or genes involved in regulatory processes of bacterial pathogenicity or plant resistance (Haynes et al., 2006).

Another powerful structural measure is the clustering coefficient, which evaluates the degree of grouping between a node and its neighbors. The clustering

coefficient is defined as the ratio of the number of connections between the neighbors of a node and the total number of possible connections (Watts and Strogatz,

1998). This coefficient measures the modularity of a set of nodes and interestingly this feature has shown some patterns of hierarchy between clusters of nodes

(modules) of known metabolic networks (Ravasz et al., 2002). Finally, the motifs are patterns of connections between a few nodes that are related to a biological

function, particularly in regulatory networks (Maslov and Sneppen, 2002). In topological terms, motifs are sets of nodes whose pattern is overrepresented in the

network when compared to a randomly generated network of the same size. In Table 1 we describe other relevant measurements and concepts of networks.

Once the reactions related to the organism of interest
are obtained, a mathematical representation of the connected
reactions (metabolic models or pathways) can be reconstructed
(Orth et al., 2010). However, this initial representation is not free
of gaps and errors. These may arise for different reasons such
as an inherent gap in our knowledge of bacterial metabolism
(e.g., protein-reaction associations), the incomplete genome
sequencing of the organisms, or the inaccuracy in the genome
annotation. Therefore, the metabolic model needs to be subjected
to a curation process. Several methods and algorithms have
been developed to curate this model (e.g., based on homology
and phylogenetic information or experimental data) (Orth and
Palsson, 2010).

Some useful automatic tools that can be alternatively used to
reconstruct and analyze metabolic networks include RAST-SEED
(Aziz et al., 2008), KEGG Automatic Annotation Server (KAAS)
(Moriya et al., 2007), Reconstruction, Analysis, and Visualization
of Metabolic Networks (RAVEN) (Agren et al., 2013), PRofils
pour l’Identification Automatique du Métabolisme (PRIAM)
(Claudel-Renard et al., 2003), SuBliMinal, and Pathway Tools
(Swainston et al., 2011). Furthermore, protocols for supervised
and manual reconstruction of metabolic networks have been
established (Francke et al., 2005; Reed et al., 2006; Thiele and
Palsson, 2010; Pinzón et al., 2011; Lewis et al., 2012).

Once a representation of the metabolism of the bacterium is

obtained, relevant biological questions can be addressed based
on this model. For example, the rate of ATP production or the
oxygen consumption can be assessed. In the CBM approach,
several constraints are set to assess the metabolic model of the
organism (McCloskey et al., 2013). The metabolic phenotype can
be defined as the rates of consumption and production of the
metabolites for every reaction of the metabolic model of interest
in a determined biological context or environment.

Constraints are determined a priori based on either
experimental or theoretical data like metabolomics, C13

labeling and measurements of consumption and production
of carbon sources. An example may be the active and inactive
reactions that reflect the biological state of the cell and can be
determined, although indirectly, through specific transcriptional
profiles (genes down or up-regulated). Another example of
constraint includes the activation of transport reactions that
simulates the substrate transported into the cell in a specific

medium or biological condition. Therefore, the metabolic
phenotype, which is defined by a set of reactions that represents
a biological function, such as growth or pathogenicity, can be
assessed.

Flux Balance Analysis (FBA) is an approach used in CBM
to find an optimal distribution of the rates of conversion of
substrates to products (fluxes), in every reaction. In order
to obtain the solutions for the reaction rates of interest, a
representation of a specific biological function must be defined
(e.g., growth, redox potential, production of a compound of
biological, or industrial interest, etc.). This specific biological
function is known as the objective function. Choosing the best
objective function to answer a specific biological question is
still controversial. The right choice will define the robustness
of the conclusions achieved by the computational analysis
(see discussion below). Finally, FBA allows uncovering the
most reliable mechanism behind a relevant biological function
(O’Brien et al., 2013).

Metabolic Modeling of Pathogenic Bacteria
As mentioned above, the constraint-based modeling, CBM,
has been established as a standard method for modeling
the metabolism of microorganisms (especially in bacterial
pathogens), given that it only relies on a few physicochemical
constraints and on the assumption that the metabolic fluxes of
the organism are in a steady-state (Box 3). With this approach,
metabolic phenotypes of pathogenic bacteria may be simulated.
Such simulations may reflect differences between wild-type
bacteria and their mutant derivatives, between pathogenic and
non-pathogenic bacteria, and the effect of growth at different
environmental conditions.

The main biological questions addressed in metabolic models
of plant pathogens, using CBM, are related to the search for
control strategies against these pathogens, the classification
of pathogens, the comparisons between pathogenic and non-
pathogenic strains, and the plant-pathogen interactions. The
CBM approach allows studying the metabolism of pathogens
for the search of alternative strategies for control, and through
several in silico and experimental approaches, has aimed to
reveal the metabolic mechanisms, genes, and proteins that are
important for pathogenicity. An example is the study of xanthan,
a virulence factor of industrial importance, in Xanthomonas
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FIGURE 2 | Metabolic modeling. The process of metabolic modeling starts

with a genome annotation used for inferring metabolic reactions that are

present in an organism. Automatic tools could be used for reconstructing the

metabolic network based on the genome. In the initial set of reactions there will

be metabolic gaps or missing reactions that are necessary for the complete

function of pathways. These gaps can be identified and filled out using

different algorithms. The final metabolic reconstruction will have associations

among genes, proteins, and reactions (GPRs). Then, further manual curation,

based on omics data and literature should be performed. The definition of an

objective function that represents a target biological function to optimize

should be defined, typically cell growth or ATP production. Once the objective

function is set, computational simulations for obtaining metabolic phenotypes

related to different conditions are carried out; Flux Balance Analysis (FBA) is

the main technique for these simulations. Finally, new biological hypotheses

are generated and validated. In all the procedure, data, and information from

different experimental assays are incorporated into the model.

campestris pv. campestris (Xcc) (Schatschneider et al., 2013).
Another example, includes the study of metabolic precursors of
lipopolysaccharides in Pectobacterium carotovorum because of
their role in antimicrobial resistance (Wang et al., 2014a). These
two studies highlight the importance of virulence factors in the
relocation of resources for pathogen growth and their potential
use as drug targets.

Gene essentiality analyses have been used to find genes that
are related to pathogenicity through the systematic deletion of
every gene related tometabolism. The in silico deletion of genes in

the whole reaction network allows the identification of important
genes for the survival of the pathogen (Segrè et al., 2002; Shlomi
et al., 2005; Kim et al., 2007). In the case of X. campestris
pv. campestris, several essential genes were identified in silico
(Schatschneider et al., 2013). Furthermore, the researchers
performed experimental validation by generating mutants of the
carbohydrate metabolism and xanthan production. Interestingly
in this study, a subset of these genes, that were initially identified
as non-essential, were found to cause a meaningful decrease in
the growth rate, after additional in silico double mutants were
performed. This highlights the importance of double mutants for
the determination of essential genes and the reduction of false
negative results in pathogenicity assessments.

The CBM approach has helped to compare pathogenic and
non-pathogenic bacteria (Perumal et al., 2009; Charusanti et al.,
2011; Liao et al., 2011; Monk et al., 2013). Correctly classifying
and comparing between pathogenic and non-pathogenic bacteria
is important because differences between these may help
select the best target for pathogen control. Also, the CBM
approach can improve our understanding of the emergence
of new pathotypes and their adaptation process to different
niches (Monk et al., 2013). Thus, pathogenic mechanisms and
infection strategies may be revealed through CBM. However,
there are also cases where the metabolic model wrongly predicts
the ability of different bacterial mutants or strains to grow
on different media. The reasons are metabolic reconstruction
artifacts such as incomplete genome information and gaps in
our knowledge of the metabolism. However, metabolic network
reconciliation methods have been developed to improve the
level of prediction of the models (Oberhardt et al., 2011).
Ultimately, the inclusion of exact metabolic parameters such
as rates of metabolic conversion and rates of volume dilution,
achieved through bottom-up approaches, will improve the level
of prediction of metabolic models at a genome-scale (Bruggeman
and Westerhoff, 2007).

Multiscale Metabolic Modeling
Several studies have focused on integrating different omics
information (e.g., RNA-Seq, microarrays, metabolomics, etc.)
into the metabolic, protein-protein interaction, and regulatory
models of pathogens. Also, the metabolic interactions between
hosts and pathogens have been subject of study. This integration
has improved the phenotypic predictions, the understanding of
the mechanisms of host-pathogen interactions, and have helped
discover new drug targets in pathogens (Colijn et al., 2009;
Bordbar et al., 2010; Ward et al., 2010; Lobel et al., 2012; Schaadt
et al., 2013).

Control at the Metabolic Phenotype in Bacterial

Pathogens
Different approaches have been proposed for integrating
regulatory and metabolic models in bacterial pathogens of
humans, these have not been reported so far for plant pathogens.
For example, the regulatory network and the CBM model of
Mycobacterium tuberculosis were integrated using a probabilistic
approach; this model was used to predict the growth rates of
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TABLE 1 | Basic concepts of biological networks.

Structure assessment Definition Utility References

Degree distribution Distribution of probabilities of degrees in a

specific network.

Comparisons, scale-free networks. Clear indicator of the

presence of hubs when it is combined with the centrality

measurement. Degree provides clues about modules in

a network by determining the number of interactions

shared between neighboring nodes.

Képès, 2007

Shortest path The shortest path between two nodes in a

biological network.

Connectivity. Perumal et al., 2009

Average diameter The minimum number of edges

connecting any two nodes over all

possible pairs.

Information flow, Small World. Capacity and time of the

response of a system, so that in networks with a high

centrality, signaling processes are favored.

Képès, 2007

Node clustering coefficient The ratio of connections to neighboring

nodes to the number of all possible

connections.

Comparisons, scale-free, hierarchical. Képès, 2007

Betweenness—centrality The ratio of the number of k-shortest

paths passing through a node and its

nearest neighbor links.

Identifies hubs (highly connected nodes in a network),

important in pathogenicity and potential target for drugs.

Hubs may potentially disconnect the network if they are

removed or blocked.

Goh et al., 2001; Perumal

et al., 2009

Assortativity The probability of connection of a node

with others of the same degree.

Robustness to node deletion. Newman, 2010

Summary of structural measurements of the topology of a network and their utility in a biological context.

different mutants and putative drug targets (Chandrasekaran and
Price, 2010).

A similar approach was used in Listeria monocytogenes to
decipher its metabolic requirements and the relationship between
metabolism and virulence regulation (Lobel et al., 2012). The
researchers found a correlation between the activity of certain
gene regulators, under nutrient limiting conditions, and the
activation of a global virulence response.

The integration of regulatory models and the metabolic model
combined with experimental data is fundamental for adjusting
the predictions of the metabolic phenotype. For example, Bartell
and collaborators found that inconsistencies between the growth
rate of Burkholderia in different carbon sources, that were
experimentally measured, and the predictions obtained by the
simulations of the metabolic model, could be partially explained
by the absence of the integration between a regulatory model
and a metabolic model (Bartell et al., 2014). In the previously
mentioned studies, of M. tuberculosis and L. monocytogenes,
researchers included in the metabolic model data obtained
from experimental techniques such as microarrays, mutants,
transcription factor, RT-qPCR, and lux reporters. These examples
highlight the importance of experimental feedback and validation
of the model for improving computational predictions, and the
integration of regulatory networks into metabolic models.

A subsequent step after the coupling of the regulatory and
metabolic models is the incorporation of signaling networks into
the pathogenic bacterial model. For example, in Pseudomonas
aeruginosa several genes related to quorum sensing (QS), an
important process in pathogenesis that regulate the expression
of virulence genes, were modeled through a multi-level approach
using a Boolean method of the signaling, regulatory and
metabolic networks (Schaadt et al., 2013). In this work, the
researchers identified the best targets at the signaling and
metabolic level to inhibit the production of auto-inducers and

thus, disrupt the cellular communication between bacteria at the
QS system level.

Another example of a multilevel model is Mycoplasma
genitalium (Karr et al., 2012). This was the first effort to construct
a whole model of a microorganism. In this study, 28 different
submodels were used to represent the life cycle of the bacterium
at the regulatory, metabolic, and signaling level. To accomplish
this task, four mathematical approaches were used: (i) Ordinary
differential equations, (ii) Boolean logic, (iii) probabilistic, and
(iv) CBM approach.

Finally, the integration of molecular networks can be
used to study microbiome interactions in pathogenic and
non-pathogenic bacteria. In a study of two bacterial species,
Clostridium difficile and Barnesiella intestinihominis the
interaction at the metabolic level was investigated. The
researchers found in their in silico analysis that the competition
between the two bacteria reduces the growth of one of them at
the expense of the other; this result was experimentally validated
(Steinway et al., 2015).

Host-Pathogen Interactions
The interaction between hosts and pathogens has been widely
studied in human pathogens through network biology. The
research focus can be either the pathogen or the host, depending
on the biological question. For example, two different studies
of the interaction between M. tuberculosis and humans were
conducted, both based on genome-scale metabolic using a CBM
approach. In the first one, researchers exposed the pathogen
to human macrophages, human sputum, and other in vitro
conditions, and then integrated transcriptomics data of each
condition into the metabolic model of the pathogen (Bonde et al.,
2011). The objective, in this case, was to study the metabolic
changes in the pathogen caused by the interaction with the
host in a similar way as has been done for regulatory-metabolic
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networks. In this research, a down-regulation of the central
metabolism and an up-regulation of the cell wall and virulence
factors in the pathogen were found. In the second study, the
objective was to investigate the metabolic changes in the human
alveolar cells as well as in the pathogen,M. tuberculosis (Bordbar
et al., 2010). In this study, transcriptomic data was also used to
assess the interaction between the host and the pathogen. Here,
the two metabolic models of both the host and the pathogen were
integrated. As a result, a reduction of the metabolic plasticity
of the host when interacting with the pathogen (in a technical
sense: they found a reduction of the solution space of fluxes in
the metabolism of the host) was found. Also, the gene essentiality
analysis was improved by the incorporation of the interaction in
the modeling process.

Other software tools can be used to model metabolic
interactions between the host and the pathogen as are the
E-flux (Colijn et al., 2009) or NetGenerator (Schulze et al.,
2015) approaches. The E-Flux tool extends the genome-
scale reconstructions and CBM approach, by integrating
transcriptomic data into the model. Using this tool, it was
possible to measure the impact of 75 drugs and nutrients on the
cell wall synthesis and fatty acid biosynthesis on M. tuberculosis,
identifying several inhibitors; importantly, some of the drugs
tested are among the most widely used in the treatment of
this disease (Colijn et al., 2009). The NetGenerator tool allows
the incorporation of different time points in host-pathogen
interactions. This method has been used to infer regulatory
changes between Candida albicans and dendritic cells of Mus
musculus at different time points during the interaction (Schulze
et al., 2015).

Plant-pathogen interactions may also be studied through
network biology. For example, host-pathogen networks
have been constructed using microRNA and PPIN between
Arabidopsis thaliana and Xanthomonas campestris pv.
campestris. This study provided several potential pathways
of pathogenesis (Kurubanjerdjit et al., 2012). Furthermore,
the change from healthy state to disease in A. thaliana when
infected with Pseudomonas syringae pv. tomato has been assessed
(Ward et al., 2010), by integrating data from microarrays and
metabolomics techniques and analyses such as: Proton Nuclear
Magnetic Resonance (1H-NMR), Flow Injection Electrospray
Mass Spectrometry (FIE-MS), Gas chromatography-mass
spectrometry (GC-MS) and GC-TOF-MS (TOF by “time of
flight”). This study found that the metabolism of sugars is
modified in the plant to improve the flow of energy into the
bacteria. Other modifications were nitrogen mobilization and
purine metabolism. On the other hand, the plant showed
an unusual metabolic activity of aromatic amino acids and
secondary metabolites (toxins) potentially used as a defense
mechanism against the pathogen.

Plant-pathogen interactions have also been modeled
completely in silico. Duan et al. (2013) investigated five host-
pathogen metabolic models. They analyze two main points: the
impairment of the plant by the pathogen and the divergence
between host and pathogens’ networks. They calculated the
metabolic impairment of the plant by identifying the metabolites
from the plant that, when taken by the pathogen, affect the

plant’s growth (in other words, modifies the value of the objective
function after FBA). The researchers found that the impairment
of the plant metabolic network is determined by the pathogen
and not by the host. For the comparisons between host-pathogen
interactions, the authors used a multidimensional scaling (MDS)
analysis. The MDS approach allows the comparison among
different types of host-pathogen interactions. Using a Jaccard
distance to measure the pairs of metabolic networks, authors
found that the five metabolic networks of the plants studied are
very similar to each other. In contrast, the pathogen networks
are much more heterogeneous among them. For example, the
metabolic networks of the bacterial pathogens Xanthomonas
oryzae and P. syringae differed from those of the fungal
pathogenic species. Additionally, researchers found that histidine
is the main target in all host-pathogen interactions, followed
by lysine, methionine, and the nucleotide phosphate TTP; and
in the specific case of X. oryzae, thymidine triphosphate. They
also found that the large secondary metabolism of plants is
underrepresented by a gap of knowledge. However, authors
recognize a bias in their study as they only compared pathogenic
interactions. The solution proposed, is to use, in addition to
the plant-pathogenic networks, non-pathogenic interactions
as a null model to compare and validate the results found in
silico. However, how can this in silico simulations be contrasted
with experimental data? Interactions among non-pathogens
and their host may be compared to pathogenic interactions at
the metabolic level to add experimental information to in silico
predictions.

Objective Function in Pathogenic Bacteria
The objective function is indispensable for the CBM approach
because it specifies the set of metabolites that must be used
to optimize the system and resolve the metabolic fluxes of
the organism. The most frequently used objective function to
model pathogenic bacteria is biomass (Table 2) (Charusanti et al.,
2011; Liao et al., 2011; Thiele et al., 2011; Fong et al., 2013;
Monk et al., 2013; Schatschneider et al., 2013; Wang et al.,
2014a).

When the organism under study lacks experimental data for
the formulation of the biomass function, data from Escherichia
coli is used. However, differences in the composition of biomass
of the components should be considered to correct for the
growth estimation of the model. For example, the biomass
composition of Klebsiella pneumoniae has a greater proportion
of carbohydrates than that of E. coli (probably due to differences
in the polysaccharide content of its capsule); this factor was
included in the model of K. pneumoniae and it led to an
improvement in growth predictions for this species (Liao et al.,
2011). Similarly, in a study performed with Burkholderia, it
was found that the special fatty acid and lipid composition of
this species was dependent on the growth temperature. Thus,
this information was taken into account when determining the
biomass composition used for the objective function to improve
the growth predictions of this pathogenic bacteria (Bartell et al.,
2014).

An important modification to the biomass function is the
inclusion of the growth associated maintenance (GAM) and
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TABLE 2 | Examples of objective functions used and the biological utility of the studies.

Organisms Biological question—objectives Objective function References

Yersinia pestis CO92 Gene targets for antibiotic development. Growth at

different carbon sources (used for classification of

strains of Y. pestis).

Biomass: at two temperatures.

Differences in LPS and fatty acid

composition at biomass

definition.

Charusanti et al., 2011

Salmonella enterica serovar Typhimurium

LT2

Metabolic reconstruction, reconciliation of two

models.

Biomass Thiele et al., 2011

Salmonella enterica serovar Typhimurium Reconciliation of simulations and experimental data;

gap filling.

Biomass Fong et al., 2013

Pseudomonas putida KY2440 & P.

aeruginosa PA01

Search for drug targets and comparison of

metabolic networks of pathogenic and

non-pathogenic bacterium.

NA Perumal et al., 2009

Burkholderia cenocepacia j2315 & B.

multivorans ATCC 17616

Differences and similarities in pathogenesis and

virulence.

Biomass: special composition of

lipids and fatty acid.

Bartell et al., 2014

Pectobacterium carotovorum PC1 Establishes a new strategy for identification of

bactericides targets of agriculture importance.

Biomass: E. coli Wang et al., 2014a

Klebsiella pneumoniae Metabolic model reconstruction and experimental

validation of the model.

Biomass Liao et al., 2011

Xanthomonas campestris pv. campestris Uncover mechanisms of xanthan biosynthesis for

industrial purposes and pathogenicity research.

Biomass/ xanthan production Schatschneider et al., 2013

Xanthomonas oryzae pv. oryzae &

Pseudomonas syringae pv. tomato

Research on plant-pathogen interactions. NA Duan et al., 2013

Escherichia coli (55 strains) & Shigella

(8 species)

Determination of limits between strain and species

at a metabolic level. Characterization of pan and

core metabolic capabilities. Evaluation of

strain-specific auxotrophies.

Biomass Monk et al., 2013

non-growth associated maintenance (NGAM) energies (Thiele
and Palsson, 2010) as was performed in K. pneumoniae (Liao
et al., 2011). The GAM is a reaction that represents the energy
necessary (ATP) for the replication of the cell including DNA,
protein, and RNA synthesis. The NGAM represents the energy
necessary (also in ATP) for maintenance of the cell in activities
other than growth (e.g., turgor pressure or membrane leakage).
The objective is to adjust the model to the experimental growth
data and to account for the differences among strains (Varma and
Palsson, 1994).

Another objective function that has been used for pathogenic
bacteria are virulence factors. Xanthan, in X. campestris
pv. campestris (Xcc) was chosen with excellent results
(Schatschneider et al., 2013). The main difficulty for the
model of Xcc under the phenotype of xanthan was the lack
of information in the metabolic databases regarding the
polysaccharide biosynthesis needed for xanthan production.
This gap was filled by Schatschneider et al. (2013) using
additional information from the genome annotation performed
in a former study (Vorhölter et al., 2008). Another problem
detected by Schatschneider et al. (2013) was that the biomass
function competes for the same precursors as xanthan. Thus,
for the analysis, xanthan may be defined as a product along
with biomass in a specific ratio. The most important result of
this study was the discovery of an increased growth rate in the
absence of xanthan production by a reallocation of carbohydrate
precursors to the biomass products. Finally, the authors validated
this prediction using experimental mutants of the carbohydrate

metabolism and xanthan production (Schatschneider et al.,
2013).

Bartell et al. (2014) extensively assessed the production
of several virulence factors of Burkholderia species during
cystic fibrosis in humans by in vitro and in silico assays. The
virulence factors included biofilm-related exopolysaccharides,
molecules that trigger the immune response, phagocytosis-
resistant molecules, and quorum sensing molecules. The main
findings from these simulations were that the most important
carbon source to produce the virulence factors assessed are
tyrosine and glucose and that every virulence factor can be
produced by at least one carbon source. These results have been
useful for drug and control design, as the specificity of the species
for carbon sources was shown.

With all this taken into account, which objective function
should be used for metabolic modeling? Which biomass
formulation should be used? Or should it be related to
pathogenesis or virulence? Or a combination of both? The
final answer is in the nature of the biological question or
aim to be achieved. A first approach to the model, using
the biomass formulation alone, can be used to calibrate the
model and assess the normal behavior in standard conditions
of in vitro culturing. However, if a deeper understanding of
the host-pathogen interaction is desired, a pathogenic/virulence
focus objective function must be proposed and supported by
experimental data. A final comparison between the three results
of modeling with: biomass, pathogenic, and a combination of
both could give insights into the pathogenic behavior. One
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example of the improvement of objective function based on
experimental data in pathogenesis is in Ralstonia solanacearum,
where the researchers assessed the trade-off between virulence
and proliferation (Peyraud et al., 2016). Another example was
proposed by researchers to modify the objective function of M.
tuberculosis based on proteomics data, successfully improving the
predictions under antibiotic stress (Montezano et al., 2015).

In conclusion, metabolic networks may be analyzed by the
CBM approach without knowing all the metabolic parameters.
The predictions provided by CBM can help uncover the
pathogenicity mechanisms in plant pathogenic bacteria. Also, the
design of control strategies against pathogens may be done by
simulating multiple mutants in silico and then testing potential
candidates in the laboratory. However, one of the weaknesses
of the actual definition of objective function for metabolic
studies, is the lack of experimental data to improve and confirm
the predictions of the non-model organisms. Thus, unless the
utility of top-down approaches for genome-scale modeling is
evident, a better effort for obtaining experimental data for non-
model organisms is necessary to assess the level of bias of
using information of model organisms for non-model ones.
Furthermore, other elements must be included in the biomass
formulations as metabolic cofactors. These, have an impact in the
predictions of growth of different strains on different media, as
shown in previous studies (Xavier et al., 2017). Today, the CBM
is the standardized approach for conducting metabolic analyses.
New methods that complement CBM are being developed and
incorporate regulatory, lipidomics, and transcriptomics data.
This will certainly help improving the power of the predictions.

PROTEIN-PROTEIN INTERACTION
NETWORKS

A fundamental aspect of systems biology is the understanding of
the interaction of its components in a holistic way. For networks
of proteins, interactions allow the establishment of clusters and
routes that proteins develop during a process (Singh et al.,
2007). Each of these clusters of interactions describes a function
e.g., signal transduction, assembly of the cytoskeleton, protein
degradation, etc. (Zhang, 2009).

One of the great advantages that the reconstruction of
PPINs provides is the ability to obtain evidence of synergy2,
redundancy3, re-wiring4, robustness5, and even evolutionary
processes (Sun et al., 2012). For example, the analysis of
disturbance (where individual proteins are eliminated from the
network) applied to a PPIN helps identify critical proteins in
the system (Yadav and Babu, 2012). In addition, it is possible
to integrate PPIN with other kinds of networks (for example
regulatory and metabolic networks) or information to improve

2Synergy: union of two or more processes or paths that generate new process or

biological properties.
3Redundancy: repetition of process or elements that serve as a functional reserve

in case of failure.
4Rewiring: change in the association of biological entities that can vary along the

time for improvement of system efficiency.
5Robustness: capacity of the biological system to recover from perturbations

conserving the equilibrium of the system.

the understanding of microorganisms (Gligorijević and Pržulj,
2015). Finally, experimental techniques may be used to improve
the reconstruction of the PPIN or to validate specific protein-
protein interactions. The main experimental techniques used
are shown in Table 3. A good example of the utility of high-
throughput experimental techniques for PPIN reconstruction in
plant pathogens is the Yeast Two-Hybrid (Y2H) system. In this
study, the interaction between A. thaliana and three pathogens:
P. syringae, Hyaloperonospora arabidopsidis, and Golovinomyces
orontii (Weßling et al., 2014) were assessed. Importantly, the
researchers found Arabidopsis target elements shared by the
three pathogens, highlighting the importance of a few hubs in
plants that can be targeted by pathogenicity weapons of the
microorganism. This highlights the relevance of the integration
of experimental techniques in pathogenicity studies.

In the following section, we will discuss some approaches for
the analyses of PPIN in the context of pathogenicity interactions.
The concepts used for characterizing and comparing networks
were previously defined (Table 1 and Box 4).

Computational Methods in PPIN for
Pathogenic Interaction Studies
Among the multiple computational analyses that can be
performed for the reconstruction of PPIN and prediction of
interactions (Table 4), we will focus on phylogenetic methods,
used in bacterial pathogens (Albert, 2007). We will also discuss
the importance of modeling the dynamics of PPINs and how
PPIN can be used for gaining insights into the meaning of
pathogenicity. The reader can review other methods for PPINs
reconstruction elsewhere (Dyer et al., 2007; Zahiri et al., 2013).

Phylogenetic Methods: Orthologous Domains or

Genes
A first methodological approach within PPIN consists of the
identification of interacting proteins based on orthologous genes
that are known to interact (He et al., 2008). For this approach,
databases of interactions from well-characterized organisms such
asHomo sapiens, E. coli, Saccharomyces cerevisiae,Caenorhabditis
elegans, and Drosophila melanogaster, can be used. He et al.
(2008) used these databases for the prediction of protein-
protein interactions forMagnaporthe grisea, a pathogenic fungus
that produces rice blast disease. In this study, they identified
orthologous genes corresponding to proteins that are known to
interact using databases from E. coli, S. cerevisae, C. elegans, D.
melanogaster, andH. sapiens. They obtained a network of around
3,000 proteins forM. grisea. Among these, 40 seemed to be hubs
that showed a high network degree. All the interactions were
validated through in silico approaches and authors found possible
pathogenic clusters involved in infection, such as phosphorus
metabolism, chromatin silencing, and ion transport. This study
highlights the importance of the network approach for predicting
interactions where no previous information for the organism is
available.

A second approach uses different protein features related to
known protein-protein interactions: a motif, a domain, or a
tridimensional structure. Then, these features are used to predict
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TABLE 4 | Computational methods for prediction of protein-protein interaction.

Technique Algorithms Strengths Weaknesses Organism Reference

Phylogenetic Cluster analysis,

maximum likelihood,

maximum parsimony,

Bayesian inference

Provides information of

selective environmental

pressure

Difficult to estimate

divergence of proteins

H. pylori, P. falciparum Ratmann et al., 2007

Machine learning Random forest, decision tree,

k-nearest neighbors,

bayesian, Neural networks,

support vector machine

Simple to understand,

accurate

Dependent of parameter

settings and features,

black-box predictor,

large data set for training

Vibrio cholerae,

P. aeruginosa

Nanni et al., 2012;

Ehrenberger et al.,

2015

Data mining Named entity recognition, ID3,

Computational of natural

language processing, C4.5

Fast and process large

volumes of information, good

to focused list

It is sensitive to noise,

require manually curation

H. pylori,

Campylobacter jejuni

Bock and Gough,

2003

Topological Power-law degree distribution,

clustering coefficient

Common topological

characteristics among species

(small-world), comparison with

random networks

False positives proportional

to the size of the network,

configuration of protein

modules may vary

E. coli Butland et al., 2005;

Wuchty, 2006;

Sharan et al., 2007

Structure Shape complementarity,

rigid-body docking, heuristic

potential

Accurate, good availability of

data for primary and secondary

structure

Slow development for high

throughput methodologies

E. coli, S. typhimurium

and T. maritima

Matsuzaki et al.,

2014

new interactions (Davis et al., 2007). The predictions of host-
pathogen protein interactions have been mostly based on the
S. cerevisiae interactome6 [which was reconstructed based on
affinity purification/mass spectrometry (Collins et al., 2006)].
This interactome created a reference map which was curated for
later studies. For example, Davis et al. (2007) used it to predict
interactions of 10 human pathogens, including Plasmodium
and Mycobacterium species, generating a full protocol based on
protein domains.

In the case of plant-pathogens, a prediction at the genome-
scale was calculated forA. thaliana and P. syringae. This was done
through two methodologies based on domains and interolog7,
generating more than 85,000 interactions, of which 11,000 were
shared by the two methodologies (Sahu et al., 2014).

Despite the power of phylogenetic methods, they can be
largely affected by the number of genomes used and the quality of
their assembly and annotation. Therefore, a robust methodology
of verification of false positives is necessary to evaluate the
accuracy of these methods.

Modeling Dynamic Networks
Protein networks have been presented so far as a mechanism
that allows associations to be viewed in a static way. In contrast,
the cell performs processes precisely by receiving and emitting
signals in a temporal context (Przytycka et al., 2010). The study of
dynamic networks aims to identify changes in topology, function,
spatial distribution, and information flow, to understand the
organism’s response to disturbance in function of time.

For example, probabilistic approaches integrate gene
expression profiles from different time points and protein

6It is appropriate to clarify that the interactome includes the set of interactions that

can occur in an organism, usually but not always, represented by protein-protein

interaction.
7Interactions that are conserved among pairs of proteins that are present in

descent-related species.

interaction data for the reconstruction of more accurate
PPIN than the networks that rely only on one time point
(Zhang et al., 2016). This probabilistic approach identifies
protein complexes better than static methods and localizes
the protein complex in their correct time stage at biological
level. The authors exemplify this in the case of a protein
complex of the Golgi transport system, showing their
interaction in a specific point of the time series (Zhang
et al., 2016).

Also, integrative strategies (using proteomics, genomics,
and transcriptomics) have been generated to observe changes
at the level of protein interaction or gene expression, both
permanent or transient for the detection of biomarkers of disease
progression as reviewed by (Wang et al., 2014b).

Temporary associations generate rapid response mechanisms,
vital in defense processes against pathogens. Therefore, dynamic
networks could be used for generating models of disease
progression, helping in the design of drugs or control strategies
(Przytycka et al., 2010).

PPIN in the Context of Host-Pathogen
Interactions
We want to point the main use of PPIN approaches
in pathogenicity context. First, multiple protein-protein
interactions among pathogenicity factors (e.g., effector proteins)
and host proteins (based on genome data and information of
related species) can be assessed in silico. Then, the target of
the protein of the pathogen into the host can be predicted, and
obtain a network of PPIN of the pathogen and the host. Second,
host-pathogen interactions can be assessed through techniques
as Y2H or other techniques mentioned at the beginning of this
chapter. Then, these experimental data and in silico predictions
can be used to construct a PPIN of the host-pathogen interaction.
This kind of network has a lot of information useful for the
biotechnological control of the pathogen. For example, with the

Frontiers in Microbiology | www.frontiersin.org 12 January 2018 | Volume 9 | Article 35

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Botero et al. Network Analyses in Plant Pathogens

help of network metrics (Table 1) such as clustering coefficients
or network degree, hubs of susceptibility in the host can be
detected. Finally, it is highly recommended to experimentally
confirm the candidates by more precise techniques such as CoIP.

Signaling Networks: A Special Case of
PPIN
Signaling is a series of chemical and/or energetic transmissions
from an external stimulus to the cell. Signaling networks
reconstruct the interaction path of the signal-carrying elements
(usually proteins) to the organelle that requires the decision
of maintaining or changing a state of homeostasis (Cho et al.,
2015). These networks are also represented in a directed manner
(Figure 1A) and with highly conserved and specific topologies.
Usually, these types of networks also include transcription factors
and PPIN to reconstruct the signaling cascade. The most likely
edges of signal conduction are also weighted by the strongest
or most reliable directed path (Cho et al., 2015). From the
computational point of view, the weighting of the vertices
constitutes a great challenge due to the inherent subjectivity of
this process. Punctuation methodologies have been proposed by
defining a probability (Liu and Zhao, 2004).

Kim et al. (2014) discuss the robustness and modularity of
an immunity network, specifically that of A. thaliana under a
pathogen attack, investigating the changes of the plant-immunity
process called pattern-triggered immunity. They constructed
a dynamic model of a signaling network by evaluating the
determination of certain plant hormones against the immune
challenge, to evaluate their predictive power. They found that
the hormone ethylene increases the robustness of the system by
inhibiting the jasmonate pathway.With this, they could conclude
that the network is able to grade the level of the response to a
given pathogen.

REGULATORY NETWORKS

Regulatory networks represent the relationship between genes
and regulatory proteins that lead to the expression or suppression
of certain genes. The graphs of regulatory networks are
represented in a directed way (Figure 1A), trying to capture a
series of events that are often consecutive. These networks show
highly defined and sometimes hierarchical modules (Lozada-
Chávez et al., 2006).

Regulatory networks are highly dependent on the
environmental conditions, the cell type that is being studied,
and the developmental stages of the organism. Due to the
nature of this type of networks, mechanisms of control and
modulation generally given by transcription factors need to be
considered (Lee, 2002). Moreover, these networks may represent
protein-DNA interaction. Thus, they may be easily integrated
into protein-interaction networks and metabolic networks.

Because of the large amount of information that is possible
to integrate to these networks, multiple approaches have
been implemented, based on different sources of information
(Marbach et al., 2012). Table 5 summarize some of the methods
used for the reconstruction of regulatory networks. For instance,

in a report on the plant pathogen Xanthomonas axonopodis pv.
citri, researchers used microarrays and mutants to decipher the
role of two proteins, HrpX and HrpG, in the global control
of the virulence process (Guo et al., 2011) and proposed a
regulatory model. Also, Seo and collaborators used analysis of
gene expression profiles and ChIP-chip experiments to uncover
the main transcriptional architecture and regulatory features of
K. pneumoniae (Seo et al., 2012).

Finally, transcriptional reprogramming is a mechanism of
great importance in the control of pathogenicity. Consequently,
the reconstruction of regulatory networks derived from temporal
series of gene expression data, available in public repositories
(Marbach et al., 2012), could be used to predict the response
of the pathogen to host defense or antibiotic treatment.
Adding promoter regions and functional annotations can help
improve this type of network and highlight key components in
pathogenicity and evolution of resistance.

NETWORKS, EVOLUTION, AND
PATHOGENICITY

Evolution of Network Topology and
Distribution of Fluxes
The comparative analysis of networks is a powerful tool that
allows understanding the evolutionary relationships among
organisms. Furthermore, it allows scientists to decipher the
evolution of cell processes such as pathogenicity and adaptation
to life on a host. In the context of metabolic networks, three
main characteristics can be compared: the similarity of their
components, their topology or organization, and the distribution
of fluxes. Some studies that are reviewed here show several
principles of the evolution of networks in pathogenic bacteria.
We would like to highlight two of them: (i) highly connected
elements of the network are highly conserved and (ii) in a
changing environment, the organism will favor one functional
objective at the expense of others.

As stated in the first principle mentioned above, the
organization of the networks reflects the evolutionary
conservation of its components. Some studies have shown
the positive correlation between connectivity of proteins
and their degree of conservation (Butland et al., 2005). The
organization of the core (shared pathways) and the specific
networks are related to the lifestyle of the organism. Regardless
of the pathway, the highly-connected enzymes or other elements
(regulatory modules and protein interactions) in the network
are highly conserved. Furthermore, a scale-free network is
vulnerable to the removal of the highly-connected proteins
(hubs) but not to the deletion of the less connected proteins.
The modularity of the networks reflects the lifestyles of the
organisms, as will be discussed in the next section (Butland et al.,
2005; Kreimer et al., 2008).

Concerning the second principle, while today we have a
better understanding of the way networks are organized or
their topology, the evolution and the distribution of fluxes
through metabolism have been less studied. Schuetz et al.
(2012) compared the evolution of metabolism inmicroorganisms

Frontiers in Microbiology | www.frontiersin.org 13 January 2018 | Volume 9 | Article 35

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Botero et al. Network Analyses in Plant Pathogens

TABLE 5 | Methods for reconstruction of regulatory networks.

Approaches Highlights Challenges Organisms studied References

Differential equations Network dynamic over time,

regulation and optimization of

function

High computational demanding,

complex parameter optimization

Mus musculus, Candida albicans Linde et al., 2015

Boolean Switch-like behavior, efficient and

easy interpretation

Only two states, good in small

networks,

Only synchronous interactions

H. pylori Franke et al., 2008

Bayesian* Robust to deal of disturbances,

integrated knowledge to increase

the support

Non-dynamical, high computational

cost, often used a hybrid method to

increase the accuracy

E. coli Yang et al., 2011

Neural networks Allows continuous variables over

time, very sensitive for regulated

systems, noise-resistant

Computational complex, difficult for

training, need a lot of input data

Caulobacter crescentus,

E. coli, Bacillus subtilis

Yaghoobi et al., 2012;

Umarov and Solovyev,

2017

State space model High computational efficiency,

probabilistic framework to

simulate the network, determines

an optimal threshold value

There are no learning steps Saccharomyces cerevisiae,

Aspergillus fumigatu

Do et al., 2009; Koh

et al., 2009

*To counteract the stationary problem of Bayesian networks, The dynamic Bayesian network approach was developed.

to the Pareto optimality. The Pareto optimality or Pareto
efficiency is an economic concept stating that one’s utility
will increase only if someone else’s utility diminishes (Sen,
1993). Therefore, in a changing environment, an organism
faces a series of trade-offs; the optimality of an objective
will be at the expense of another (ATP balance, growth
rate, or minimization of fluxes; Schuetz et al., 2012). For
example, an organism cannot be optimally adapted to growth
in aerobic conditions and anaerobic at the same time. More
importantly, authors found a deviance of the metabolism’s
operation of some mutants from the Pareto surface, which
support the author’s hypothesis that organisms maintain some
space from optimality as evolutionary adaptation under changing
environments (Schuetz et al., 2012). Thus, evolution favors flux
distributions that minimize adjustments to the new conditions
(Schuetz et al., 2012).

Comparative Studies of Networks
Network comparisons between different organisms to study
their evolution can be performed with different methods. Some
methods compare the contents of the network (e.g., similarity
in enzymes, individual pathways, or the whole repertoire)
while others compare their structure. We will revise some of
these methods mentioning their differences and some of their
applications.

The first set of methods calculates indices of similarity
or distance between networks, by calculating the similarity
or distance between the network components (enzymes,
transcription factors, or any other sequence used to construct
the network). The similarity between proteins can be simply
obtained by their sequence or structure similarity but also by the
similarity between the EC (Enzyme Classification) numbers of
the corresponding reactions, in the case of metabolic networks
(IUBMB. Nomenclature Committee of The International Union
of Biochemistry and Molecular Biology, 1992; Heymans and
Singh, 2003).

Other methods use the information of the structure of the

networks. Forst and Schulten (2001) used sequence similarity

combined with information of the corresponding network.

They defined the distance between pathways based on all the

comprising elements that share the same functional role. In
the simplest pathway, the elements of a functional role are the
enzyme and its substrate and they can be compared by traditional
sequence comparison analysis, if the latter is a protein.

Heymans and Singh (2003) proposed to combine both
measures, similarity of the components and network structure

using local graph similarity. The graph similarity is calculated on

enzyme subsets where all the information contained within the
pathways, except for the enzymes, is deleted and the simplified
subset is then compared (Heymans and Singh, 2003). However,
this method applies to individual pathways and a more inclusive
approach was proposed by Forst et al. (2006) in a study where the
whole metabolic networks are compared (Heymans and Singh,
2003; Forst et al., 2006).

The fourth set of analyses studies differences in the
components of the networks; basically, they compare the
insertion or deletion of components in a network. These
approaches allow the understanding of the adaptation of
organisms to new niches. In a network, two types of pathways
can be identified, the essential, present in all organisms, and
the non-essential, which are under continuous evolution and
are specific to the organism’s lifestyle (Mithani et al., 2010). In
the Reaction correlation analysis (Mithani et al., 2010, 2011)
a Euclidean distance is calculated based on the absence or
presence of the reactions in different individuals or strains. In
the “all but one analysis” included in the software Rahnuma
(Mithani et al., 2009), and then redefined by Mithani et al.
(2010), the user can identify pathways and reactions present in
some organisms but absent in others. The identification of a
core network leads to the construction of an Ancestral Network,
a network comprising the reactions present in all species and
the definition of species-specific networks (Mithani et al., 2010).
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Therefore, a Bayesian model like the one proposed by Mithani
et al. (2010) for the study of network evolution allows for the
identification of regions of the network under selective pressures,
most probably involved in pathogenicity processes. In a study
combining different approaches of network evolution analysis,
Mithani et al. (2011) showed how these comparative analyses
lead to the understanding of the evolution and adaptation
strategies of a set of related organisms, some pathogenic and
other nonpathogenic. For example, according to the ancestral
network reconstruction, it has been suggested that the ancestral
pseudomonad was saprotrophic from which more specialized
pathogens evolved (Mithani et al., 2010, 2011).

The fifth set of analyses compare the topological features
of metabolic networks, especially modularity, for more than
300 bacterial species (Kreimer et al., 2008). These analyses
permit studying evolution at a broader phylogenetic scale and
relate network characteristics with environmental cues. One
of the main results of Kreimer and collaborators was that
the environmental factors influence network modularity. Also,
symbionts and pathogens show lower modularity while the free-
living and less niche-specific bacteria show higher modularity
(Kreimer et al., 2008). Moreover, endosymbiotic organisms living
in nutrient-restricted niches show both smaller networks and
less modularity, losing specific fast-evolving pathways (Kreimer
et al., 2008). In this context, modularity is interpreted as subset of
functionally related and highly connected reactions or pathways.
Thus, pathogens and symbionts have a lower number of modules
and connections because they are expected to use the external
pathways from the host for its own benefit.

Network Evolution and Pathogenicity
The comparative genomic studies reviewed here take advantage
of a higher order of organization based on the structure
and properties of the molecular level network-based models.
These models allow stating additional hypotheses for the
evolution of bacterial pathogens. However, studies based on
molecular network models have important limitations as do
other comparative genomic studies. Missing data is probably the
major drawback, for example on the directionality and kinetic
parameters of the reactions.

The study of network evolution will help in the understanding
of pathogenicity and in the processes of adaptation of pathogens
to new or old hosts. Especially, the organization of orphan
genes, the species-specific or pathogen-specific genes, and their
connections to the core network will help achieve this goal.
New genes arise by different processes: exon shuffling, gene
duplication, retrotransposition, mobile elements, lateral gene
transfer, de novo, and a combination of these mechanisms (Long
et al., 2003). Once generated, both duplicated and novel genes are
less connected at the beginning, however, the rewiring process
differs between these two (Capra et al., 2010). In the case of
the pathogenicity-related genes, it is argued that they will always
occupy peripheral positions in the networks (Kholodenko et al.,
2012), a result expected due to their fast-evolving rates.

The study of the rewiring process of recently evolving
genes may be helpful in the pathogenicity studies, given that
the rewiring process occurs not only inside the cell but also

with its interactors (host or pathogen). In a recent study, it
was shown that effector proteins from phylogenetically distant
organisms converge to and target highly connected hubs of
the immune plant system (Mukhtar et al., 2011; Kholodenko
et al., 2012). Thus, this mechanism of host-pathogen interaction
could help in the prediction of evolving paths in the pathogen
as response to drug or pesticide control (in human and plant
pathogens respectively), and therefore partially solve the problem
of resistance in pathogens subject of pathogenicity control.

CONCLUSIONS

We have reviewed the metabolic, protein-protein and regulatory
networks that have helped understanding disease, mechanisms
of pathogenesis and virulence, as well as interactions between
bacteria and their hosts.

All types of networks, used for prediction purposes, have
both strengths and weaknesses, and provide different types of
biological information Table 6. Also, we showed how topological
and other mathematical approaches can be used to analyze every
type of network. For example, CBM, which does not rely on
the complete knowledge of the kinetic constants, serves as a
useful approach for metabolic analyses in pathogenic bacteria.
In contrast, the Boolean analysis of regulatory networks, which
relies only on topological features of the network architecture,
provides useful information about pathogenic mechanisms.
Thus, the different mechanisms of pathogenicity, disease, and
virulence can be uncovered by network approaches. However,
a strong feedback between the information derived from
experimental procedures and computational models should
be progressively more relevant and important to improve
the conclusions of the models and provide new biological
hypotheses.

The systems biology approach can be used to design control
strategies of the pathogen. For example, bactericides target
important regulators or proteins of the pathogen, identified on
in silico studies. In the case of regulatory networks, two of the
most important aspects related to pathogens are the robustness
of the network to random changes and its stability through time.
This has been made evident by the high degree of fitness that
successful pathogens possess. Pathogens share elements linked
to pathogenicity that have simultaneous and/or complementary
actions as redundant mechanisms in the event of detection by the
host. The robustness is a consequence of the wired redundancy of
the gene-regulator interactions, especially in the genes encoding
for hub proteins. It can be inferred that the evolutionary forces
have shaped and constrained the most important regulatory
pathways involved in disease, pathogenicity, and virulence of
bacteria. Therefore, genes within pathways that improve the
fitness of the pathogen are positively selected, increasing the
degree of wiring of these specific mechanisms. These genes are
promising targets for bacterial control.

In the case of protein-protein interactions, newmethodologies
and approaches have emerged from structural, functional and
computational knowledge. Studies have focused on the functional
role of proteins in disease-related processes, significantly
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TABLE 6 | Summary of networks for the study of host-pathogen interaction.

Networks Experimental data Mathematical and computational

approaches

Objective

Regulatory Genomics; Transcriptomics; Transcription

Start Site (5′-RACE); Binding sites global

regulators (ChIP-chip)

Boolean; network analysis Dynamic of regulation of genes involved in

virulence and pathogenicity

Metabolic Genomics; transcriptomics;

Metabolomics; Phenotype microarrays;

C13 labeling

Constraint-based modeling; elementary

flux mode analysis; pathway enrichment

analysis; network analysis

Metabolic capabilities; genes related with

virulence and pathogenicity

Protein-protein

interaction

Y2H; PCA; BiFC; Protein arrays; Pull

down; Phage display

Phylogenetic methods; dynamical

networks; machine learning

Identification of hubs involved in virulence

and pathogenicity; Determination of

interaction between proteins related with

signaling and regulatory cascades

Signaling and regulatory Transcriptomics; Fusion assays (LacZ

reporter); Adherence assay; Biofilm

formation (fluorescence)

Boolean; network analysis Impact of sensors in regulation of virulence

and pathogenesis; Cell-to-cell signaling;

biofilm synthesis;

Signaling, regulatory and

metabolic

Genomics; metabolomics; transcriptomics Constraint-based modeling; boolean

model hierarchical layers; network analysis

Model regulatory and metabolic network

of QS system

The networks reviewed in this work, the experimental data (mainly at the level of omics), the mathematical and computational approaches applied for every network, and the research

objective for the networks studied are summarized.

contributing to the understanding of the role of proteins as
mechanistic executors in each of the physiological stages of
infection. Thus, signaling pathways or hubs that are susceptible to
be blocked to prevent the development of a given disease could be
detected and be used to design control strategies of the pathogen.
One of these strategies starts from the analysis of domains or
contact surfaces allowing to establish interactomes in silico and
develop mimetic or decoy proteins.

We have shown that regulatory, metabolic, and protein-
protein interaction network systems are tightly interconnected,
and each of them depends on the others. In the future, we
expect that more studies center their efforts into coupled systems
using different computational and mathematical approaches
with the support of several experimental techniques and
approaches (as much targeted to specific genes and mechanisms
as supporting high-throughput data analysis). For example, the
gene essentiality analysis is important in the context of regulatory
networks, where deletion of genes impact molecular networks
at the level of protein interactions, signaling cascades, and
the metabolic phenotype. Therefore, this analysis constitutes a
powerful approach for searching for genetic targets for the design
of control strategies against pathogens.

Another example of the inference power of coupled systems
is the relationship between the genotype and the phenotype
that is reflected in metabolic and protein networks linked to
regulatory and signaling networks. It is the convergence of
systems, through the switching of the distinctmetabolic pathways
mediated by regulation of the genes and signaling cascades,
that determines the defense and attack mechanisms of the
pathogen. The hubs at the level of the regulatory system play
an important role in the control of pathogenicity, since a global
regulator of pathogenicity can control several genes within a
pathogenicity module. Subsequently, the downstream cascade of
genes can up or down-regulate several other genes involved in
metabolism and other functions. The result is the expression
of a metabolic phenotype that serves as a coordinated attack

or defense system. Thus, the study of regulatory, signaling and
metabolic interactions through a multiscale modeling approach
will provide promising results related to pathogenicity and
defense mechanisms.

In systems biology, we will see an important improvement
of the evolutionary analyses performed on the networks. The
incorporation of a genetic population frame is urgently needed
to help to understand the pathogenic mechanisms of host-
pathogen interactions. A way to accomplish this is through
the establishment of relationships between genetic variation of
the genes associated with the enzymes and proteins and the
properties of the networks to explain this variation in spatial
and evolutionary terms in a system context. Ultimately, the
host-pathogen relationships are governed by evolutionary forces
acting in time and space of the whole biological system.

The evolutionary studies supported by systems biology can
help to solve important questions related to pathogenicity as
the emergence of specific pathogens and their relationship with
non-pathogens. The processes of interaction among species over
millions of years have largely been influenced by domestication.
This has generated changes among the connections of the
elements of the immune system (rewiring). As a result, selection
pressures have varied, favoring, in some cases, a non-specific
pathogen to infect a given host. This process can be modeled
through networks, by reconstructing the routes or proteins of
ancestral and/or non-domesticated species and comparing with
the present ones to observe the changes in connections among
the elements.

From the evolutionary point of view, networks can also
demonstrate the molecular changes that have occurred during
pathogen interactions. From the hypothesis of arms race
processes, new perspectives have been generated that can fill the
gaps, such as that proposed by Cook et al. (2015), which provides
a view of the host-pathogen interaction, related to mutualism
and parasitic symbiosis as initial stages of co-evolution. With the
above, we could rethink the approximation strategies and howwe
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understand the interaction of what is considered pathogenic, and
how biological networks can drive to new hypothesis through the
integration of enormous amount of information.

Finally, the comparisons between pathogens and non-
pathogens in an evolutionary context, where there are
conserved and divergent features among the different
strains and species, can serve to design control strategies
and to help to improve the understanding of pathogenicity
mechanisms.

In this review, we tried to describe different methodologies
to solve biological questions using the networks, giving an
overview of the available mathematical approaches. As a growing
discipline, network analysis in systems biology still has challenges
that must be overcome and must be considered when generating
new hypotheses. Some of the challenges that need to be addressed
are:

I. At the metabolic level, the objective function should be
redefined in a context of host-pathogen relationships (xanthan
is a good example; other pathogenic factors can be modeled in
the same way).

II. Protein-protein interaction prediction methodologies must
have a large amount of data as a basis for prediction.

III. The reconstruction of the regulatory networks still represents
experimental limitations since a high amount of data are
needed such as time series, gene deletions or biological
samples.

IV. The evolutionary forces acting on the networks should be
mathematical and computational implemented; not only to
compare between different networks of the same species or
genus, but also to differentiate among genetic drift, genetic
flow and other evolutionary forces.

V. The experimental information on non-model pathogens,
especially the high-throughput data must be increased for
feeding the computational models and for comparison
purposes.

Confronting these challenges will bring the study of pathogenic
mechanisms and relationships to a next level. Without doubt,
network analysis in systems biology will appear as an essential
discipline used in every molecular laboratory that studies host-
pathogen interactions and, we will see a burst of user-friendly
software in network biology designed for experimental biologist
to fulfill this necessity.
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