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Abstract

The variability of the heart rate (HRV) is widely studied as it contains information about the activity of the autonomic
nervous system (ANS). However, HRV is influenced by breathing, independently of ANS activity. It is therefore important to
include respiratory information in HRV analyses in order to correctly interpret the results. In this paper, we propose to record
respiratory activity and use this information to separate the tachogram in two components: one which is related to
breathing and one which contains all heart rate variations that are unrelated to respiration. Several algorithms to achieve
this have been suggested in the literature, but no comparison between the methods has been performed yet. In this paper,
we conduct two studies to evaluate the methods’ performances to accurately decompose the tachogram in two
components and to assess the robustness of the algorithms. The results show that orthogonal subspace projection and an
ARMAX model yield the best performances over the two comparison studies. In addition, a real-life example of stress
classification is presented to demonstrate that this approach to separate respiratory information in HRV studies can reveal
changes in the heart rate variations that are otherwise masked by differing respiratory patterns.
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Introduction

The rate at which our heart beats, is a dynamical process

enabling adaptive changes according to the demands of our body.

These variations in heart rate are widely studied in so-called heart

rate variability (HRV) analyses, as they contain much information

about the activity of our autonomic nervous system (ANS).

Furthermore, only the electrocardiogram (ECG) is required,

making it a simple, noninvasive and popular tool. From the

tachogram, the signal that represents the duration between

consecutive heart beats, several HRV measures are defined to

characterize ANS activity [1]. These variations in heart rate arise

from several processes, such as thermoregulation, hormones,

arterial blood pressure, respiration, etc. One of the main short-

term modulators of the heart rate is respiration. This phenomenon

is called respiratory sinus arrhythmia (RSA) and comprises the

rhythmic fluctuation of the heart rate at respiratory frequency [2].

The presence of RSA is believed to improve pulmonary gas

exchange [3] and two major mechanisms have been identified in

the generation of RSA: modulation of cardiac parasympathetic

activity by the central respiratory center; and inhibition of vagal

efferent activity during inspiration by the lung stretch-receptor

reflex [4]. Therefore, RSA is used as an index of vagal outflow.

Typically, the respiratory frequency lies in the high-frequency (HF)

band (0.15–0.40 Hz) of HRV and most HF power originates from

RSA, making it an often used measure of RSA. However,

problems arise when the respiratory frequency is around 0.15 Hz

or lower. Then, it is difficult to interpret the HF power. One of the

solutions is to use dynamic HF bands, as proposed in [5]. Another

point of discussion originates from the interpretation of RSA

measures. Especially in psychophysiology this is a highly debated

topic as it is shown that the magnitude of RSA, either defined in

time or frequency domain, changes with respiratory rate and the

depth of breathing (tidal volume), independently of parasympa-

thetic activity [6,7]. It is therefore questioned whether RSA is a

true index of vagal outflow. Proposed solutions include alternative

calculations of RSA [7,8] or statistical correction for differing

respiratory parameters using ANCOVA with respiratory frequen-

cy and tidal volume as covariates [9]. For both sources of

discussion, no solution has been acknowledged so far, leading to

confusion in HRV analyses and questioning its use in practice. It

is, however, apparent that it is important to include information of

respiration when interpretations of HRV studies are made [10].

While most current research is focused on this RSA problem, we

aim to investigate variations in the heart rate which are unrelated

to respiration. More specifically, we propose to separate respira-

tory influences from the tachogram and thus to obtain a

respiratory component of the tachogram and a residual tachogram

that only contains variations in the heart rate that are not related

to respiration. The goals of this approach are twofold; on the one
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hand we aim to improve the interpretation of HF power by

including respiratory information in the analysis. On the other

hand, we also believe that this approach might reveal changes in

the tachogram that are otherwise dominated by respiratory effects

and bring new insights to light.

In the literature, a few methods have been proposed to perform

this separation. In this paper, we aim to conduct an extensive

methodological comparison of the proposed methods, such as

adaptive filtering [11], independent component analysis [12],

system identification [13], multiscale principal component analysis

[14] and orthogonal subspace projection [15], to identify the best

and most accurate method to perform this separation. An

overview of these methods is given in the next section. Then,

the comparison is carried out using a simulation study that

evaluates the correct decomposition of the tachogram. In addition,

the robustness of each method will be evaluated. Note that in the

literature also several physiology-based mathematical models of

cardiorespiratory interactions have been proposed that make it

possible to conduct the separation, such as [16,17]. However,

these approaches will not be evaluated in this paper since we focus

on data-driven approaches. To conclude the paper, we will

demonstrate that this separation should be considered in future

HRV analyses using a real-life example of classifying stress periods

based on the residual tachogram. The results of this example were

presented at the 2013 IEEE EMBS Conference [18] and the paper

was a finalist in the Student Paper Competition. This application

clearly demonstrates the positive impact of the separation

approach. Finally, a discussion on the conducted comparison

studies and the real-life example is provided, followed by a

conclusion.

Separation Algorithms

In this section, we will give a summary of the algorithms that

have been proposed in the literature to separate respiratory

influences from the tachogram. All algorithms are based on the

estimation of the respiratory component of the tachogram (RRRSP)

when the original tachogram (RRorig) and a recorded respiratory

signal (RSP) are given. The residual tachogram (RRres) is then

simply found by:

RRres~RRorig{RRRSP: ð1Þ

All signals are sampled at 4 Hz. MATLAB codes of all

presented algorithms are available from the corresponding author

upon request.

2.1 Adaptive Filtering
The first method to estimate RRRSP is based on adaptive

filtering of the respiratory signal. Adaptive filtering for this

application was first proposed by Bianchi et al. in [19] where

they used a lattice adaptive filter. In 2008, least-mean squares

(LMS) adaptive filtering was introduced to remove respiratory

influences from tachogram and blood pressure to estimate the

baroreflex sensitivity [11]. A few years later, the authors also

applied it to estimate RSA or RRRSP [20]. A scheme of the LMS

algorithm is given in Fig. 1. Prior to application of the LMS

algorithm, the respiratory signal and the tachogram are smoothed

using a Savitsky-Golay filter of order 1 in windows of 5 samples,

according to [11].

Next, each time sample t of RSP is filtered with a finite impulse

response (FIR) filter to estimate RRRSP, according to

RRRSP(t)~
XNf {1

i~0

wt(i)RSP(t{i) ð2Þ

with Nf the number of adjustable filter coefficients wt(i). The

LMS algorithm adapts the filter coefficients by minimizing the

mean-squared error (MSE) between the tachogram and the

estimate of the respiration component. A new set of filter

coefficients wtz1 is then obtained iteratively by

wtz1~wtz2mRRres(t)RSP(t) ð3Þ

where the parameter m controls the stability and the rate of

convergence.

The filter coefficients wt are initialized to zero. The entire signal

is used to find the coefficients of the converging filter. These

coefficients are then used as initial coefficients for the application

of the LMS algorithm to the entire signal.

The appropriate selection of m is important in order for the filter

to work properly. The following constraint ensures convergence:

0vmv

2PM
t~1 RSP2(t)

~mmax, ð4Þ

with M the number of samples in RSP.

In [11], a filter length of Nf ~60 and convergence parameter

r~0:08 (m~rmmax) is chosen for a sampling frequency of 2 Hz.

For this case, where a sampling frequency of 4 Hz is used, the

parameters are set to Nf ~120 and r~0:06.

More details on LMS adaptive filtering to estimate RRRSP can

be found in [11,20].

2.2 Independent Component Analysis
Independent component analysis (ICA) is widely used to

decompose observed data into its independent sources. ICA was

proposed by Tiinanen et al. to separate respiratory influences from

the tachogram [12].

Consider the observation vectors oi(t) and unknown sources

si(t), with i~ 1, . . . ,Nf g and N the number of sensors, and

t~ 1, . . . ,Mf g and M the number of samples in each observation

vector, then we can write:

o(t)~As(t) ð5Þ

with A the mixing matrix. For this purpose, the respiratory signal

and tachogram are the observation vectors:

Figure 1. Scheme of the LMS adaptive filtering to separate
respiratory influences from the tachogram.
doi:10.1371/journal.pone.0101713.g001
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o(t)~ RSP(t) RRorig(t)
� �

: ð6Þ

The expected independent sources are the respiratory compo-

nent of the tachogram and the residual component:

s(t)~ RRRSP(t) RRres(t)½ �: ð7Þ

Note that the estimated sources are normalized, further

annotated with subscript norm. Therefore, scaling is needed to

process the obtained signals in the correct units. A linear

regression model is used to determine the scaling factors a and b:

RRorig~aRRRSP,normzbRRres,norm ð8Þ

~RRnormw ð9Þ

with RRnorm~ RRRSP,norm RRres,norm½ � and w~
a
b

� �
.

Equation (9) can be solved via ŵw~RRz
norm

:RRorig with RRz
norm a

pseudoinverse.

The FastICA algorithm was used to obtain the sources and

mixing matrix [21]. This approach is explained in more detail in

[12].

2.3 ARMAX Model
An autoregressive moving average with exogenous inputs

(ARMAX) model was recently proposed to estimate RRRSP

[13]. An ARMAX model estimates the output of the system as a

linear combination of previous inputs, outputs and errors. In

general, we can write

y(t)~
Xna

t~1

a(t)y(t{t)z
Xnb

t~1

b(t)z(t{t)

z
Xnc

t~1

c(t)e(t{t)ze(t)

ð10Þ

with y(t), z(t) and e(t) respectively the outputs, inputs and errors

at time t; na, nb, and nc, and a(t), b(t) and c(t) their respective

model orders and predictor coefficients.

In this application, the model is simplified to

RRorig(t)~b(0)z
Xnb

t~1

b(t)RSP(t{t)zRRres(t) ð11Þ

with the original tachogram RRorig(t) (~y(t)) that is considered as

a linear combination of nb previous respiratory samples RSP(t)
(~z(t)) and a residual signal RRres(t) which contains all non-

respiratory related processes. In [13], the chosen model order nb

was not given. Preliminary experiments using values of 10, 20 and

50 for nb indicated that the predictor coefficients b(t) associated

with delays larger than 8 samples are quasi zero. We therefore

chose to use a delay (model order) nb up to 3 seconds (12 samples)

to ensure that all possible delayed effects of respiration on the

tachogram are captured.

In matrix form, we can write

RRorig~XRSPbzRRres ð12Þ

with

b~ b(0) b(1) . . . b(nb)½ �T ð13Þ

XRSP~ xnbz1 xnbz2 . . .
h iT

ð14Þ

xt~ 1 RSP(t{1) RSP(t{2) . . . RSP(t{nb)½ �T ð15Þ

and t starting from sample nbz1.

The model coefficients b can be estimated through least-squares

via

bbb~(X T
RSPXRSP){1X T

RSPRRorig ð16Þ

The respiratory component of the tachogram RRRSP is

computed as XRSP
bbb. The residual signal RRres is then obtained

by subtracting RRRSP from the original tachogram. An elaborate

description of this approach can be found in [13].

A very similar approach is described in [22,23], where the

tachogram is modeled as a sum of autoregressive processes of

respiration, systolic blood pressure and other oscillations indepen-

dent of respiration and blood pressure, in order to find reliable

estimates of the baroreflex. When the blood pressure component is

combined with the other oscillations, the same set-up as described

above is obtained.

2.4 Multiscale Principal Component Analysis
Multiscale principal component analysis (MSPCA) ‘‘combines the

ability of PCA to decorrelate variables by extracting a linear relationship with

that of wavelet analysis to extract deterministic features and approximately

decorrelate autocorrelated measurements’’ (p.1597) [24].

In MSPCA, the respiratory signal and original tachogram are

first decomposed using wavelets, yielding detail coefficients cDl,sig

and approximation coefficients cAsig, with l the decomposition

level, and sig the signal (respiration RSP or tachogram RRorig). A

Daubechies 4 wavelet is chosen as mother wavelet. The

decomposition was performed up to level 5 under the assumption

that no interaction between respiration and heart rate exists below

frequencies of 0.0625 Hz, i.e. the upper bound of the frequencies

contained in cAsig when a sampling frequency of 4 Hz is used.

Note that the maximum level of decomposition also depends on

the length of the data. In the next step, PCA is applied at each

scale except for the approximation coefficients. If the first

eigenvector explains over 90% of the variance in the data, the

new wavelet coefficients are computed by projecting the coeffi-

cients onto the first eigenvector. Otherwise, the wavelet coeffi-

cients at that scale are set to 0. When we consider cD̂Dl,sig as the

new wavelet coefficients, then the respiratory component of the

tachogram can be constructed using cD̂Dl,RRorig
. The obtained signal

RRRSP contains the component of the tachogram which is linearly

related to the respiration. More details can be found in [14].

Separation of Respiratory Effects from the Tachogram
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2.5 Orthogonal Subspace Projection
Orthogonal subspace projection (OSP) is used to decompose a

signal in two independent components when a reference, in this

case the respiratory signal RSP, is given [15]. First, a subspace

that is defined by the basis X that represents respiratory activity is

constructed. Then, the projection matrix P, which projects the

original tachogram onto the respiratory subspace, can be

computed according to:

P~X (X T X ){1X ð17Þ

The resulting signal is the respiratory component RRRSP of the

tachogram:

RRRSP~P:RRorig ð18Þ

The respiratory basis X is constructed using the detail signals

that are obtained from the wavelet decomposition of RSP using

Daubechies 4 wavelet up to level 5. The approximation signal is

not included. In addition, a delay nb up to 3 seconds (12 samples,

similar as in the ARMAX model) of each detail signal is included

in the basis and the bias is estimated by addition of a column

vector of ones in the basis X . Consider the column vector dl(t), the

detail signals of RSP, with l the level and t the samples 12 to M,

with M the total number of samples in RSP, then the basis X
consists of 61 components:

X~ 1(M{nbz1)|1 d1(t) d1(t{1) . . .
h

d1(t{nbz1) d2(t) . . . d5(t{nbz1�:
ð19Þ

Note that the proposed OSP combines the strengths of the

ARMAX model described in Sec. 2.3 and the multiscale approach

in Sec. 2.4. More details about this approach are given in [15].

Comparison Study

The performance of all proposed algorithms to decompose the

original tachogram in two components is assessed using two

comparison studies. The first study compares the ability of each

method to accurately separate two signals using a simulation study.

A second study is carried out to evaluate the internal stability or

robustness of each algorithm.

3.1 Data
3.1.1 Participants. The data used in this study originate

from an experiment consisting of baseline recordings (resting

sitting position) and conditions of induced worry and mindfulness,

and were measured at the Faculty of Psychology and Educational

Sciences of the KU Leuven (Leuven, Belgium) [25]. Recordings of

36 subjects (age 18–20) are used, of which one is randomly chosen

as reference in the simulation study (cfr. Sec. 3.2, step 1). The

remaining 35 participants constitute the test subjects. The

experiment was approved by the Ethics Committees of the Faculty

of Psychology and Educational Sciences and the Faculty of

Medical Sciences of the KU Leuven and was in accordance with

the Declaration of Helsinki. All participants were informed on the

course of the experiment and provided written consent.

3.1.2 Instrumentation. The electrocardiogram (ECG, sam-

pling frequency fs = 200 Hz) and respiration (fs = 50 Hz) are

measured by means of the LifeShirt System (Vivometrics Inc.,

Ventura, CA). Respiration was recorded using respiratory

inductive plethysmography (RIP) around the ribcage (RC) and

the abdomen (AB). The sum of RC and AB deflections is taken as

an estimate of the tidal volume [26]. This volume will further be

considered as the respiratory signal (RSP).

3.1.3 Preprocessing. Only the first 6 minutes of the baseline

recordings are used in this study. The tachogram is constructed by

detection of the R peaks in the ECG using the Pan-Tompkins

algorithm [27]. All detections are manually inspected and

corrected where needed. In order to prevent addition of colored

noise in the HRV spectrum due to the low ECG sampling

frequency, the R peak locations are enhanced using least squares

parabolic interpolation on five samples surrounding the detected R

peaks such that an accuracy of 1 ms is obtained [28]. Next, the

respiratory signal and the tachogram are resampled at 4 Hz using

cubic spline interpolation. In addition, the respiratory signal is

filtered with a high-pass filter with a cut-off frequency of 0.05 Hz

in order to remove baseline wander.

All processing steps of the data are performed in MATLAB

R2012a (MathWorks, Natick, MA).

3.2 Simulation Study
3.2.1 Experimental Setup. The first experiment is designed

to evaluate how well each method can decompose a signal, i.e. a

tachogram which is the sum of a respiratory component of the

tachogram and a residual component, when the recorded

respiratory signal is given. Since no ground truth for the two

components is available, a simulation study is set up. In order to

have realistic data, we chose to use real tachograms. Let algorithm

A(i) be one of the 5 proposed algorithms with i going from 1 to 5,

let algorithms A(k) be all of the 5 proposed algorithms except for

algorithm A(i), let S(j) be the number of the subject with j going

from 1 to 35 and let S(ref ) denote the reference subject with

recorded signal RSPS(ref ) and RRorig,S(ref ). Then the experimental

procedure is as follows:

1. Apply algorithm A(i) on the data of the reference subject. The

respiratory component RR
A(i)
RSP,S(ref ) is taken as ground truth in

the comparison later on.

2. On each of the 35 test subjects S(j) with data RSPS(j) and

RRorig,S(j), apply the same algorithm A(i) as in step 1 to

remove the subjects’ own respiratory component and obtain

their residual components RR
A(i)
res,S(j).

3. Construct for each test subject S(j) a new tachogram:

RR
A(i)
new,S(j)~RR

A(i)
res,S(j)zRR

A(i)
RSP,S(ref ).

4. Apply all algorithms A(k) to decompose the tachogram in its

two components. The inputs for the algorithms are RR
A(i)
new,S(j)

and RSPS(ref ). The obtained components are dRRRR
A(i),A(k)
res,S(j) anddRRRR

A(i),A(k)
RSP,S(j).

5. Compare dRRRR
A(i),A(k)
res,S(j) and dRRRR

A(i),A(k)
RSP,S(j) with RR

A(i)
res,S(j) and

RR
A(i)
RSP,S(ref ), respectively using the evaluation measures

described in the next section (Sec. 3.2.2).

6. Repeat steps 1 to 5 using each time a different algorithm A(i)
in step 1 and 2.

A block diagram of steps 1 to 4 is shown in Fig. 2. This

procedure can be seen as a cross-validation over the different

algorithms to ensure that the evaluation of the performance is not

biased by the use of the same algorithm in steps 1, 2 and 4.

Separation of Respiratory Effects from the Tachogram
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3.2.2 Evaluation Measures. The performance of all meth-

ods based on the simulation study is evaluated using two criteria of

both the residual and respiratory component of the tachogram:

1. The normalized root-mean-squared error (NRMSE) of the

time signals, which is defined as the root-mean-squared error

divided by the range of the reference signal:

(a) Residual component: dRRRR
A(i),A(k)
res,S(j) versus RR

A(i)
res,S(j)

(b) Respiratory component: dRRRR
A(i),A(k)
RSP,S(j) versus RR

A(i)
RSP,S(ref )

2. The squared errors (SE) of the low-frequency (LF: 0.04–

0.15 Hz) and high-frequency (HF: 0.15–0.40 Hz) power:

(a) Residual component: cLFLF
A(i),A(k)
res,S(j) versus LF

A(i)
res,S(j), andcHFHF

A(i),A(k)
res,S(j) versus HF

A(i)
res,S(j)

(b) Respiratory component: cLFLF
A(i),A(k)
RSP,S(j) versus LF

A(i)
RSP,S(ref ),

and cHFHF
A(i),A(k)
RSP,S(j) versus HF

A(i)
RSP,S(ref )

The spectra are computed via Welch’s method, using a 1024

point fast Fourier transform, a periodic Hamming window of a

length such that eight equal sections of the tachogram are

obtained, each with an overlap of 50%.
3.2.3 Results. Fig. 3 shows an example of the simulation

study of a typical subject. The ARMAX model (~A(i)) was used

in step 1 and 2, and separation of the tachogram was performed

using OSP (~A(k)). Both in time and in frequency domain, the

resemblance between RRARMAX
RSP,S(ref ) and dRRRRARMAX ,OSP

RSP , and

RRARMAX
res and dRRRRARMAX ,OSP

res is high.

The overall performance of all algorithms using the simulation

study is shown in Figs. 4 and 5. Fig. 4 displays the NRMSE

between the reference and the obtained signals. Both in the

residual and in the respiratory component of the tachogram, the

resulting signals are closest related to the reference signals using

orthogonal subspace projection. The ARMAX model, LMS

adaptive filter and MSPCA have an average performance while

ICA does not show a good correspondence. These conclusions are

confirmed when LF and HF power are compared, as in Fig. 5.

Based on these 4 spectral indices and the NRMSE evaluation

measures, OSP had the best overall performance in this simulation

study.

When the results are analyzed in more detail, it appears thatcHFHF
A(i),A(k)
RSP is mostly underestimated and cHFHFA(i),A(k)

res overestimat-

ed. Only OSP has a Gaussian distribution of errors around zero.

This finding suggests that, except for OSP, the other algorithms

might still contain respiratory influences in the residual tachogram.

In LF , no consistent over- or underestimation is found.

In order to test the dependency of the results on the chosen

reference subject, the analysis is repeated using other randomly

chosen subjects as reference. These simulation studies yield similar

results, and lead to the same conclusions.

3.3 Stability Study
3.3.1 Experimental Setup. The goal of the second exper-

iment is to assess how sensitive the methods are to the used data

lengths by applying the algorithms on several window lengths. Let

A(i) be one of the 5 algorithms used for the separation, and let S(j)
denote the number of the subject with j going from 1 to 36, then

the following procedure is performed:

1. Apply each algorithm A(i) on the 6 minutes data RSPS(j) and

RRorig,S(j) of every subject S(j). The obtained separated

components of the tachogram are the reference for the

following steps and denoted as RR
A(i)
res,S(j) and RR

A(i)
RSP,S(j).

2. Divide each tachogram RRorig,S(j) and respiratory signal

RSPS(j) in 3 segments of 2 minutes and apply each algorithm

A(i) on every segment seg, yielding RR
A(i),seg
res,S(j) and RR

A(i),seg
RSP,S(j).

3. Concatenate the three 2-minute segments:

dRRRR
A(i)
res,S(j)~ RR

A(i),seg1
res,S(j) RR

A(i),seg2
res,S(j) RR

A(i),seg3
res,S(j)

h i

dRRRR
A(i)
RSP,S(j)~ RR

A(i),seg1
RSP,S(j) RR

A(i),seg2
RSP,S(j) RR

A(i),seg3
RSP,S(j)

h i

4. Compare for each algorithm A(i) the acquired dRRRR
A(i)
res,S(j) anddRRRR

A(i)
RSP,S(j) with the references RR

A(i)
res,S(j) and RR

A(i)
RSP,S(j)

obtained in step 1 using the evaluation measures described in

the next section (Sec. 3.3.2).

In the ideal case, concatenation of the three 2-minute segments

yields the same signals as when the full 6 minutes are used. A block

diagram of the stability study is given in Fig. 6.

3.3.2 Evaluation Measures. Similarly as in Sec. 3.2.2, the

performance of all separation methods is evaluated by the

NRMSE of the time signals and the SE of the LF and HF

powers. The stability of each algorithm is assessed by comparingdRRRR
A(i)
res,S(j) with RR

A(i)
res,S(j), and dRRRR

A(i)
RSP,S(j) with RR

A(i)
RSP,S(j).

3.3.3 Results. This second comparison study comprises a

stability evaluation of each algorithm by changing the analyzed

window size. This comparison is not designed to see how well the

methods succeed in separating the tachogram in two components,

but is set up to test the robustness of each method. The full

window of 6 minutes is taken as reference while 2 minute windows

are evaluated. Fig. 7 presents the NRMSE and SE of the LF and

HF power of the residual tachogram. Comparisons using the

Figure 2. Block diagram of the simulation study.
doi:10.1371/journal.pone.0101713.g002
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respiratory component yield similar results and are not shown

here. Based on the NRMSE, ICA shows a low stability. ARMAX

has the lowest NRMSE, and surprisingly the performances of

LMS, OSP and MSPCA are only average. Close inspection of the

time signals, however, indicate that the low performance of OSP is

due to an almost constant bias that is not captured in the smaller

windows, as shown in Fig. 8. The very low frequency modulations

cause a large NRMSE, and are in fact of no importance in most

HRV studies as we are only interested in the dynamics in the LF

and HF band. It is therefore more interesting to look at the

performance based on the LF and HF power. These results

indicate that LMS and ARMAX are least sensitive to window sizes

when LF and HF power are compared. OSP shows only a

moderate performance.

Real-life Example: Stress Classification

The importance of conducting the separation of respiratory

influences from the tachogram is demonstrated using the

application of stress classification, which was also presented at

the 2013 IEEE EMBS Conference [18]. We aim to show that the

classification is enhanced using the residual tachogram instead of

the original tachogram.

Figure 3. Example of the simulation study of a typical subject using the ARMAX model in step 1 and 2. Separation of the tachogram is
performed using OSP. The signals are shown in both time (only 120 s are shown here) and frequency domain. From top to bottom: RRres, RRRSP,
RRARMAX

new , RSPS(ref ). In dashed black, the estimated components using OSP are displayed.
doi:10.1371/journal.pone.0101713.g003

Figure 4. Boxplots of the normalized root-mean-squared errors (NRMSE) between RR
A(i)
RSP,S(ref ) and dRRRR

A(i),A(k)
RSP,S(j) (left), and between

RR
A(i)
res,S(j) and dRRRR

A(i),A(k)
res,S(j) (right) obtained using the simulation study. Outliers are not shown.

doi:10.1371/journal.pone.0101713.g004
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4.1 Data Aquisition and Preprocessing
The data were measured at the Faculty of Psychology and

Educational Sciences of the KU Leuven (Leuven, Belgium)

[29,30]. The ECG (fs = 200 Hz) and respiration (fs = 50 Hz) were

recorded using the LifeShirt System (Vivometrics Inc., Ventura,

CA).

The participants were instructed to perform, among others,

twice a task that was designed to induce mental stress using

arithmetic equations. Before, in between and after each task, there

was a resting period. Each task had a duration of 6 minutes. For

this real-life example, two randomly chosen resting periods and the

two mental stress tasks (MT1 and MT2) of 40 students (age: 18–22

years) are used. The experiment was approved by the Ethics

Committees of the Faculty of Psychology and Educational

Sciences and the Faculty of Medical Sciences of the KU Leuven

and was in accordance with the Declaration of Helsinki. All

participants were informed on the course of the experiment and

provided written consent.

Figure 5. Boxplots of the squared errors (SE) in LF power (top) and HF power (bottom) between RR
A(i)
RSP,S(ref ) and dRRRR

A(i),A(k)
RSP,S(j) (left), and

between RR
A(i)
res,S(j) and dRRRR

A(i),A(k)
res,S(j) (right) obtained using the simulation study. Outliers are not shown.

doi:10.1371/journal.pone.0101713.g005

Figure 6. Block diagram of the stability study.
doi:10.1371/journal.pone.0101713.g006
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The same preprocessing steps of the ECG and respiratory signal

as described in Sec. 3.1.3 are applied. In order to increase the

number of signals in the dataset, each period of 6 minutes is

divided in segments of two minutes, with one minute overlap. This

procedure results in 10 segments of rest and 10 segments of stress

for each subject.

4.2 Classifier Design
A least squares support vector machines (LS-SVM) classifier is

trained using a radial basis function (RBF) kernel and 5-fold cross-

validation [31]. The data of 32 randomly chosen students compose

the training set. The performance of the classifier is tested on the

data of the remaining 8 subjects. This setup results in subject-

independent classifiers.

The features used to classify the data segments are spectral indices

of the original tachogram RRorig, the residual tachogram RRres and

the respiratory component of the tachogram RRRSP, obtained using

OSP. Both LF and HF power are computed. In addition,

LFnu~
LF

LFzHF
(normalized units), HFnu~

HF

LFzHF
, the ratio

LF=HF and the power in the total frequency band TF~LFzHF

are considered. These spectral indices are computed for three

classifiers using RRorig, RRres and RRRSP separately. In order to

make a fair comparison with the respiratory and residual

tachograms, that are obtained using additional respiratory infor-

Figure 7. Boxplots of the normalized root mean-squared errors (NRMSE) (left), and the squared errors (SE) (right) in LF power (top)
and HF power (bottom) between dRRRR

A(i)
res,S(j) and RR

A(i)
res,S(j) obtained using the stability study. Outliers are not shown.

doi:10.1371/journal.pone.0101713.g007

Figure 8. Example of stability study using orthogonal subspace projection. The residual signal of the full 6-minute period (RROSP
res , thick

grey) and the three 2-minute segments (dRRRROSP
res , dashed black) are shown.

doi:10.1371/journal.pone.0101713.g008
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mation, a classifier that combines features of the recorded

respiration with the information of the original tachogram is

evaluated. The additional features derived from the respiratory

signal (RSP) are LFnuRSP, HFnuRSP and LFnu=HFnuRSP. Note

that the normalized power is used as the respiratory signal is in

arbitrary units.

4.3 Results
The performance of each classifier is assessed by averaging over

5-fold classification using different training and test sets. Consider

stress as the positive class and rest as the negative one, then the

mean ROC of each classifier is shown in Fig. 9. Based on RRorig,

the classification in rest and stress has an accuracy of merely

57.13%. Inclusion of information derived from the respiratory

signal does not improve the results (accuracy = 57.88%). A slightly

better accuracy of 66% is obtained using only RRRSP. An

apparent improvement is found when RRres is used, yielding an

almost perfect classification (accuracy = 97.88%). A more

elaborate analysis of the results can be found in [18].

Discussion

In this study, the challenge of respiratory influences in the

tachogram is handled by the approach to separate respiratory

influences in heart rate variations from non-respiration related

changes. In the literature, several methods have been proposed to

deal with this problem, but no comparison between the algorithms

has been performed. Therefore an extensive comparison using a

simulation study and a stability study has been set up. All data-

driven algorithms, up to our knowledge, that appeared in the

literature to conduct this cardiorespiratory separation were

evaluated. Note that the algorithms were implemented as they

appeared in the literature, and thus no further optimisation of

parameters was conducted in this comparison study. In addition,

the importance of such approach was demonstrated in a real-life

example.

5.1 Comparison Study
The first comparison of algorithms is carried out in a simulation

study which was designed to examine which method performs best

given two realistic signals of the residual and respiratory

component of the tachogram, which are, moreover, also known.

We did not use purely simulated signals as they would only provide

us a theoretical evaluation of the best method. Moreover, the

generation of simulated data requires several preassumptions, such

as the extent to which the spectra of the respiratory and residual

tachogram overlap, and their relative contributions to the original

tachogram. In order to obtain two realistic signals, each of the

proposed algorithms was used to estimate a residual tachogram

and a respiratory component which has no connection with the

residual tachogram as data of another subject were used, and the

performance of the remaining algorithms is then evaluated. This

cross-validation between the methods ensures a fair comparison

and is needed to be implemented as no ground truth of the

separated signals is available. The second comparison study is

designed to evaluate the robustness of each algorithm as it is

important that the algorithm yields similar time signals when a

window of 6 minutes is considered than when windows of 2

minutes are used. Without doubt, a good performance in the

simulation study is of prime importance; without a correct

separation, a good stability is of no use. Conversely, a good

separation without a high performance in the stability study should

not discard the use of the algorithm involved, but displays the

limitations that should be taken into account.

The simulation study revealed that LMS adaptive filtering has

an average performance. Closer inspection of the LMS approach

reveals that the use of the Savitsky-Golay filter is an important

factor in the performance; when the signals are not smoothed, the

performance of adaptive filtering decreases significantly. We

should therefore consider including this filter in the other

algorithms to further improve the results. Note that the use of a

higher order Savitsky-Golay filter will result in limited smoothing,

thereby abolishing the beneficial effect of the filter. Although it was

expected that adaptive filtering would be least affected by different

window sizes, the stability study showed that this method is not as

robust as hypothesized.

Both comparison studies indicated that ICA is not a suitable

method to separate respiratory influences from the tachogram.

Although it was shown in [12] that ICA is a good method to do so,

and it does not change the power content, this study shows the

inverse. In [12], the simulation study was conducted using LMS

adaptive filtering in step 1 and 2, followed by ICA. Our results

show that spectral features, especially the HF power, of RR
A(i),ICA
RSP,S(j),

are largely underestimated using ICA. A possible explanation of

the low performance can be found in the presupposition of

statistical independency between respiration and heart rate, which

can not be assumed. In addition, the stability study showed very

low robustness.

MSPCA also shows an average performance. The LF power of

the respiratory signal is generally overestimated, while this feature

is mostly underestimated in the other algorithms. The main

advantage of this method is that several scales are considered, but

some arbitrarily chosen parameters largely influence its perfor-

mance, e.g. the cut-off variance to define when there is a clear

relation.

Another method included in our study is the ARMAX model.

Generally, this method shows a good performance in the

comparison studies. However, the performance can possibly be

improved by optimizing the model order. This was fixed at 3

seconds (or 12 samples) to ensure that all possible delayed effects of

respiration on the tachogram are taken into account in the model.

Nonetheless even without optimization, a satisfactory performance

is obtained. In [13] they use this approach to make a model using

broadband spectrum. This broadband spectrum was realized using

paced breathing. Because it is shown that paced breathing

increases the tidal volume [32], they propose a scaling factor to
Figure 9. Mean ROC of all classifiers.
doi:10.1371/journal.pone.0101713.g009
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normalize the model for spontaneous breathing. We did not

include this procedure as no data were available. In addition, we

aim to use this for already analyzed HRV studies, which do not

have such broadband breathing spectrum.

Orthogonal subspace projection combines the advantages of

MSPCA and ARMAX and also shows to have the best

performance. In the simulation study, OSP was the only method

of which the difference in spectral features had a distribution

around zero. However, similarly as with the ARMAX model, an

optimization of the model order might improve the results, as well

as the choice of the mother wavelet and its order. The limitation of

this method is clear in the stability study; although the spectral

features are still reasonably estimated, NRMSE shows that there

are discontinuities when the signal is cut in smaller parts. Future

research should focus on improving the stability using overlapping

windows and subspace tracking to reduce border discontinuities

and bias differences, as suggested in [33].

From all the results, we can conclude that OSP and ARMAX

are the most reliable methods to separate the tachogram in a

respiratory component and a residual tachogram. OSP shows to

have the best performance in the simulation study, but the

moderate robustness limits its use for longer data. In that case, the

ARMAX model should be used.

In future studies, several issues still need to be investigated such

as the importance of the measured respiratory signal. In this

comparison study, only estimates of the tidal volume are used. The

sensitivity to the type of respiratory recording should be examined,

as well as the importance of the recording quality. In addition, it

should be investigated whether the separation would benefit from

nonlinear approaches; in a first study, we only considered linear

separation algorithms that were used in the literature. Conse-

quently, possible nonlinear interactions are not taken into account

now.

HRV and respiratory oscillations are closely related to blood

pressure variations. Indeed, heart rate and blood pressure interact

via the feedback (i.e. baroreflex path) and feedforward (i.e.

Windkessel effect) mechanisms, and are both influenced by

respiration. Hence, many studies have been conducted to model

those signals and their interactions, as in [22,23,34,35]. These

models could also be used to estimate HRV unrelated to

respiration if blood pressure recordings are available. Note

however that the present study aimed at investigating the

tachogram from which both direct and indirect (via blood

pressure) influences of respiration are separated from other sources

of HRV, without needing to explicitly define the blood pressure

relation to HRV. In this way, HRV analyses can be conducted

that are not influenced by the highly debated interaction with

respiration. Evidently, one source of the residual tachogram is

related to blood pressure and further research is needed to identify

other sources of the residual tachogram.

5.2 Stress Classification
The importance of separation of the original tachogram was

demonstrated using a real-life example of stress classification. The

results show that classification using RRorig, with and without

additional respiratory information, is almost random. We hypoth-

esized that the original tachogram contains HR modulations of

respiration and non-respiration related variations, and that

separation of both will lead to an increased performance when

rest and stress are classified. This study confirms this; a slightly

better performance is obtained when spectral features of RRRSP

were used for the classification, but an almost perfect classification

was obtained using the residual tachogram. These findings

demonstrate that the original tachogram contains HR variations,

unrelated to respiration, that seem to be very important to

distinguish stress from rest, but these variations might be

dominated by the strong respiratory influence on the heart rate.

Although it has been observed that stress influences the respiratory

pattern [14,29], RRRSP did not lead to the expected increase in

performance.

An important advantage of the followed methodology is the

subject-independent classification. In most cases, stress has been

considered as a subject-dependent phenomenon and classification

was performed in a subject-specific manner, as in [13].

In this application, OSP was chosen to separate respiratory

influences from the tachogram as the data segments have a length

of only two minutes. However, in a preliminary study, we also

conducted the same stress classification using the ARMAX

method, from which we can conclude that similar classification

results can be obtained. Possibly, due to the quasi-constant

breathing frequency during those two minutes, the strength of the

wavelet decomposition in OSP did not need to be exploited,

leading to comparable results. Note that we did not conduct stress

classification using the other algorithms as they did not provide a

reliable separation of respiratory influences from the tachogram.

Even if they would obtain good classification results, we would not

know whether respiratory or other influences are removed or not,

which would lead to problematic interpretations of the results.

A more elaborate evaluation of stress classification using OSP

can be found in [18]. However, from these observations we can

deduce that the influence of respiration on HRV might not only

complicate interpretations regarding ANS activity, it might

actually disguise valuable information in the tachogram on

efferent ANS activity. These results motivate the conducted

comparison study and demonstrate the importance of the

separation in stress classification. However, further studies should

confirm the added value of the separation of the tachogram in

other cardiorespiratory applications such as analyses of coupling;

i.e. this approach might complement analyses of cardiorespiratory

coupling by means of phase synchronization between the heart

rate and respiration [36]. In addition, future research is needed to

determine the physiological meaning of the residual tachogram.

Conclusion

Cardiorespiratory interactions, such as RSA, are widely studied

as they contain information about our autonomic nervous system

and cardiac vagal outflow. Whereas most research focuses on

finding the correct interpretation of RSA, this research aimed at

separating variations in the heart rate that are related to

respiration from HR variations that are not related to respiration.

Five algorithms have been proposed in the literature to conduct

this separation and are now extensively compared to determine

which method is the best to accurately decompose the tachogram

in two components. In addition, the robustness of the algorithms is

evaluated. The results show that the algorithms based on

orthogonal subspace projection and on the ARMAX model yield

the best performances, and are therefore advised to be used in

future studies.

The importance of separating respiratory influences from the

tachogram is demonstrated in the application of stress classifica-

tion where we showed that the HR variations unrelated to

respiration yield almost perfect classification whereas the use of the

original tachogram fails. These results prove that the separation of

the tachogram can be a very useful tool to investigate changes in

the heart rate that are otherwise masked by the dominant effect of

respiration.
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