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Closely related species may show similar levels of genetic diversity in homolo-

gous regions of the genome owing to shared ancestral variation still

segregating in the extant species. However, after completion of lineage sorting,

such covariation is not necessarily expected. On the other hand, if the pro-

cesses that govern genetic diversity are conserved, diversity may potentially

covary even among distantly related species. We mapped regions of

conserved synteny between the genomes of two divergent bird species—

collared flycatcher and hooded crow—and identified more than 600 Mb of

homologous regions (66% of the genome). From analyses of whole-genome

resequencing data in large population samples of both species we found

nucleotide diversity in 200 kb windows to be well correlated (Spearman’s

r ¼ 0.407). The correlation remained highly similar after excluding coding

sequences. To explain this covariation, we suggest that a stable avian karyo-

type and a conserved landscape of recombination rate variation render the

diversity-reducing effects of linked selection similar in divergent bird lineages.

Principal component regression analysis of several potential explanatory vari-

ables driving heterogeneity in flycatcher diversity levels revealed the strongest

effects from recombination rate variation and density of coding sequence

targets for selection, consistent with linked selection. It is also possible that

a stable karyotype is associated with a conserved genomic mutation environ-

ment contributing to covariation in diversity levels between lineages. Our

observations imply that genetic diversity is to some extent predictable.
1. Introduction
Understanding the evolutionary mechanisms governing the extent of genetic

diversity (e.g. degree of polymorphism, heterozygosity or nucleotide diversity)

within and between species is important to evolutionary biology in several

respects [1]. For example, genomic scans for adaptively evolving loci require dis-

tinguishing signals of selection from other factors influencing genetic diversity

[2]. Studies of population differentiation and speciation genetics are based on pat-

terns of diversity and divergence, and the relationship between these parameters,

such as the estimation of FST [3]. Moreover, genetic diversity is essential to conser-

vation biology, including questions related to inbreeding and to the long-term

adaptability of endangered species [4].

Genetic diversity is not a constant entity across the genome, but is known to

vary considerably among chromosomes, genomic regions and functional cat-

egories of sequences [5–8]. As long as ancestral variation still segregates in
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diverging lineages (i.e. lineage sorting is not completed),

levels of genetic diversity in homologous regions of diverging

genomes might be correlated. However, once ancestral vari-

ation is no longer shared owing to fixation of previously

segregating variants, there is no reason a priori to expect

diversity levels of homologous regions to covary between

species. Yet, if the patterns and processes that govern diver-

sity levels within genomes are conserved over evolutionary

time scales, then diversity levels might be correlated. One

notable situation concerns orthologous sites and sequences

evolving under purifying selection in parallel lineages—

such sequences are expected to show reduced nucleotide

diversity in both lineages. Genes and other functional

elements common to species are examples of sequences that

are likely to show similarly low levels of diversity in different

lineages. On the other end of the diversity spectrum, some

sites and sequences could show increased diversity in

parallel lineages owing to balancing selection [9]. However,

trans-species polymorphisms would have to represent a

high proportion of all polymorphisms to cause covariation

of genetic diversity between species.

Even for neutrally evolving sequences genetic diversity of

homologous regions of diverging genomes could potentially

covary. One possible reason for this would be the local

mutation rate (m; cf. u ¼ 4 Nem), which varies across the

genome [10,11]. Another factor would be the degree of linked

selection [12], which reduces diversity levels through back-

ground selection [13] or selective sweeps [14,15]. If the

patterns of mutation rate variation and/or the intensity of

linked selection are conserved among species, then this

might result in covariation in neutral diversity levels.

Compared with other vertebrates, avian genomes are

recognized to have unusually stable karyotypes [16] with

2n (diploid number of chromosomes) ¼ 76–80 in the majority

of species [17]. Essentially, all species characteristically show

a limited number of large chromosomes (macrochromo-

somes) and a large number of very small chromosomes

(microchromosomes) [18]. If karyotypic stability is associated

with conservation of evolutionary processes governing gen-

etic diversity (see further below), we hypothesized that

covariation in regional levels of genetic diversity might be

detectable in diverging lineages of birds. Here, we test this

hypothesis using whole-genome resequencing data from

population samples of two distantly related passerine

species, the collared flycatcher (Ficedula albicollis) and the

hooded crow (Corvus (corone) cornix), both species with a kar-

yotype of 2n ¼ 80 [19]; for flycatcher karyotype information

is from F. parva and F. mugimaki [20]. Genome assemblies

with high sequence continuity are available for both species

[21–23], and both genomes have been functionally annotated

[24]. Phylogenetic analyses place the separation between

the two lineages in the order of 25 million years ago (Ma)

[25–27], which should be seen as a minimum time of

divergence, because fossils put the early core corvids at 20–

25 Ma [27]. Crow–flycatcher divergence thus corresponds

to at least 4–12 million generations assuming a generation

time of 6 years for hooded crows [28] and 2 years for flycatch-

ers [29]. With an estimated long-term Ne of 200 000 for both

species [30–32], this yields a range of 20–60 Ne generations

as time to the most common ancestor. Because this is clearly

beyond the expected time for complete lineage sorting

(9–12 Ne generations [33]), the two species are thus not

expected to share neutral ancestral polymorphism.
2. Material and methods
(a) Identification of genomic regions of conserved

synteny
We identified regions that shared the same ancestral localization

between the hooded crow (assembly v. 2.7) and collared fly-

catcher (fAlb15). We referred to these as regions of conserved

synteny, and did not proceed to a base-to-base alignment as

the synteny approach is much simpler and sufficient for the

question addressed in the study.

First, we obtained pairwise alignments using LASTZ v. 1.02.00

[34] and repeat-masked genome assemblies. We then used the

UCSC Genome Browser toolset [35] and the JCVI library [36]

in order to obtain a chain file, an alignment that allows gaps in

both sequences at the same positions. This chain file was then

hierarchically reorganized to be used as a lift-over chain (i.e.

the conversion file to translate genomic coordinates from one

species to the other according to conserved synteny between

the two genomes).

We used LIFTOVER, a program from the UCSC Kent source uti-

lities package [35], to convert regions from one genome into the

other. We used non-overlapping 200 kb windows along auto-

somes of the flycatcher genome as reference and retrieved

conserved syntenic, collinear sequences in the crow. Windows

were retained for further analyses if more than 80% of the

bases in collared flycatcher could be remapped to one window

in the crow. We excluded alignments less than 180 kb or greater

than 220 kb as large size discrepancies may not only indicate

repeat region reductions/expansions or small rearrangements,

but could also be a sign of spurious alignments.
(b) Population re-sequencing data
We extracted re-sequencing data from 30 hooded crows sampled

in two populations (Poland and Sweden) and 30 collared fly-

catchers also sampled in two populations (Czech Republic and

Italy). Procedures for read mapping and variant calling are

described in the original reports of polymorphism data [23,37]

and were largely consistent between the two datasets. Briefly,

raw reads were mapped to the respective reference genomes

using BWA [38] v. 0.7.4 followed by local realignment using

GATK [39,40] (v. 2.3.6 for hooded crows and v. 2.4.9 for collared

flycatchers) and removal of duplicates using PICARD (http://

picard.sourceforge.net), v. 1.46 for crows and v. 1.77 for flycatch-

ers. Variant discovery was performed on a per-population basis

to account for population structure. For both species, base quality

score recalibration (BQSR) was conducted using an iterative

approach. BQSR normally requires true variants to be excluded

from error model building. In the absence of prior knowledge

of segregating variants, a first round of variant calling was

conducted using three different algorithms: GATK UnifiedGen-

otyper [39], samtools (v. 0.1.18 for both species) [41] and

FREEBAYES (v. 0.9.8 for crows and v. 0.9.6 for flycatchers) [42].

The single nucleotide polymorphisms (SNPs) detected by the

three methods were used as true variants for the BQSR. A first

round of BQSR was then run using GATK UnifiedGenotyper

exclusively. In the crow, a second round of recalibration was per-

formed but 99.5% of the variants were shared with the first

round. On that basis, the calibration was considered to have

achieved high consistency and the first round of recalibration

was used. For the flycatcher, a second round of BQSR was per-

formed on one population and, because the results were more

than 99% identical to the first round, the second round was ignored

also in this case. Subsequent variant quality score recalibration was

performed with GATK to assign a probability of each SNP being a

true variant based on a set of verified variants. Variable sites across

populations within species were finally combined and populations
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then regenotyped individually using GATK UnifiedGenotyper.

As a final conservative filtering step specific to this study, we con-

sidered only sites where all individuals within a given population

had coverage of at least four.

Nucleotide diversity per 200 kb window was computed on a

per-population basis using the Python package pyVCF 0.4.0 and

biopython v. 1.68 [43]. Averages were then calculated for each

window and species using the mean of both populations; note

that per-window diversity levels were strongly correlated

between the two collared flycatcher populations (Pearson’s r ¼
0.99) and the two hooded crow populations (r ¼ 0.96). Windows

with fewer than 10 000 sites remaining after coverage based filter-

ing were excluded as was an outlier window in which hooded

crow diversity level was far higher (0.0042) than in all other

windows (range ¼ 0.0002–0.0023).

Although different software versions were used for GATK,

PICARD and FREEBAYES in the analyses of the two species, we

believe that this has little impact on the results. For example,

there were no major changes between v. 2.3.6 and 2.4.9 of GATK.

UnifiedGenotyper and FREEBAYES only help calibrating GATK.
62756
(c) Data analysis
Collared flycatcher gene annotations were retrieved from

ENSEMBL genebuild for release 1.4 of the collared flycatcher

genome assembly. Coordinates were then translated to the

fAlb15 assembly version. Gene annotations for the hooded crow

were obtained from release 100 of GenBank. These annotations

were used to estimate coding sequence density. Lineage-specific

synonymous substitution rate, dS, was obtained for the collared fly-

catcher and was based on data from three-species coding sequence

alignments with chicken (Gallus gallus) and zebra finch (Taenopygia
guttata) [44]. After excluding genes with dS ¼ 0 and more than 2

[44], we calculated the average dS per 200 kb window, weighted

by gene length. If the average dS for a window was above 0.3, dS

was set as missing data. We further obtained data on recombina-

tion rate per 200 kb window in the collared flycatcher [22]. These

data were originally generated by linkage analysis from the

genotyping of a 50 K SNP chip on a large (more than 800 individ-

uals) flycatcher pedigree. Finally, we extracted intergenic GC

content as well as the repeat density for each window. We trans-

formed certain candidate explanatory variables to reduce the

skewness in their distribution: coding sequence density and dS

were transformed by the square root, and recombination rate

was log-transformed to base 10 after adding a constant 1.

We performed a multiple linear regression of collared fly-

catcher nucleotide diversity (y) against recombination rate (x1),

coding sequence density (x2), dS (x3), GC content (x4) and

repeat density (x5). No interactions were incorporated to avoid

over-parametrization:

y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b3x3 þ b4x4 þ b5x5þ [ : ð2:1Þ

The underlying assumptions of such linear regression analy-

sis are the lack of heteroscedasticity, multivariate normality and

linear relationships between the explanatory variables and the

response variable, as well as no collinearity between explanatory

variables. In particular, the assumption of no collinearity

between explanatory variables appeared problematic. A matrix

of pairwise correlation coefficients as well as a correlation tree

based on a nested agglomerative method described in [45] is

provided as electronic supplementary material.

To handle the problem of collinearity we performed a princi-

pal component (PC) regression (PCR), a method derived from

principal component analysis (PCA). PCs are calculated using

the explanatory variables only. The PCs are then used as predic-

tors for variation in the response variable. It is an efficient way

to get around the problem of collinearity between explanatory

variables [46].
To specifically investigate the effect of coding sequence density

on the extent of linked selection in the flycatcher genome, we

regressed nucleotide diversity against recombination rate within

gene-rich and gene-poor regions using respectively the highest

and the lowest 10% of windows from the distribution of coding

sequence density. Because coding sequence density is correlated

with GC content, we further regressed nucleotide diversity against

recombination rate within GC-rich and GC-poor regions using

respectively the highest and the lowest 10% of windows from the

distribution of GC content.
3. Results
(a) Levels of genetic diversity
The hooded crow and the collared flycatcher show moderate to

moderately high levels of nucleotide diversity with genome-

wide averages of p ¼ 0.0039 (collared flycatcher) and 0.0011

(hooded crow) in the studied populations. Just as observed in

many other species, diversity levels vary across the two gen-

omes with p estimates in the 200 kb windows investigated

here in the range of 0.0018–0.0060 for collared flycatcher and

0.0002–0.0023 for hooded crows. The chosen window size

was considered to be a reasonable trade-off between capturing

fine-scale variation in nucleotide diversity and limiting the

noise in the estimation of genomic parameters [22]. We

retrieved more than 600 Mb (collared flycatcher: 652 Mb;

hooded crow: 637 Mb) of conserved synteny between the two

species, distributed across all chromosomes. This corresponds

to 66% of the flycatcher autosomal assembly (989 Mb) that was

used as reference and has scaffolds anchored, ordered and

oriented along chromosomes.

As indicated above, a divergence time of at least 25 million

years probably means that lineage sorting is completed

between the analysed lineages. To test this, we stringently

investigated the overlap of segregating sites in the two species

by considering the incidence of sites variable in at least one

population of flycatchers and one population of crows. Out

of 253 303 variable sites in flycatchers, which could be aligned

between the two species, only 464 (0.2%) were also variable in

crows, confirming that lineage sorting is essentially complete

between the two species. This is especially so when considering

that any species comparison is bound to include sites poly-

morphic in both species owing to independently derived

mutations, in particular at highly mutable CpG sites.

(b) Correlation of diversity levels between species
Levels of genetic diversity in regions of conserved synteny

(200 kb windows; n ¼ 3259) of the collared flycatcher

and hooded crow genomes were correlated (Spearman’s r ¼

0.407; p , 0.0001; figure 1a). Because we analysed more than

60% of the two genomes the investigated regions should

provide a representative picture of evolutionary processes

affecting genetic diversity in these species. Nevertheless, to

exclude biased sampling of genomic regions, we compared

the distribution of nucleotide diversity, coding sequence den-

sity, recombination rate, dS, GC content and repeat density

between investigated regions and the whole genome (elec-

tronic supplementary material, figure S1). The only difference

found was a lower repeat density of investigated regions com-

pared with the whole genome, which is probably owing to an

expected inverse relationship between repeat density and the

ability to identify syntenic regions.



0 0.002 0.004 0.0060 0.002 0.004 0.006

0.0005

0.0010

0.0015

0.0020

0.0005

0.0010

0.0015

0.0020

(a) (b) 

crow p

flycatcher p flycatcher p

Figure 1. Correlation (Spearman’s r ¼ 0.407) between collared flycatcher and hooded crow nucleotide diversity in 200 kb windows of conserved synteny (n ¼ 3259)
spread across the genome. (a) All sequences, (b) excluding coding sequences (Spearman’s r ¼ 0.402).

Table 1. Effect of chromosome length as a covariate of collared flycatcher
nucleotide diversity in explaining hooded crow nucleotide diversity. A
significant regression equation was found (F2,3256 ¼ 203.3, p-value: ,

2.2 � 10216), with R2 ¼ 0.111.

t-value p-value

flycatcher diversity 18.93 ,2 � 10216

chromosome length 21.34 0.162

Table 2. Factors explaining collared flycatcher genetic diversity. A
significant regression equation was found (F5,2479 ¼ 196.1, p-value: ,

2.2 � 10216), with R2 ¼ 0.283. We analysed a full model including
recombination rate coding sequence density, GC content, synonymous
substitution rate and repeat density.

t-value p-value

recombination rate 16.047 ,2 � 10216

coding sequence density 23.841 1.3 � 1024

GC content 226.772 ,2 � 10216

synonymous substitution rate 6.755 1.8 � 10211

repeat density 4.063 5.0 � 1025
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(c) How can (co)variation in diversity levels be
explained?

Previous studies have indicated that genetic diversity within

avian genomes varies in relation to chromosome size [47–49].

Together with a stable karyotype, this could potentially lead

to an overall correlation between diversity levels in regions

of conserved synteny of two species. However, when we

regressed hooded crow diversity against collared flycatcher

diversity and chromosome length, the effect of chromosome

size was not significant (table 1). Another possible factor

that could explain a correlation in diversity levels between

species is the density of coding sequences (collared flycatcher:

mean 0.02 per site, range 0.00–0.15; hooded crow: mean 0.02,

range 0.00–0.15) if this density covaries between species and

has a large direct effect on 200 kb window-based diversity

estimates (given that diversity levels in coding sequences

are much lower than in intergenic DNA and introns). When

coding sequences were masked, however, the strength of cor-

relation between diversity levels in the two species remained

essentially unaltered (r ¼ 0.402; p , 0.0001; figure 1b). This

therefore suggests that there is some mechanism that affects

regional diversity levels in similar ways in syntenic regions

of the two genomes.

In order to identify this mechanism, we investigated the

driving forces of variation in diversity levels across the avian

genome, and given that recombination rate is likely to be a cru-

cial parameter, we focused on the collared flycatcher because

pedigree-based recombination rate data are available for this

species. We performed a multiple linear regression analysis

and, in addition to recombination rate, incorporated coding

sequence density as a proxy for the density of targets for
selection, dS as a proxy for the local mutation rate, repeat den-

sity and GC content; data for all five explanatory variables were

available for 2485 out of the windows used in the flycatcher-

crow comparison. All parameters had a significant effect on

collared flycatcher genetic diversity and in total explained

28.2% of the variation in genomic diversity (table 2). GC con-

tent had the strongest effect (t-value ¼ 226.8) followed by

recombination rate (t-value¼ 16.0) and dS (t-value ¼ 6.8).

However, the results of the multiple linear regression need

to be interpreted with caution owing to collinearity of the

explanatory variables (electronic supplementary material,

table S1 and figure S2). In particular, the correlation between

GC content and coding sequence density violates the assump-

tion of independence between explanatory variables

(Pearson’s r ¼ 0.278), and thus the respective effects of the

two explanatory variables cannot be distinguished and inter-

preted separately. We therefore performed PCR (figure 2;

electronic supplementary material, table S2) to handle the

collinearity problem and treat explanatory variables as com-

pounds of their collinearity. This clearly showed that GC

content and coding sequence density were tightly linked

together, and could therefore not be interpreted separately.

PC5, which was mainly governed by GC content, coding

sequence density and recombination rate, explained the most

of the variance (11.22%). The positive relationship between

diversity and recombination rate and the negative relationship

between diversity and coding sequence density support a role
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of linked selection, because diversity should be most reduced

in regions of low recombination and high density of target of

selection in a linked selection scenario. The negative relation-

ship between diversity and GC content is in agreement with

the observed covariation between coding sequence density

and GC content. PC4 explained 8.31% of the variance and

was dominated by positive relationships between diversity

and dS, and diversity and repeat density. This would indicate

a role of mutation rate variation in explaining variation in

diversity levels. PC2 explained 4.42% of the variation and

was mostly linked to repeat density. Axes 1 and 3 explained

less variance and were difficult to interpret.

To further investigate a role of linked selection on diversity

levels we compared genomic regions corresponding to the 10%

windows with the lowest coding sequence densities (or GC

content) and the 10% windows with the highest coding

sequence densities (or GC content). Specifically, we regressed

diversity against recombination rate in these two categories

of genomic regions to investigate whether the strength of the

correlation depends on coding sequence density (or GC

content). Recombination rate had a significant effect on diver-

sity in regions with the highest coding sequence density

(F1,247 ¼ 22.55, p , 0.0001; R2 ¼ 0.08), but not in regions with

the lowest coding sequence density (F1,247 ¼ 0.04, p ¼ 0.85).

Similarly, recombination rate had a significant effect on

diversity in regions with the highest GC content (F1,247 ¼

70.44, p , 0.0001; R2¼ 14.47 ¼ 0.22), but was reduced in

regions with the lowest GC content (F1,247 ¼ 14.47, p ,

0.0001; R2 ¼ 0.06). This supports a role of linked selection in

governing diversity levels.
4. Discussion
Linked selection affects diversity levels across the genome

[1,12]. As predicted by theory, the influence of linked selection

has been shown to be affected by several factors, including

recombination rate [7,50] and density of targets of selection

[6,51]. The extent to which these factors are conserved across

species is probably related to general aspects of genome evol-

ution and architecture such as karyotype stability, rate of
chromosomal rearrangements and the evolution of base com-

position. The rate of interchromosomal [16] as well as

intrachromosomal rearrangement is low in birds [22,52]. For

example, collared flycatcher and zebra finch chromosomes

are entirely syntenic and largely collinear [22]. It has been

suggested that the stability in genome architecture is associated

with stability in genomic features such as recombination rate

variation [53]. Indeed, comparisons of broad-scale [22,54] as

well as fine-scale (i.e. recombination hot-spots [55]) recombina-

tion rates in different avian species indicate that the genomic

landscape of recombination rate variation in birds is well con-

served. In comparing homologous 1 Mb windows of two

distantly related bird species—zebra finch and chicken (G.
gallus)—Backström et al. [54] found that recombination rates

were correlated with Spearman’s r ¼ 0.50. Such conservation

would promote the build-up over time of correlations between

recombination rate and different genomic parameters; a strong

correlation observed between recombination rate and base

composition represents one such example [56].

We suggest that karyotypic stability and a conserved geno-

mic landscape of recombination rate variation, via the effect

they assert on the extent of diversity-reducing linked selection,

can at least in part explain the correlation in regional levels of

neutral genetic diversity between the collared flycatcher and

hooded crow genomes. In the absence of pedigree-based

recombination rate data for hooded crow, we cannot formally

demonstrate conservation of the recombination landscape

compared with collared flycatcher. Crows are difficult to

breed in captivity, marked populations cannot easily be fol-

lowed for many generations in the wild and brood sizes are

small, factors that hinder gathering large pedigrees for linkage

mapping and associated recombination rate estimation. More-

over, using population-scaled recombination rate data based

on the extent of linkage disequilibrium [55] for comparing

recombination rate profiles in the two species would be less

suitable because linkage disequilibrium is the result of the

combined effect of selection and recombination.

In the regression analysis of flycatcher diversity data the PC

explaining most of the variance was recombination rate

together with density of coding sequence, consistent with

linked selection. The second strongest PC included mainly dS

and repeat density. With dS considered a proxy for the neutral

mutation rate and with some evidence for a link between

open chromatin, mutation rate and the abundance of trans-

posable elements [11], this would indicate that mutation rate

variation contributes to regional variation in genetic diversity.

Although theoretically expected (given u ¼ 4 Nem), there is

mixed evidence from empirical studies of a relationship

between diversity and mutation rate, possibly because covaria-

tion of several genomic variables blurs potential effects of

mutation rate variation on diversity. Nevertheless, a stable

avian karyotype could allow for a stable genomic environment,

leading not only to a stable recombination landscape, but also to

a conserved landscape of mutation rate and chromatin struc-

ture. Further work should be devoted to analyses of the

relationship between mutation and diversity. In the long

term, direct estimates (in contrast to indirect estimates obtained

from diversity or divergence data) of local mutation rates from

pedigrees or mutation accumulation lines are likely to become

available and will be quite informative in this respect.

In summary, together with similar results obtained in a

comparison of Drosophila melanogaster and D. simulans [57],

our study is one of the first to demonstrate a genome-wide
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correlation in regional levels of genetic diversity in two

lineages long after sorting of ancestral variation. This covaria-

tion is seen despite that very different selection pressures (e.g.

on life history, ecology, morphology and behaviour) are

likely to have operated in the two investigated avian lineages

for millions of years. We suggest that the correlation can be

explained by a similar genomic architecture of factors govern-

ing diversity levels through linked selection, namely

karyotypic stability and a conserved recombination rate land-

scape. More generally, karyotype stability may imply a

conserved genomic environment, such that conservation in

other factors such as mutation rate variation reinforces the

correlation. Our observations imply that genetic diversity is

to some extent predictable.
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