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Abstract

In recent years, machine learning methods have been applied to various prediction scenar-

ios in time-series data. However, some processing procedures such as cross-validation

(CV) that rearrange the order of the longitudinal data might ruin the seriality and lead to a

potentially biased outcome. Regarding this issue, a recent study investigated how different

types of CV methods influence the predictive errors in conventional time-series data. Here,

we examine a more complex distributed lag nonlinear model (DLNM), which has been

widely used to assess the cumulative impacts of past exposures on the current health out-

come. This research extends the DLNM into an artificial neural network (ANN) and investi-

gates how the ANN model reacts to various CV schemes that result in different predictive

biases. We also propose a newly designed permutation ratio to evaluate the performance of

the CV in the ANN. This ratio mimics the concept of the R-square in conventional statistical

regression models. The results show that as the complexity of the ANN increases, the pre-

dicted outcome becomes more stable, and the bias shows a decreasing trend. Among the

different settings of hyperparameters, the novel strategy, Leave One Block Out Cross-Vali-

dation (LOBO-CV), demonstrated much better results, and the lowest mean square error

was observed. The hyperparameters of the ANN trained by the LOBO-CV yielded the mini-

mum number of prediction errors. The newly proposed permutation ratio indicates that

LOBO-CV can contribute up to 34% of the prediction accuracy.

Introduction

Numerous studies from different countries have found environmental aspects that are key fac-

tors attributable to human mortality [1–4]. Extreme climates occur more frequently than ever

due to global warming, encouraging more research on the impact of temperature variations on

health outcomes [5, 6]. In addition to temperature, air pollution also plays an important role,

such as with CO, O3, CO2, and particulate matter (PM) PM2.5 and PM10 [7, 8]. An air quality

report in 2016 indicated that heart disease is a major cause of death in young adults, and the

80% mortality rate is attributable to air pollution [9]. Previously, the Distributed-Lag Non-Lin-

ear Model (DLNM) [10] was the ideal strategy to deal with environmental factors that have lag
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effects such as temperature or air pollution since the cumulative impact could be fitted into the

same complex statistical model. DLNM discovered the lag impact of temperature on mortality

[11] as well as delayed air pollution [8].

Nowadays, machine learning and artificial neural networks (ANNs) [12] demonstrate supe-

rior prediction abilities compared to conventional logistic regression. Applications of the

ANNs occurred in many research fields. In particular, an improved fuzzy neural network that

predicts traffic speed draws great attentions [13]. Recently, Tan et al. [14] also comprehensively

examined both statistical and machine learning methods for incident clearance time predic-

tion. Parameter tuning is crucial in machine learning, and cross-validation (CV) is the primary

step for finding the optimal setting of hyperparameters without overfitting, where the tenfold

CV is the most popular procedure [15, 16]. The CV error is defined as 1

k

Xk

i¼1

MSEðkÞ
� �

, where

MSE(k) is the mean square error (MSE) for the k-th-fold dataset, and the smallest CV error sug-

gests the optimal setting of the hyperparameters.

However, CV with time-series data raises a serious issue if each data point is randomly

selected and then shuffled without keeping the time sequence. In this case, the later data is

used to predict earlier outcomes, which violates the serial pattern assumption. Therefore, h-

block cross-validation was proposed [17]. However, this method causes information loss.

Later, four strategies for CV were examined by Bergmeir et al. [18] including the fivefold CV,

leave-one-out CV, h-block fivefold CV, and out-of-sample evaluation. Among these, the five-

fold CV demonstrated the most satisfying results. Following this approach, recent research has

focused on error bias estimates using the generalized linear model (GLM) and random forrest

(RF) methods [19].

To date, there is no machine learning or artificial neural network considered the most pop-

ular artificial intelligence (AI) model that deals with DLNM. Therefore, if lag environmental

factors such as temperature or air pollution can be properly incorporated by an ANN, then the

predictive model and accuracy are expected to be substantially improved. Therefore, this study

aims to develop a novel CV procedure for an ANN that incorporates the complex lag exposure

based on the DLNM structure. When CV is conducted in machine learning or artificial neural

networks (ANNs), one randomly splits the entire data into 10 unrelated sets. Here, we propose

an opposite approach that preserves the correlation owing to the nature of time-series data

with predictors and lag effects. We anticipate that the new strategy will outperform the fivefold

CV [18].

Materials and methods

In Taipei City, all-cause daily mortality was obtained from the Cause of Death Database pub-

lished by the Ministry of Health and Welfare from January 1, 2012, to December 31, 2016. The

Institutional Review Board (IRB) of the National Yang-Ming University approved the use of

anonymous mortality data and satisfied ethics guidelines. The approved IRB number was

YM107045E. Daily mean temperature records were downloaded from the Taipei Weather Sta-

tion. The freely available data are governed by the Central Weather Bureau (CWB) Observa-

tion Data Inquiry System website [20]. Air pollution, including the daily mean ozone

concentration and daily mean PM2.5 concentration, were downloaded from the Taipei Air

Quality Monitoring System, which is maintained by the Environmental Protection Adminis-

tration Executive Yuan website [21]. Although some air pollutants were missing, we could

only omit these observations because the missing rate is low with an ignorable impact on the

analyses. Descriptive statistics are listed in Table 1.
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The DLNM models the current mortality, which is defined as follows:

logðmtÞ ¼ aþ sðxt; l; bÞ þ bO3
O3t þ bPM2:5PM2:5t þ

Xp

i¼1

f ðzt
i; yÞ

The independent (predictive) variable (xt) is the daily mean temperature, and other pollut-

ant variables (O3t and PM2.5t) are treated as potential confounders. The dependent (outcome)

variable (μt) was the all-cause daily mortality. The DLNM was fitted through a cross-basis

function s(xt,l,β) that simultaneously describes the effect of the daily mean temperature xt and

its lag structure with maximum lag l on the expected daily mortality. Daily mean ozone con-

centration O3t and daily mean concentration PM2.5t were treated as fixed effects. A natural

cubic spline f(zti; θ) with eight degrees of freedom for each year was used to adjust for the sea-

sonal effect. In general, the maximum exposure lag l was 30. The cross basis consists of a qua-

dratic B-spline for temperature with the knots placed at 10, 75, and 90 percentiles and a

natural cubic spline for the lag with 5˚ of freedom, which indicates three internal knots equally

spaced on the log scale.

Instead of the DLNM, we aim to implement an ANN to accommodate such complex struc-

tures with a large number of correlated predictors by treating all predictors in the DLNM as

input neurons. Previously, mortalities were included as additional input neurons in the ANN.

In this way, the ANN could assess whether variations in previous mortality records would

affect the mortality outcome in the current day. Therefore, the ANN treats a large set of predic-

tors as different neurons in the input layer, and the training process of the ANN could capture

nonlinear associations and provide a satisfying prediction of the mortality outcome. By con-

trast, the DLNM ignores lag mortality records. Since the compiled dataset is between 2012 and

2016, the year variable is coded as five variables, and the month variable is coded as 12 vari-

ables. Weekday, weekend, and holidays are three indicator variables. Up to 30 lags of the tem-

perature variable and mortality were considered by the ANN.

Regarding the number of hidden layers, the ANN is fitted by two or three layers since one

layer may not be suitable for such a complex distributed-lag time series. For an ANN with two

hidden layers, the number of neurons was 6, 12, 24, 36, 48, and 60, which resulted in 36 combi-

nations. Regarding an ANN with three hidden layers, owing to the limitation of running time,

only three scenarios were considered: (6, 6, 6), (36, 36, 36), and (60, 60, 60). With respect to

the number of hidden layers and the number of neurons, the number of parameters to be esti-

mated in the ANN model increases dramatically (Fig 1). The smallest number of parameters is

2,007 for 2 hidden layers, with 6 neurons in each layer. The highest number of parameters is

11,121 when 3 hidden layers with 60 neurons in each layer are trained. Therefore, four or

more hidden layers are not practical, and these scenarios were not considered.

Table 1. 2012–2016 descriptive statistics for mortality, climate, and air pollution data.

Daily Data Descriptive Statistics

N Mean Std Dev Min Max

Death 1818 61.39 9.583 32.000 101.000

Temperature 1818 23.57 5.526 5.583 32.996

CO 1816 0.64 0.207 0.080 2.699

O3 1816 28.03 9.629 6.317 81.967

PM10 1816 39.69 16.802 11.857 142.000

PM2.5 1801 20.46 10.412 3.714 87.143

SO2 1816 2.89 1.123 0.743 11.571

https://doi.org/10.1371/journal.pone.0244094.t001
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According to Bergmeir et al. [18], the fivefold CV was the best performer. Hence, it is the

only strategy to be compared with the new methods. The first novel algorithm is Leave-One-

Block-Out Cross-Validation (LOBO-CV), and the second is Temporal-Block Cross-Validation

(TB-CV). The concept of the three CV schemes is displayed in Fig 2. LOBO-CV utilizes all dis-

tributed-lag time series since part of the training set occurred before the testing set. LOBO-CV

Fig 1. Number of parameters estimated by the ANN.

https://doi.org/10.1371/journal.pone.0244094.g001

Fig 2. Study designs of the 5-Fold-CV, LOBO-CV, and TB-CV.

https://doi.org/10.1371/journal.pone.0244094.g002
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has a concept similar to that of leave-one-out cross-validation, but each iteration involves a

group of time series and results in fewer operations. TB-CV is based on LOBO-CV but avoids

unreasonable predictions using the later data. Hence, the sample size of TB-CV is significantly

reduced compared to LOBO-CV, especially in the first sequential block.

The preceding 70% of the time-series data is the training set, and the remaining 30% is used

as the testing set. In the training set, fivefold CV, LOBO-CV, and TB-CV are implemented.

Therefore, the CV error is the average of the five validation errors.

The validity of the three CV methods was further evaluated by a permutation study. We

define a new statistic, the permutation ratio (PR), to assess the changes in CV errors from the

null hypothesis of no association between mortality and the set of complex correlated predic-

tors to the alternative hypothesis, the observed situation. The CV error with permutation

could be compared to that without permutation, which is the original training data.

The PR is defined as

PR ¼ min 1;
CV errorðwithout permutationÞ
CV errorðwith permutationÞ

� �

The rationale is that if the CV error does not contribute to the prediction accuracy, then the

PR would be close to 1. The higher the PR, the lower the impact of the prediction accuracy

using ANN. If the PR is close to 0, then the results suggest that the training process of ANN-

based on such a CV scheme has the highest impact on prediction accuracy, and all variations

are explained by the model. After the best hyperparameter and the optimal CV strategy are

determined by the minimum CV error, the ANN can be fitted to the testing dataset and obtain

a fair and robust prediction accuracy.

Results

In the ANN with two hidden layers, we combined the number of neural nodes in two layers

with 6, 12, 24, 36, 48, and 6. Changes in the results were observed under combinations of

hyperparameters. In the simulation results of the neural network architecture with two hidden

layers, one can observe the preset results under three types of CV with different hyperpara-

meters in Tables 2, 3 and 4. Comparing the results of the three types of CV, we discovered that

as the complexity of the model increases, the predicted results improve with a lower MSE.

Regarding the three strategies, fivefold CV, LOBO-CV, and TB-CV, the best performing

Table 2. CV errors for the 5-Fold-CV.

Neurons (6,6) (6,12) (6,24) (6,36) (6,48) (6,60) Average

CV error 85.426 81.304 81.338 71.188 81.336 74.154 79.12

Neurons (12,6) (12,12) (12,24) (12,36) (12,48) (12,60)

CV error 71.144 72.804 64.592 71.302 71.212 62.352 68.90

Neurons (24,6) (24,12) (24,24) (24,36) (24,48) (24,60)

CV error 67.642 70.088 67.496 68.262 61.364 66.178 66.84

Neurons (36,6) (36,12) (36,24) (36,36) (36,48) (36,60)

CV error 63.636 67.834 60.954 71.614 67.128 70.878 67.01

Neurons (48,6) (48,12) (48,24) (48,36) (48,48) (48,60)

CV error 63.926 63.42 63.758 63.368 67.044 69.514 65.17

Neurons (60,6) (60,12) (60,24) (60,36) (60,48) (60,60)

CV error 69.014 61.192 67.588 65.934 61.574 61.466 64.46

Note: the two numbers in parenthesis (a,b) represent the number of nodes in the first (a) and second (b) layer.

https://doi.org/10.1371/journal.pone.0244094.t002
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hyperparameter groups are (60, 12), (24, 60), and (36, 6), respectively, where the MSE is

61.192, 54.442, and 65.936, respectively. Among all 36 sets of hyperparameters, the fivefold CV

achieves the lowest MSE among the three methods among the eight sets of hyperparameters.

The LOBO-CV has 28 sets of hyperparameters, and the lowest MSE is observed. By contrast,

TB-CV was not the best performer on any set of hyperparameters. The visualized presentation

of all hyperparameters for the three strategies is displayed in Figs 3, 4 and 5, where the trend of

decreasing MSE is not linear but has a clear direction.

In the case of two hidden layers, the permutation-based CV errors are listed in Tables 5, 6

and 7, where the null hypothesis of no association is simulated. It can be observed that the

comparative performance is almost similar, but the MSE increases between 80 and 82 for most

sets of hyperparameters. The average MSEs of the fivefold CV, LOBO-CV, and TB-CV are

82.03, 80.016, and 83.279, respectively. The results match our expectation that under the null

hypothesis, the three models should yield similar errors, and the errors should be higher than

the CV errors of the original data.

After obtaining both the CV error and the permutation-based CV error, the PR is easily cal-

culated, and a lower value represents a better outcome (Table 8). It can be observed that in the

Table 3. CV errors for the LOBO-CV.

Neurons (6,6) (6,12) (6,24) (6,36) (6,48) (6,60) Average

CV error 77.44 82.932 82.916 64.442 82.942 67.37 76.34

Neurons (12,6) (12,12) (12,24) (12,36) (12,48) (12,60)

CV error 83.714 74.006 59.972 64.262 70.766 58.836 68.59

Neurons (24,6) (24,12) (24,24) (24,36) (24,48) (24,60)

CV error 64.904 70.86 56.826 64.104 56.208 54.442 61.22

Neurons (36,6) (36,12) (36,24) (36,36) (36,48) (36,60)

CV error 61.646 65.514 53.66 66.154 66.034 67.444 63.41

Neurons (48,6) (48,12) (48,24) (48,36) (48,48) (48,60)

CV error 72.152 58.502 62.582 62.962 61.992 66.506 64.12

Neurons (60,6) (60,12) (60,24) (60,36) (60,48) (60,60)

CV error 65.538 55.306 69.122 63.274 59.88 59.774 62.15

Note: the two numbers in parenthesis (a,b) represent the number of nodes in the first (a) and second (b) layer.

https://doi.org/10.1371/journal.pone.0244094.t003

Table 4. CV errors for the TB-CV.

Neurons (6,6) (6,12) (6,24) (6,36) (6,48) (6,60) Average

CV error 105.074 86.83 86.796 84.622 86.836 75.072 87.54

Neurons (12,6) (12,12) (12,24) (12,36) (12,48) (12,60)

CV error 120.94 91.162 81.738 75.194 71.402 71.892 85.39

Neurons (24,6) (24,12) (24,24) (24,36) (24,48) (24,60)

CV error 86.708 74.842 81.502 76.46 76.684 71.73 77.99

Neurons (36,6) (36,12) (36,24) (36,36) (36,48) (36,60)

CV error 65.936 75.728 74.366 72.372 120.144 92.18 83.45

Neurons (48,6) (48,12) (48,24) (48,36) (48,48) (48,60)

CV error 82.374 72.404 81.142 74.824 82.146 78.956 78.64

Neurons (60,6) (60,12) (60,24) (60,36) (60,48) (60,60)

CV error 73.674 66.702 76.936 69.528 74.32 78.148 73.22

Note: the two numbers in parenthesis (a,b) represent the number of nodes in the first (a) and second (b) layer.

https://doi.org/10.1371/journal.pone.0244094.t004
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context of different sets of hyperparameters, most of the fivefold CV and LOBO-CV demon-

strated better results. Among all 36 sets of hyperparameters, the fivefold CV achieved the low-

est MSE. In 11 sets of hyperparameters, LOBO-CV is the best performer with 22 sets of the

best PRs, and TB-CV has three sets of best performances.

Fig 3. Distribution of MSE for 5-Fold-CV with two hidden layers.

https://doi.org/10.1371/journal.pone.0244094.g003

Fig 4. Distribution of MSE for LOBO-CV with two hidden layers.

https://doi.org/10.1371/journal.pone.0244094.g004
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The best hyperparameters for the fivefold-CV, LOBO-CV, and TB-CV are (24, 48), (36, 24),

and (36, 6), respectively. Therefore, the best PRs are 0.697, 0.656, and 0.705, respectively. The

difference between 1 and PR indicates the contribution of the ANN, which means that the

trained neural networks based on the three CV strategies contribute 30.3%, 34.4%, and 29.5%

of the prediction accuracy, respectively.

In the ANN with three hidden layers, we used (6, 6, 6), (36, 36, 36), and (60, 60, 60) as three

sets of hyperparameters to observe the changing patterns (Table 9). The results suggest that the

performance of this particular set of hyperparameters (60, 60, 60) is the best. Therefore, the

conclusion is consistent that more complex ANN models have better predictive results. The

lowest MSE of the fivefold CV, LOBO-CV, and TB-CV were 59.504, 54.762, and 65.626,

Fig 5. Distribution of MSE for TB-CV with two hidden layers.

https://doi.org/10.1371/journal.pone.0244094.g005

Table 5. CV errors for the 5-Fold-CV with permutations.

Neurons (6,6) (6,12) (6,24) (6,36) (6,48) (6,60)

CV error 83.612 81.4 81.404 79.8 79.838 81.4

Neurons (12,6) (12,12) (12,24) (12,36) (12,48) (12,60)

CV error 75.81 94.086 84.55 81.4 76.932 81.378

Neurons (24,6) (24,12) (24,24) (24,36) (24,48) (24,60)

CV error 84.882 81.396 89.572 84.03 87.98 78.13

Neurons (36,6) (36,12) (36,24) (36,36) (36,48) (36,60)

CV error 80.996 81.394 81.392 81.4 81.396 81.392

Neurons (48,6) (48,12) (48,24) (48,36) (48,48) (48,60)

CV error 81.396 80.496 81.394 81.402 83.042 81.396

Neurons (60,6) (60,12) (60,24) (60,36) (60,48) (60,60)

CV error 81.398 81.398 81.398 81.394 81.402 81.394

Note: the two numbers in parenthesis (a,b) represent the number of nodes in the first (a) and second (b) layer.

https://doi.org/10.1371/journal.pone.0244094.t005

PLOS ONE New cross-validation strategy for artificial neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0244094 January 7, 2021 8 / 13

https://doi.org/10.1371/journal.pone.0244094.g005
https://doi.org/10.1371/journal.pone.0244094.t005
https://doi.org/10.1371/journal.pone.0244094


respectively. It is worth noting that LOBO-CV is the best performer under all circumstances.

All MSEs are between 81 and 83, which is similar to the results shown by the two hidden layers

but further narrows the range.

Finally, for the permutation error, we can observe that the three methods are consistent

with this set of hyperparameters (60, 60, 60) as the best result. Therefore, the best PRs for the

fivefold CV, LOBO-CV, and TB-CV are 0.79, 0.85, and 0.67, respectively. In summary, the

ANN model contributes approximately 21%, 15%, and 33% of the prediction accuracy, respec-

tively. In the simulations for three hidden layers, there is no case in which the PR is greater

than 1, as observed in the two hidden layer cases. This means that the three-hidden-layer

model is more robust in such a complex data structure.

After the ANN was trained with the optimal hyperparameters, we implemented the three

CV strategies in the two-layer hidden layer since the set of parameters is more detailed com-

pared to the three hidden layers. The hyperparameters selected for fivefold CV, LOBO-CV,

and TB-CV are (60, 12), (24, 60), and (36, 6), respectively. The MSEs were 116.36, 109.77, and

112.73, respectively. LOBO-CV remains the best performer in the testing dataset, which is con-

sistent with the results of the training dataset.

Table 6. CV errors for the LOBO-CV with permutations.

Neurons (6,6) (6,12) (6,24) (6,36) (6,48) (6,60)

CV error 79.326 81.838 81.836 80.534 76.284 81.838

Neurons (12,6) (12,12) (12,24) (12,36) (12,48) (12,60)

CV error 74.936 82.5 82.082 81.83 71.636 81.82

Neurons (24,6) (24,12) (24,24) (24,36) (24,48) (24,60)

CV error 85.95 81.832 72.872 81.844 69.3 69.16

Neurons (36,6) (36,12) (36,24) (36,36) (36,48) (36,60)

CV error 71.988 81.848 81.85 81.844 82.026 81.828

Neurons (48,6) (48,12) (48,24) (48,36) (48,48) (48,60)

CV error 81.822 81.578 81.85 81.832 81.826 81.838

Neurons (60,6) (60,12) (60,24) (60,36) (60,48) (60,60)

CV error 81.854 81.836 81.826 81.826 81.838 81.832

Note: the two numbers in parenthesis (a,b) represent the number of nodes in the first (a) and second (b) layer.

https://doi.org/10.1371/journal.pone.0244094.t006

Table 7. CV errors for the TB-CV with permutations.

Neurons (6,6) (6,12) (6,24) (6,36) (6,48) (6,60)

CV error 81.21 82.794 82.792 81.3 76.752 82.802

Neurons (12,6) (12,12) (12,24) (12,36) (12,48) (12,60)

CV error 78.752 78.556 82.784 82.794 84.75 82.792

Neurons (24,6) (24,12) (24,24) (24,36) (24,48) (24,60)

CV error 90.82 82.794 81.772 82.78 89.164 91.764

Neurons (36,6) (36,12) (36,24) (36,36) (36,48) (36,60)

CV error 93.57 82.774 82.778 82.798 82.774 82.788

Neurons (48,6) (48,12) (48,24) (48,36) (48,48) (48,60)

CV error 82.768 82.792 82.778 82.784 82.804 82.782

Neurons (60,6) (60,12) (60,24) (60,36) (60,48) (60,60)

CV error 82.774 82.772 82.782 82.774 82.802 82.772

Note: the two numbers in parenthesis (a,b) represent the number of nodes in the first (a) and second (b) layer.

https://doi.org/10.1371/journal.pone.0244094.t007
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Discussion

This research aims to explore the stability and accuracy of the ANN under different CV meth-

ods to address lag effects. This study proposed two novel CV strategies and compared their

performances to that of Bergmeir et al. [18], which stated that in pure time-series data, the

Table 8. The Permutation Ratio (PR) in the two hidden layers.

(6,6) (6,12) (6,24) (6,36) (6,48) (6,60)

5-Fold-CV 1 0.999 0.999 0.892 1 0.911

LOBO-CV 0.976 1 1 0.800 1 0.823

TB-CV 1 1 1 1 1 0.907

(12,6) (12,12) (12,24) (12,36) (12,48) (12,60)

5-Fold-CV 0.938 0.774 0.764 0.876 0.926 0.766

LOBO-CV 1 0.897 0.731 0.785 0.988 0.719

TB-CV 1 1 0.987 0.908 0.843 0.868

(24,6) (24,12) (24,24) (24,36) (24,48) (24,60)

5-Fold-CV 0.797 0.861 0.754 0.812 0.697 0.847

LOBO-CV 0.755 0.866 0.780 0.783 0.811 0.787

TB-CV 0.955 0.904 0.997 0.924 0.860 0.782

(36,6) (36,12) (36,24) (36,36) (36,48) (36,60)

5-Fold-CV 0.786 0.833 0.749 0.880 0.825 0.871

LOBO-CV 0.856 0.800 0.656 0.808 0.805 0.824

TB-CV 0.705 0.915 0.898 0.874 1 1

(48,6) (48,12) (48,24) (48,36) (48,48) (48,60)

5-Fold-CV 0.785 0.788 0.783 0.778 0.807 0.854

LOBO-CV 0.882 0.717 0.765 0.769 0.758 0.813

TB-CV 0.995 0.875 0.980 0.904 0.992 0.954

(60,6) (60,12) (60,24) (60,36) (60,48) (60,60)

5-Fold-CV 0.848 0.752 0.830 0.810 0.756 0.755

LOBO-CV 0.801 0.676 0.845 0.773 0.732 0.730

TB-CV 0.890 0.806 0.929 0.840 0.898 0.944

Note: the 2 numbers in parenthesis (a,b) represent the number of nodes in the first (a) and second (b) layer.

https://doi.org/10.1371/journal.pone.0244094.t008

Table 9. CV errors and the Permutation Ratio (PR) in the three hidden layers.

CV errors without permutation (12,12,12) (36,36,36) (60,60,60)

5-Fold-CV 67.294 71.294 59.504

LOBO-CV 64.918 69.642 54.762

TB-CV 76.188 72.49 65.626

CV errors with permutation (12,12,12) (36,36,36) (60,60,60)

5-Fold-CV 81.4 81.394 81.392

LOBO-CV 81.83 81.844 81.834

TB-CV 82.79 82.788 82.806

Permutation Ratio (12,12,12) (36,36,36) (60,60,60)

5-Fold-CV 0.83 0.88 0.73

LOBO-CV 0.79 0.85 0.67

TB-CV 0.92 0.88 0.79

Note: the three numbers in parenthesis (a,b,c) represent the number of nodes in the first (a), second (b), and third (c) layer.

https://doi.org/10.1371/journal.pone.0244094.t009
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randomly selected K-fold CV is the best. The performance comparisons were completed by

computer simulation, and a novel PR value was proposed to evaluate the comparisons, which

could be viewed as the R-square in the ANN. These three methods have different levels of

trade-offs between the forward-looking bias and the integrity of the data. Therefore, the simu-

lation results are expected to be a reference for the future use of ANNs to predict time-series

data with or without lag effects.

In the simulation results, we can see that as the complexity of the hyperparameters

increases, a better performance of the ANN model is observed. This trend is consistent either

in the two-hidden-layer or three-hidden-layer ANNs.

However, it is worth noting that the best hyperparameters of the model in each layer are often

not the points with the highest model complexity in each layer. We believe that this is because we

have limited the training times of the neural network to 50,000 times, which may not be the best

solution for the model. The lowest point reached the preset number of training sessions. There-

fore, the model results may be affected by different starting points, resulting in a jittery decrease

in the final predicted MSE rather than strictly decreasing as the model complexity increases.

In addition, we found that as the model complexity increases from two to three hidden lay-

ers, the model performs better in terms of stability and prediction accuracy. Taking LOBO-CV

as an example, the hyperparameters of two hidden layers are (12, 12), (36, 36), and (60, 60),

and the MSEs are 74.006, 66.154, and 59.774, respectively. For three hidden layers at (12, 12,

12), (36, 36, 36), and (60, 60, 60), the MSE becomes 64.918, 69.642, and 54.762, respectively,

Although the performance results for (36, 36, 36) are poor, the overall stability and predic-

tion rate are better than those of the two-hidden-layer model. We believe that this result is due

to the complexity of the DLNM. After all, there are 54 variables in the ANN input neurons

with 24 independent variables and 30 lag temperature variables. Therefore, when the amount

of data is sufficient, with sufficient training times, a more complex model should be more

capable of estimating such complex data. Therefore, the three-hidden-layer model exhibits bet-

ter performance.

Comparing the three CV methods with each other, we found that when the model complexity

is low, the fivefold-CV and LOBO-CV methods have their own advantages and disadvantages.

However, as the complexity of the model increases, the performance of LOBO-CV is significantly

better than fivefold CV; and in the final 39 groups of hyperparameters, 25 groups have the lowest

MSE, demonstrating that under the DLNM structure, LOBO-CV is a better strategy for the ANN

model. Finally, TB-CV showed poor predictive accuracy in most of the parameter settings. We

speculate that this may be due to the loss of important information because the data points after

the validation block are eliminated to preserve the temporal structure.

In this study, a total of 39 different hyperparameter scenarios were simulated for CV perfor-

mance, plus permutation simulations of 39 hyperparameters. Because the ANN needs both

forward and backward propagations to enhance accuracy, the time required for model training

will be lengthier than that of other common machine learning models such as random forest

[22] or Support Vector Machine (SVM) [23].

Taking the parameters (6, 6) of the two-hidden-layer neural network with the lowest model

complexity as an example, it takes 34,502 s to complete the three types of CV, which is approxi-

mately 10 h. Therefore, when conducting similar studies, researchers may need to consider the

time spent by simulations in advance.

Conclusions

The following items were researched: 1) a new CV scheme that generates the minimum error

for an ANN model, 2) a proposed new permutation ratio such that one can interpret the
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attributable errors reduced by the ANN model, and 3) the first attempt to extend the DLNM

into the ANN structure by treating all predictors, including the lag temperatures, as the input

neurons. In the extended ANN model, lag mortalities can be included as additional input neu-

rons. In this manner, the ANN can effortlessly utilize lag mortalities compared to the DLNM,

which only assesses the variabilities in the current mortality.

The limitations of this research are as follows. Owing to the tremendous amount of com-

puter running time required, the scenarios in the three-layer ANN model were more limited

than the scenarios in the two layers. The lag temperatures were used in the ANN model, but

air pollution and other factors did not consider lag effects. Although they did not affect the

superiority of the new LOBO-CV over previous CV schemes, more complicated input neurons

in the ANN would still be informative.

In future studies, a more detailed grid search for the optimal hyperparameters is desirable.

In addition, this study has all-cause mortality, but we could not obtain disease-specific deaths.

Studies with health outcomes related to temperature or air pollution could contribute more

significantly to the clinical applications of this novel LOBO-CV for ANNs.
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