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Abstract
We present a computational framework, called DISCERN (DIfferential SparsE Regulatory
Network), to identify informative topological changes in gene-regulator dependence net-

works inferred on the basis of mRNA expression datasets within distinct biological states.

DISCERN takes two expression datasets as input: an expression dataset of diseased tis-

sues from patients with a disease of interest and another expression dataset from matching

normal tissues. DISCERN estimates the extent to which each gene is perturbed—having

distinct regulator connectivity in the inferred gene-regulator dependencies between the dis-

ease and normal conditions. This approach has distinct advantages over existing methods.

First, DISCERN infers conditional dependencies between candidate regulators and genes,

where conditional dependence relationships discriminate the evidence for direct interac-

tions from indirect interactions more precisely than pairwise correlation. Second, DISCERN

uses a new likelihood-based scoring function to alleviate concerns about accuracy of the

specific edges inferred in a particular network. DISCERN identifies perturbed genes more

accurately in synthetic data than existing methods to identify perturbed genes between dis-

tinct states. In expression datasets from patients with acute myeloid leukemia (AML), breast

cancer and lung cancer, genes with high DISCERN scores in each cancer are enriched for

known tumor drivers, genes associated with the biological processes known to be important

in the disease, and genes associated with patient prognosis, in the respective cancer.

Finally, we show that DISCERN can uncover potential mechanisms underlying network per-

turbation by explaining observed epigenomic activity patterns in cancer and normal tissue

types more accurately than alternative methods, based on the available epigenomic data

from the ENCODE project.

Author Summary

Certain genes can regulate other genes’ expression and activity levels to perform key bio-
logical processes in a cell. Understanding how genes affect expression levels among one
another is a fundamental goal in molecular biology. New statistical techniques that analyze
genome-wide mRNA expression data obtained from different individuals can improve our
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understanding of gene interactions. In this paper, we focus on identifying the genes
involved in changes in the topology of gene networks between two distinct biological status,
for example, between diseased tissue and normal tissue. Our method, called DISCERN,
takes two expression datasets, each from a different condition, for example, cancer and
normal tissue, and identifies the genes that are likely to change their neighbors in the esti-
mated gene networks between disease and normal conditions. Most analysis methods that
compare gene expression datasets from two conditions address the question of which
genes are significantly differentially expressed between conditions. The DISCERN method
addresses a distinct question concerning which genes are significantly rewired in the
inferred gene-regulator network in disease tissues. We show that DISCERN successfully
identifies known disease specific genes, for example, genes whose expression levels are sig-
nificantly associated with survival time in cancer, genes that have known disease specific
driver mutations, as well as genes that have epigenomic evidence of regulatory rewiring
between cancer and normal tissue types.

Introduction
Genes do not act in isolation but instead work as part of complex networks to perform various
cellular processes. Many human diseases including cancer are caused by dysregulated genes,
with underlying DNA or epigenetic mutations within the gene region or its regulatory ele-
ments, leading to perturbation (topological changes) in the network [1–7]. This can ultimately
impair normal cell physiology and cause disease [8–11]. For example, cancer driver mutations
[12–19] on a transcription factor can alter its interactions with many of the target genes that
are important in cell proliferation (Fig 1A). A key tumor suppressor gene can be bound by dif-
ferent sets of transcription factors between cancer and normal cells, which leads to different
roles [6, 20–23] (Fig 1B). Recent studies stress the importance of identifying the perturbed
genes that create large topological changes in the gene network between disease and normal tis-
sues as a way of discovering disease mechanisms and drug targets [8, 9, 24–27]. However, most
existing analysis methods that compare expression datasets between different conditions (e.g.,
disease vs. normal tissues) focus on identifying the genes that are differentially expressed [28–
30]. For example, a recent review paper on biological network inference [31] emphasized that
there is a lack of methods that focus on inferring the differential network between different con-
ditions (e.g., distinct species, and disease conditions).

Several recent studies compare gene networks inferred between conditions based on expres-
sion datasets [1, 32–37]. They fall into three categories: 1) Network construction based on
prior knowledge: West et al. (2012) computes the local network entropy, based on the protein
interaction network from prior knowledge and expression datasets from cancer and normal tis-
sues [1]. 2) Pairwise correlation-based networks: Guan et al. (2013) [35] proposed the local net-
work similarity (LNS) method to compare the pairwise Pearson’s correlation matrices of all
genes between two conditions. Still other authors compared pairwise correlation coefficients
for all gene pairs between conditions with different correlation measures including t-test p-val-
ues [32, 33, 36]. 3) Learning a condition-specific conditional dependency network for each
condition and comparing the networks between conditions: Gill et al. (2010) proposed a
method, called PLSNet, that fits a partial least squares model to each gene, computes a connec-
tivity scores between genes, and then calculates the L1 distance between score vectors to esti-
mate network perturbation [34]. Zhang et al. (2009) proposed a differential dependency
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network (DDN) method that uses lasso regression to construct networks, followed by permuta-
tion tests to measure the significance of the network differences [37].

There have been approaches to identify dysregulated genes in cancer by utilizing multiple
types of molecular profiles, not based on network perturbation across disease states estimated
based on expression data. Successful examples use a linear model to infer each gene expression
model based on copy number variation, DNAmethylation, ChIP-seq, miRNAs or mRNA lev-
els of transcription factors [38–40]. The advantages of the aforementioned methods that take
only expression datasets as input to identify perturbed genes are in their applicability to dis-
eases for which only expression data are available. In this paper, we focus on identifying per-
turbed genes purely based on gene expression datasets representing distinct states, and
compare our method with existing method, LNS, D-score and PLSNet.

Fig 1. (A) A simple hypothetical example that illustrates the perturbation of a network of 7 genes between disease and normal tissues.One
possible cause of the perturbation is a cancer driver mutation on gene ‘1’ that alters the interactions between gene ‘1’ and genes ‘3’, ‘4’, ‘5’, and ‘6’. (B) One
possible cause of network perturbation. Gene ‘1’ is regulated by different sets of genes between cancer and normal conditions. (C) The overview of our
approach. DISCERN takes two expression datasets as input: an expression dataset from patients with a disease of interest and another expression dataset
from normal tissues (top). DISCERN computes the network perturbation score for each gene that estimates the difference in connection between the gene
and other genes between disease and normal conditions (middle). We perform various post-analyses to evaluate the DISCERNmethod by comparing with
alternative methods, based on the importance of the high-scoring genes in the disease through a survival analysis and on how well the identified perturbed
genes explain the observed epigenomic activity data (bottom).

doi:10.1371/journal.pcbi.1004888.g001
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We present a new computational method, called DISCERN (DIfferential SparsE Regulatory
Network), to identify perturbed genes, i.e. the genes with differential connectivity between the
condition specific networks (e.g., disease versus normal). DISCERN takes two expression data-
sets, each from a distinct condition, as input, and computes a novel perturbation score for each
gene. The perturbation score captures how likely a given gene has a distinct set of regulators
between conditions (Fig 1A). The DISCERN method contains specific features that provide
advantages over existing approaches: 1) DISCERN can distinguish direct associations among
genes from indirect associations more accurately than methods that focus on marginal associa-
tions such as LNS; 2) DISCERN uses a penalized regression-based modeling strategy that
allows efficient inference of genome-wide gene regulatory networks; and 3) DISCERN uses a
new likelihood-based score that is more robust to the expected inaccuracies in local network
structure estimation. We elaborate on these three advantages below:

First, DISCERN infers gene networks based on conditional dependencies among genes—a
key type of probabilistic relationship among genes that is fundamentally distinct from correla-
tion. If two genes are conditionally dependent, then by definition, their expression levels are
still correlated even after accounting for (e.g., regressing out) the expression levels of all other
genes. Thus, conditional dependence relationship is less likely to reflect transitive effects than
mutual correlation, and provides stronger evidence that those genes are functionally related.
These functional relationships could be regulatory, physical, or other molecular functionality
that causes two genes expression to be tightly coupled. As a motivating example, assume that
the expression levels of genes ‘3’ and ‘5’ are regulated by gene ‘1’ in a simple 7-gene network
(Fig 1A). This implies that the expression level of gene ‘1’ contains sufficient information to
know the expression levels of genes ‘3’ and ‘5’. In other words, genes ‘3’ and ‘5’ are conditionally
independent from each other and from the rest of the network given gene ‘1’.

Second, DISCERN uses an efficient neighborhood selection strategy based on a penalized
regression to enable the inference of a genome-wide network that contains tens of thousands of
genes. Penalized regression is a well established technique to identify conditional dependencies
[41]. Inferring the conditional dependence relationships from high-dimensional expression
data (i.e., where the number of genes is much greater than the number of samples) is a chal-
lenging statistical problem, due to a very large number of possible network structures among
tens of thousands of genes. Unlike pairwise correlation, the conditional dependence between
‘1’ and ‘2’ cannot be measured based on just the expression levels of these two genes. We should
consider the possible networks among all genes and find the one that best explains the expres-
sion data. This involves both computational and statistical challenges. To make this process
feasible, DISCERN uses a sparse regression model for each gene to select neighbors in the net-
work [41, 42]. The use of a scalable method to infer a genome-wide conditional dependence
network is a key distinguishing feature of the DISCERN method.

Finally, one of the most novel features of DISCERN is the ability to avoid the overestimation
of the degree of network perturbation due to dense correlation among many genes. Revisiting
the 7-gene network example (Fig 1A), assume that genes ‘5’ and ‘7’ are highly correlated to
each other, in which case a penalized regression that imposes a sparsity penalty, such as the
lassomethod, may arbitrarily select one of them. This can result in a false positive edge between
genes ‘1’ and ‘7’ instead of ‘1’ and ‘5’. This may lead to overestimation of the perturbation of
gene ‘1’ (Fig 1A). Our network perturbation score overcomes this limitation by measuring the
network differences between conditions based on the likelihood when the estimated networks
are swapped between conditions—not based on the differences in topologies of the estimated
networks. We demonstrate the effectiveness of this feature by comparing with methods based
on the topology differences of the estimated networks.
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We evaluated DISCERN on both synthetic and gene expression data from three human can-
cers: acute myeloid leukemia (AML), breast cancer (BRC), and lung cancer (LUAD). Integra-
tive analysis using DISCERN on epigenomic data from the Encyclopedia of DNA Elements
(ENCODE) project leads to hypotheses on the mechanisms underlying network perturbation
(Fig 1C). The resulting DISCERN score for each gene in AML, BRC and LUAD, the implemen-
tation of DISCERN, and the data used in the study are freely available on our website http://
discern-leelab.cs.washington.edu/.

Results

Method overview
Here, we describe the DISCERNmethod, referring to the Methods for a full description. We
postulate that a gene can be perturbed in a network largely in two ways: A gene can change how
it influences other genes (Fig 1A), for example, a driver mutation on a transcription factor can
affect cell proliferation pathways [12–19]. A gene can change the way it is influenced by other
genes, a common example being when a mutated (genetically or epigenetically) gene acquires a
new set of regulators, which occurs frequently in development and cancer [6, 20–23] (Fig 1B).
Identifying the genes that are responsible for large topological changes in gene networks could
be crucial for understanding disease mechanisms and identifying key drug targets [8, 9, 24–27].
However, most current methods for identifying genes that behave differently in their expression
levels between diseased and normal tissues focus on differential expression [28–30], rather than
differential connection with other genes in a gene expression network (Fig 1A).

We model each gene’s expression level using a sparse linear model (lasso regression): let yðsÞi

be expression levels of gene i in an individual with state s, cancer (s = c) or normal (s = n), mod-

eled as: yðsÞi �
Xp

r¼1

wðsÞ
ir x

ðsÞ
r . Here, x1, . . .xp denote candidate regulators, a set of genes known to

regulate other genes, including transcription factors, chromatin modifiers or regulators, and
signal transduction genes, which were used in previous work on network reconstruction
approaches [43–46] (S1 Table). Linear modeling allows us to capture conditional dependencies
efficiently from genome-wide expression data containing tens of thousands genes. Naturally, a
zero weight wir indicates that a regulator r does not affect the expression of the target gene i.
Sparsity-inducing regularization helps to select a subset of candidate regulators, which is a
more biologically plausible model than having all regulators, and makes the problem well-
posed in our high-dimensional setting (i.e., number of genes� number of samples).

To determine the regulators for any given gene, we use a lasso penalized regression model
[47] with the optimization problem for each lasso regression defined as:

argmin
w
ðsÞ
i1

;...;w
ðsÞ
ip

Xn
j¼1

yðsÞij �
Xp

r¼1

wðsÞ
ir x

ðsÞ
rj

 !2

þ l
Xp

r¼1

jwðsÞ
ir j; where yðsÞij means the expression level of

the ith gene in the jth patient in the sth state, and xðsÞrj similarly means the expression level of the

rth regulator in the jth patient in the sth state. The second term, the L1 penalty function, will zero
out many irrelevant regulators for a given gene, because it is known to induce sparsity in the
solution [47]. We normalize the expression levels of each gene and each regulator to be mean
zero and unit standard deviation, a process called standardization, which is a standard practice
before applying a penalized regression method [47–50]. The difference in the weight vector

between conditions, wðnÞ
i and wðcÞ

i , can indicate a distinct connectivity of gene i with p regulators
between the conditions. However, simply computing the difference of the weight vectors is
unlikely to be successful, due to the correlation among the regulators. The lasso, or other
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sparsity-inducing regression methods, can arbitrarily choose different regulators between can-
cer and normal. Examining the difference in the weight vectors between conditions would
therefore lead to overestimation of network perturbation.

Instead, DISCERN adopts a novel network perturbation score that measures how well each
weight vector learned in one condition explains the data in a different condition. This increases
the robustness of the score to correlation among regulators, as demonstrated in the next sec-
tion. We call this score the DISCERN score, defined as

DISCERNi ¼ per sample �log�likelihood computed using learned weights wðsÞ in a different condition s0
per sample �log�likelihood computed using learned weights wðsÞ in the same condition s

. This is equivalent to

DISCERNi ¼ erriðc;nÞþerriðn;cÞ
erriðc;cÞþerriðn;nÞ, where erriðs; s0Þ ¼ 1

ns
jjyðsÞi �Pp

r¼1

wðs0Þ
ir xðsÞr jj22. Here ns is the number of

samples in the data from condition s. The numerator measures the error of predicting gene i’s
expression levels in cancer (normal) based on the weights learned in normal (cancer). If gene i
has different sets of regulators between cancer and normal, it is likely to have a high DISCERN
score. The denominator plays an important role as a normalization factor, which is demon-
strated by comparing with an alternative score, namely the D0 score (Fig 2A), that uses only the
numerator of the DISCERN score. We also compare with existing methods, such as LNS [35]
and PLSNet [34], that compare the weight vectors between cancer and normal models where
we demonstrate the advantages of the likelihood-based model that DISCERN uses.

Comparison with previous approaches on synthetically generated data
In order to systematically compare DISCERN with alternative methods in a controlled setting,
we performed validation experiments on 100 pairs of synthetically generated datasets repre-
senting two distinct conditions. Each pair of datasets contains 100 variables drawn from the
multivariate normal distribution with zero mean and covariance matrices S1 and S2. We
divided 100 variables into the following three categories: 1) variables that have different sets of
edge weights with other variables across two conditions, 2) variables that have exactly the same
sets of edge weights with each other across the conditions, and 3) variables not connected with
any other variables in the categories 2) and 3) in both conditions. For example, in Fig 1A, ‘1’ is
in category 1). ‘2’, ‘4’, ‘6’, and ‘7’ are in category 2), and ‘3’ and ‘5’ is in category 3). We describe

how we generated the network edge weights (i.e., elements of S�1
1 and S�1

2 ) among the 100 vari-
ables in more detail in Methods.

We compared DISCERN with 4 alternative methods to identify perturbed genes: LNS [35],
D-score [36], PLSNet [34], and D0 that uses only the numerator of the DISCERN score. Here,
we do not compare with the methods to identify differentially expressed genes, such as
ANOVA, because the synthetic data were generated from a zero mean Gaussian distribution.
We note that the PLSNet method uses empirical p-values as the network perturbation scores,
where the empirical p-value for each gene is estimated from permutation tests that generate the
null distribution of the gene’s score [34]. All the other methods, such as DISCERN, LNS, and
D-score, do not require permutation tests (see Methods for details). To show that DISCERN
outperforms existing methods and those that use the empirical p-values obtained through per-
mutation tests as the network perturbation scores, we developed the following methods for
comparison: LNS, D-score, and D0 followed by permutation tests to compute the empirical p-
values, called pLNS, pD-score, and pD0, respectively.

The average receiver operating characteristic (ROC) curves across 100 pairs of datasets for
these methods (Fig 2A) show that DISCERN significantly outperforms all the other 7 methods—
3 existing methods (LNS, D-score, and PLSNet), and 4 methods we created for comparison (D0,
pD0, pLNS, and pD-score). Except DISCERN, PLSNet performs the best among all existing
methods. However, its run time grows too quickly as the number of variables increases, which
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makes it two to three orders of magnitude slower than DISCERN when run on larger data (Fig
2B). PLSNet was too slow to run on genome-scale data and therefore we did not use it for the
subsequent experiments on genome-wide gene expression data from cancer patients.

We note that DISCERN does not need permutation tests to generate the null distribution of
the score for each gene. All other methods improve when the empirical p-values from permuta-
tion tests are used, which indicates that the gene-level bias on the magnitude of the raw scores
hurts their performance to identify perturbed genes. DISCERN significantly outperforms D0

that uses only the numerator of the DISCERN score, which indicates that the denominator of
the DISCERN score plays a role to normalize the score such that the scores of different genes
can be compared to each other. Computing the empirical p-value for each gene based on the
gene-specific null distribution obtained through permutation tests is not feasible on genome-
wide data. To obtain a p-value of 0.05 after Bonferroni correction, we need at least (1/0.05 × p)
permutation tests per gene, where p is the total number of genes, and (1/0.05 × p2) permutation
tests in total. When p = 20,000, this number is (4 × 109) permutation tests, which is not feasible
even when using multiple processors at a reasonable cost. This is demonstrated in Fig 2B that
shows the run time of PLSNet, a permutation test-based method, when applied to data contain-
ing a varying number of genes (p).

Comparison of methods on gene expression datasets
We used genome-wide expression datasets consisting of 3 acute myeloid leukemia (AML) data-
sets, 3 breast carcinoma (BRC) datasets and 1 lung adenocarcinoma (LUAD) dataset (Table 1).

Fig 2. (A) Average receiver operating characteristic (ROC) curves from the experiments on synthetic data.We compare DISCERNwith 7 alternative
methods: 3 existing methods—LNS [35], D-score [36], and PLSNet [34]—and 4 methods we developed for comparison—pLNS, pD-score, D0 and pD0. (B)
Comparison of the runtime (hours) between PLSNet and DISCERN for varying numbers of variables (p). The triangles mean the measured run times over
specific values of p, and lines connect these measured run times. PLSNet uses the empirical p-values from permutation tests as scores, and DISCERN does
not. For a large value of p, DISCERN is two to three orders of magnitude faster than PLSNet.

doi:10.1371/journal.pcbi.1004888.g002
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Details on the data processing are provided in Methods. To evaluate the performance of the
DISCERN method, we compared DISCERN with existing methods that scale to over tens of
thousands of genes: LNS [35] and D-score [36] that aim to estimate network perturbation, and
ANOVA that measures differential expression levels between cancer and normal samples.

We first computed the DISCERN, LNS, D-score, and ANOVA scores in the 3 cancers based
on the following datasets that contain normal samples: AML1, LUAD1 and BRC1 (Table 1).
Then, we used the rest of the datasets to evaluate the performance of each method at identify-
ing genes previously known to be important in the disease, for example, the genes whose
expression levels are significantly associated with survival time in cancer. The value of the spar-
sity tuning parameter λ was chosen via cross-validation tests, a standard statistical technique to
determine the value of λ [47]. For the chosen λ values, the overall average regression fit mea-
sured by cross-validation test R2 was 0.493.

To remove any potential concern of the effect of standardization on genes with very low
expression level, we first show that genes with low mean expression do not tend to have high
enough DISCERN score to be considered in our evaluation in the next sections (S1 Fig). The
Pearson’s correlation between the mean expression before standardization and the DISCERN
score ranges from 0.08 and 0.43 across datasets. Positive correlation is induced because genes
with low mean expression tend to have lower DISCERN scores, indicating that genes whose
expression are likely essentially noise would not be selected as high-scoring genes. To further
reduce the potential concern of genes with low expression in RNA-seq data (LUAD), we
applied the voom normalization method that is specifically designed to adjust for the poor esti-
mate of variance in count data, especially for genes with low counts [51].

We assessed the significance of the DISCERN scores through a conservative permutation
testing procedure, where we combined cancer and normal samples, and permuted the cancer/
normal labels among all samples (more details in Methods). Unlike the gene-based permuta-
tion test described in the previous section, here, we generate a single null distribution for all
genes, which requires a significantly less number of permutation tests (one million in this
experiment). After applying false discovery rate (FDR) correction on these p-values, there are
1,351 genes (AML), 2,137 genes (BRC), and 3,836 (LUAD) genes whose FDR corrected p-val-
ues are less than 0.05. We consider these genes to be significantly perturbed genes (S2 Table).
The difference in these numbers of significant perturbed genes identified by DISCERN is con-
sistent with a prior study that showed that lung cancer has a larger number of non-synony-
mous mutations per tumor than breast cancer, which has a larger number than AML [52].

Top scoring DISCERN genes in AML reveal known cancer drivers in AML
The 1,351 genes that were predicted to be significantly perturbed between AML samples and
normal non-leukemic bone marrow samples were enriched for genes causally implicated

Table 1. Gene expression datasets used in this paper.

Reference # Genes # of Tumors # of Normal Survival? Platform Accession

AML1 MILE, [53] 16853 541 73 No Affy U133+2.0 GSE13159

AML2 Gentles, [54] 16853 515 0 Yes Affy U133+2.0 GSE12417,GSE14468,GSE10358

AML3 Metzeler 11697 152 0 Yes Affy U133A GSE12417

BRC1 TCGA 10809 529 61 Yes Agilent G4502A Firehose 2013042100

BRC2 Metabric 10809 1981 0 Yes Illumina HTv3 Synapse: syn1688369

BRC3 Oslo 10809 184 0 Yes Illumina HTv3 Synapse: syn1688370

LUAD1 TCGA 17022 504 57 Yes Illumina HiSeq Firehose 2015110100

doi:10.1371/journal.pcbi.1004888.t001
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previously in AML pathogenesis (S2 Table). This include a number of genes that we and others
have previously identified as being aberrantly activated in leukemic stem cells such as BAALC,
GUCY1A3, RBPMS, and MSI2 [55–57]. This is consistent with over-production of immature
stem-cell like cells in AML, which is a major driver of poor prognosis in the disease. Prominent
among high-scoring DISCERN genes were many HOX family members, which play key roles
in hematopoietic differentiation and in the pathogenesis of AML [58]. HOX genes are fre-
quently deregulated by over-expression in AML, often through translocations that result in
gene fusions. The highest ranked gene in AML by DISCERN is HOXB3 which is highly
expressed in multipotent hematopoietic progenitor cells for example. Thirteen (out of 39
known) HOX genes are in the 1,351 significantly perturbed genes (p-value: 5.99 × 10−6).

When compared to known gene sets from the Molecular Signature Database (MSigDB) [59]
in an unbiased way, the top hit was for a set of genes (VERHAAK_AML_WITH_NPM1_
MUTATED_DN; p-value: 2 × 10−86) that are down-regulated by NPM1 (nuclephosmin 1) muta-
tion in AML (S1 File). NPM1 is one of three markers used in AML clinical assessment; the others
are FLT3 and CEBPA that are significantly perturbed genes identified by DISCERN as well.
Mutation leads to aberrant cytoplasmic location of itself and its interaction partners, leading to
changes in downstream transcriptional programs that are being captured by DISCERN. Also
highly significant were genes highly expressed in hematopoietic stem cells [60] (JAATINEN_
HEMATOPOIETIC_STEM_CELL_UP; p-value: 6 × 10−74). Among these were key regulators of
hematopoietic system development such as KIT, HOXA3, HOXA9, HOXB3 (with the latter
homeobox genes also implicated in AML etiology), as well as FLT3 which plays a major role in
AML disease biology, with its mutation and constitutive activation conferring significantly worse
outcomes for patients [61]. Comparison to Gene Ontology (GO) categories identified dysregula-
tion of genes involved in hemostasis and blood coagulation, a key clinical presentation of AML.
Furthermore, GTPase activity/binding and SH3/SH2 adaptor activity were enriched among
high-scoring DISCERN genes. These are pertinent to AML due to previously noted high expres-
sion in AML leukemic stem cells of GUCY1A3 and SH3BP2, both identified as perturbed genes
by DISCERN [55]. However, their function has not been examined in detail, suggesting that they
are potential targets for further investigation as to their role in AML disease mechanisms. Several
other highly significant enrichments were for AML subtypes that are driven by specific transloca-
tions, including MLL (mixed lineage leukemia) translocation with various partners, as well as t
(8;21) translocations. The latter is of particular interest, since it is primarily a pediatric AML,
whereas our network analysis uses purely adult AML samples—indicating the potential to
uncover putative mechanisms that generalize beyond the context of the immediate disease type.

Top scoring DISCERN genes in lung cancer reveal biological processes
known to be important in lung cancer
There are 3,836 significantly perturbed genes identified by DISCERN in lung cancer (LUAD)
(S2 Table). The 3rd and 4th highest ranked genes are ICOS (inducible costimulator) and
YWHAZ (14-3-3-zeta). Both genes have known roles in disease initiation or progression in
lung cancer. Polymorphisms in ICOS have been associated with pre-disposition to non-small
cell lung cancer [62], while over-expression of YWHAZ is known to enhance proliferation and
migration of lung cancer cells through induction of epithelial-mesenchymal transitions via
beta-catenin signaling [63]. GIMAP5 (GTPase IMAP Family Member 5), another high scoring
LUAD gene (11th), is consistently repressed in paired analyses of tumor vs normal lung tissue
from the same patient, and encodes an anti-apoptotic protein [64]. Down-regulation of
GIMAP5 in lung tumors therefore potentially facilitates their evasion of programmed cell
death, one of the hallmarks of cancer.
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Several of the GO biological categories enriched in 3,836 high-scoring DISCERN genes in
LUAD (FDR-corrected p-value<0.05) reflected metabolic and proliferative processes that are
commonly de-regulated in solid tumors such as lung adenocarcinoma. Among these were cel-
lular response to stress, mitotic cell cycle, amino acid metabolism, and apoptosis (S1 File). In
fact the top-ranked gene was MCM7 (minichromosome maintenance protein 7), an ATP-
dependent DNA helicase involved in DNA replication which has been implicated in carcino-
genesis previously due to its function as a binding partner of PRMT6 [65]. Moreover, it was
specifically identified as being a potential therapeutic target due to its over-expression in solid
tumors relative to normal tissues. The high ranking of genes associated with apoptosis is con-
sistent with the fact that there is often high rate of tumor cell death. Although the highly-
ranked CARD6 (caspase recruitment domain family member 6) functions in apoptotic pro-
cesses, it is also known as a regulator of downstream NF-κβ signaling. Indeed, consistent with
this, we found enrichment for NF-κβ signaling pathway genes among high DISCERN-scoring
genes in LUAD including NFKBIB (NF-κβ inhibitor β) which inhibits the NF-κβ complex by
“trapping” it in the cytoplasm, preventing nuclear activation of its downstream targets.
Although the role of NFKBIB in lung cancer has not been studied extensively, its related family
member NFKBIA is known to be a silencer in non-small-cell lung cancer patients with no
smoking history, suggesting that it could play some role in LUAD that arises through inherent
genetic influences, or environmental insults other than smoking [66]. Levels of β-catenin have
been known for some time to influence progression and poor prognosis in LUAD, potentially
through its role in differentiation and metastasis from primary tumor sites [67]. We found that
components of β-catenin degradation pathways—including most notably CTNNBIP1 (β-cate-
nin interacting protein 1)—ranked among the most significant DISCERN genes in our LUAD
analysis.

When comparing to other sets of genes in MSigDB, we also found targets of transcription
factors including MYC, which is often de-regulated in solid tumors (either by mutation or
copy number variation), and targets of the polycomb repressive complex gene EZH2. The
developmental regulator EZH2 functions through regulation of DNA methylation [68], and
has been implicated in B-cell lymphomas through somatic mutations [69], promotion of trans-
formation in breast cancer [70], as well as progression in prostate cancer [71]. Interestingly, the
most highly dys-regulated gene set identified by comparison to GO categories in LUAD was
one related to NGF (nerve growth factor)-TrkA signaling. There are a few reports on the rele-
vance of this axis to cancers including neuroblastoma, ovarian cancer, and a possible role in
promoting metastasis in breast cancer. However, its striking appearance as the most significant
hit for high-ranking DISCERN genes suggests that it merits study in lung cancer.

Top scoring DISCERN genes in breast cancer reveal biological
processes known to be important in breast cancer
Here, we did the functional enrichment analysis with 2,137 genes identified by DISCERN to be
significantly perturbed in breast cancer (BRC) (S2 Table). BRC showed perturbation of distinct
genes and sets of genes in comparison to LUAD, as well as similarities. Again, these included
GO biological processes that one would generically expect to be over-activated in a solid
tumor, such as translation intiation, cell cycle, proliferation, and general cellular metabolic pro-
cesses. As with LUAD, targets of MYC were enriched in high-scoring DISCERN genes in BRC.
Another high-scoring group in BRC was comprised of genes that are highly correlated with
each other, but with this relationship de-regulated by BRCA1 mutation [72]. Additional signifi-
cant overlaps were identified with luminal A, luminal B, HER2-enriched, and basal-like breast
cancer subtype-specific genes that are associated with clinical outcomes [73], and genes
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associated with ER-positive breast cancer [74]. The 3rd highest ranked DISCERN gene was
BRF2 (TFIIB-related factor 2). BRF2 is a known oncogene in both breast cancer and lung squa-
mous cell carcinoma, and a core RNA polymerase III transcription factor that senses and reacts
to cellular oxidative stress [75]. A GO category associated with NGF (nerve growth factor)-
TrkA signaling shows the highest overlap with DISCERN genes in BRC (p-value:
3.16 × 10−104). NGF-TrkA signaling is upstream of the canonical phosphatidylinositol 3-kinase
(PI3K) –AKT and RAS –mitogen-activated protein kinase (MAPK) pathways, both of which
impinge on cell survival and differentiation. In the context of breast cancer, over-expression of
TrkA has been connected to promoting growth and metastasis, as an autocrine factor, presum-
ably due to its influence on PI3K-AKT and RAS/MAPK [76]. TrkA is reportedly over-
expressed in breast carcinoma relative to normal breast tissue in a majority of cases [77], sup-
porting the high-ranking of genes in this pathway by DISCERN. Taken together, these results
indicate that DISCERN highly ranks genes that are connected to known phenotypic and sur-
vival-associated processes in breast cancer. However, intriguingly the top DISCERN gene was
CLNS1A (chloride nucleotide-sensitive channel 1A). This chloride channel gene has not, to
our knowledge, been implicated in pathogenesis in any cancer, although it is a member of the
BRCA1-related correlation network noted above. In fact there appear to have been few studies
of its function although Entrez gene notes that it performs diverse functions.

DISCERN scores reveal survival-associated genes across multiple
cancer types
In this section, we focus on the quantitative assessment of DISCERN and the comparison with
LNS and D-score in terms of how much the identified genes are enriched for genes implicated
to be important in the disease. Specifically, genes whose expression levels are significantly asso-
ciated positively or negatively with survival time are often considered to be associated with
tumor aggression. Identifying such genes has been considered as an important problem by a
number of authors, where breast cancer was one of the first cancers to show promise in terms
of identifying clinically relevant biomarkers [78, 79]. Here, we evaluated DISCERN based on
how well it reveals survival-associated genes identified in an available independent dataset.

We chose the datasets with measures of patient prognosis: AML2, BRC2, and LUAD1.
AML2 and BRC2 were not used for computing any scores (DISCERN, LNS, D-score, and
ANOVA). For each of these datasets we computed the survival p-values based on the Cox pro-
portional hazards model [80] measuring the association between each gene’s expression level
and survival time. We defined survival-associated genes as the genes whose expression levels are
associated with survival time based on the Cox proportional hazards model (p-value< 0.01)
(S3 Table).

We considered the genes whose DISCERN scores are significantly high at FDR corrected p-
value< 0.05 in each cancer: 1,351 genes (AML), 2,137 genes (BRC), and 3,836 genes (LUAD).
We first computed the Fisher’s exact test p-values to measure the statistical significance of the
overlap between these significantly perturbed genes and survival-associated genes in each of
three cancers. For each cancer, we compared with existing methods to detect network perturba-
tion—LNS and D-score—when exactly the same number of top-scoring genes were considered
(Fig 3A–3C). Since these numbers of genes were chosen specifically for DISCERN, there is a
chance that LNS and D-score would show a higher enrichment for survival-associated genes if
different numbers of top-scoring genes were considered. As discussed in the previous section,
performing the gene-based permutation tests to estimate the confidence of each gene’s score in
genome-wide data is not feasible. Instead, we compared the Fisher’s exact test p-values of the
three methods across a range of numbers of top-scoring genes from 0 to N Fig 3D–3F. It is
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pretty clear that neither LNS nor D-score would be better than DISCERN in revealing survival-
associated genes, even when different numbers of top-scoring genes were considered across all
cancer types.

ANOVA is a well-established method to identify differentially expressed genes across dis-
tinct conditions; DISCERN LNS, and D-score are methods to identify differentially connected
genes across conditions. Therefore, the purpose of the comparison with ANOVA is not to eval-
uate DISCERN in identifying survival-associated genes as perturbed genes. The purpose is to
compare between differentially expressed genes (that are commonly considered important)
and perturbed genes estimated by the three methods (DISCERN, LNS, and D-score), in terms
of the enrichment for genes with potential importance to the disease. For ANOVA, in Fig 3A–
3C, we considered 8,993 genes (AML), 7,922 genes (BRC) and 13,344 genes (LUAD) that show

Fig 3. The significance of the enrichment for survival-associated genes in the identified perturbed genes.We compared DISCERNwith LNS and D-
score based on the Fisher’s exact test p-value that measures the significance of the overlap between N top-scoring genes and survival-associated genes in
each of three cancers. (A)-(C) We plotted −log10(p-value) from the Fisher’s exact test whenN top-scoring genes were considered by each method in 3
datasets: (A) AML (N = 1,351), (B) BRC (N = 2,137), and (C) LUAD (N = 3,836). For ANOVA, we considered 8,993 genes (AML), 7,922 genes (BRC) and
13,344 genes (LUAD) that show significant differential expression at FDR corrected p-value < 0.05. (D)-(F) We consider up to 1,500 (AML), 2,500 (BRC), and
4,000 (LUAD) top-scoring genes in each method, to show that DISCERN is better than LNS and D-score in a range ofN value. The red-colored dotted line
indicates 1,351 genes (AML), 2,137 genes (BRC), and 3,836 genes (LUAD) that are identified to be significantly perturbed by DISCERN (FDR < 0.05). We
compare among the 4 methods consisting of 3 methods to identify network perturbed genes (solid lines) and ANOVA for identifying differentially expressed
genes (dotted line) in 3 cancer types.

doi:10.1371/journal.pcbi.1004888.g003
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significant differential expression between cancer and normal samples at FDR corrected p-
value< 0.05. The perturbed genes identified by DISCERN are more associated with survival
than differentially expressed genes captured by ANOVA in AML and LUAD (Fig 3).

In addition to the comparison with other methods—LNS and D-score—we also compare
with frequently mutated genes and genes annotated to be involved in the respective cancer. We
considered the following three gene sets: 1) a gene set constructed based on the gene-disease
annotation database, Malacards [81], 2) genes known to have cancer-causing mutations based
on the Cancer Gene Census [82], and 3) genes predicted to have driver mutations identified by
MutSig [5] applied to The Cancer Genome Atlas (TCGA) data for the respective cancer type.
The Malacards (gene set #1) and TCGA driver gene sets (#3) are generated for each cancer
type—AML, breast cancer, or lung cancer. For example, for Malacards, we used the genes that
are annotated to be involved in AML in Malacards to compare it with DISCERN genes identi-
fied in AML. Similarly, for the TCGA driver gene sets (#3), we used the AML TCGA data to
identify the frequently mutated genes that are likely driver genes, and compared with high DIS-
CERN-scoring genes in AML. We used the breast cancer TCGA data for BRC, and lung cancer
TCGA data for LUAD. The Cancer Gene Census (CGC) gene set is a rigorously defined set of
genes with multiple sources of evidence that its genes are cancer drivers in a single or multiple
cancers.

For each cancer type, we compared these three sets of genes with the perturbed genes identi-
fied by DISCERN—1,351 (AML), 2,137 (BRC), and 3,836 (LUAD) genes with high DISCERN
scores—on the basis of the significance of the enrichment for survival-associated genes. S2 Fig
shows that the perturbed genes identified by DISCERN are more significantly enriched for sur-
vival-associated genes.

Prognostic model based on high DISCERN-scoring genes
In this section, we evaluated the DISCERN score based on how well it identifies genes that are
predictive of patient prognosis. Here, we test the possibility of using the network perturbed
genes identified by DISCERN as prognostic markers. For the cancer types with at least three
data sets (AML and BRC; see Table 1), we construct a survival time prediction model using the
genes with significant DISCERN scores (AML: 1,351 genes, BRC: 2,137 genes) identified based
on one data set (Data # 1: AML1 and BRC1) as described in the previous subsection. Then, we
trained the prediction model using one of the other datasets (Data #2: AML2 and BRC2) not
used for the computation of the DISCERN score. Finally, we tested the prediction accuracy on
the third data set (Data #3: AML3 and BRC3).

We controlled for clinical covariates whose data are available—age in case of AML and age,
grade and subtype in case of BRC—by adding them as unpenalized covariates into our elastic
net Cox regression model. We trained the Cox regression model using Data #2 and tested the
survival prediction model on Data #3. Since we evaluated the survival prediction in separate
data (AML3 and BRC3) that were not used when training the survival prediction model, using
more predictors, e.g., by adding clinical covariates, does not necessarily improve the prediction
performance. Adding more predictors often leads to a higher chance of overfitting. Our sur-
vival prediction model based on the high DISCERN-scoring genes works at least as well as
models based on the genes contained in the previously established prognosis markers, such as
Leukemic Stem Cell score (LSC) [54] for AML and MammaPrint signature (with*70 genes)
[83] for BRC, as shown in Fig 4. The c-index in AML is 0.669 with standard error (se) being
0.031 (Fig 4B); in BRC, the c-index is 0.668 (se: 0.027) (Fig 4D). The DISCERN-based expres-
sion marker with clinical covariates makes better predictions than when clinical covariates
alone are used.
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Fig 4. The Kaplan-Meier plot showing differences in the survival rate measured in AML3 (A and B) and BRC3 (C and D) between the two patient
groups with equal size, created based on the predicted survival time from each predictionmodel.We consider the model trained based on the topN
(N = 1,351 for AML;N = 2,137 for BRC) DISCERN-scoring genes and clinical covariates (blue), and the model trained based on only clinical covariates (red)
(panels A and C for AML3 and BRC3, respectively). (B) The panel shows the comparison with the model trained using genes comprising 22 genes previously
known prognostic marker, called LSC [54], along with the clinical covariates (red). (D) The panel shows the comparison with the model trained using 67
genes from the MammaPrint prognostic marker (70 genes) [83] along with the clinical covariates. We used 67 genes out of 70 genes that are present in our
BRC expression datasets. P-values shown in each plot are based on the logrank test (red).

doi:10.1371/journal.pcbi.1004888.g004
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DISCERN explains epigenomic activity patterns in cancer and normal
cell types more accurately than alternative methods
One of the possible mechanisms underlying network perturbation identified in gene expression
datasets representing different conditions (e.g., cancer and normal) is the following: A tran-
scription factor (TF) ‘X’ binds to a gene ‘Y”s promoter or its enhancer region in cancer but not
in normal (or vice versa). Then, ‘X’ or its co-regulator could be an expression regulator for ‘Y’
in cancer but not in normal (or vice versa), and Y is identified as a perturbed gene (i.e., a high
DISCERN-scoring genes). It is possible that ‘X”s binding information is not available and ‘X”s
protein level is not reflected in its mRNA expression level; thus we cannot expect the DISCERN
score of a gene inferred from expression data to be perfectly correlated with whether the gene
has a differential biding of a certain TF, inferred from ChIP-seq or DNase-seq data. However,
the degrees of correlation between the network perturbation score (DISCERN, LNS or D-
score) of a gene and whether a TF differentially binds to the gene can be a way to evaluate the
network perturbation scoring methods.

To determine whether or how much our statistical estimates of network perturbation
reflects perturbation of the underlying TF regulatory network, we queried epigenomic data
from ENCODE project. Two of the ENCODE cell lines—NB4 (an AML subtype [84]) and
CD34+ (mobilized CD34 positive hematopoietic progenitor cells)—are closest to AML and
normal conditions, and the DNase-seq data from these cell lines are available. We used the
DNase-seq data from NB4 and the position weight matrices (PWMs) of 57 TFs available in the
JASPAR database [85] to find the locations of the PWMmotifs that are on the hypersensitive
regions. This is a widely used approach to estimate active binding motifs using DNase-seq
data, when ChIP-seq data are not available. We identified the locations of these PWMmotifs
on the hg38 assembly by using the FIMO [86] method (p-value�10−5). We then intersected
these motif locations with hypersensitive regions identified by the DNase-seq data for each TF.
We repeated for the other cell line CD34+.

For each TF, we measured how well the DISCERN score of a gene can predict the differen-
tial binding of the TF in active enhancer regions (marked by H3K27Ac) within 15kbs of the
transcription start site (TSS) of the gene (Fig 5A–5C) and 5kb of the gene between blood cancer
and normal cell lines (NB4 and CD34+) (S3A–S3C Fig). We show that the DISCERN score can
reflect differential binding of most of the TFs better than existing methods to identify network
perturbation (LNS and D-score) and a method to identify differentially expressed genes
(ANOVA). As a way to summarize these results across all 57 TFs, we computed the Pearson’s
correlation between the score of each gene and the proportion of TFs that differentially bind to
that gene out of all TFs that bind to that gene. Fig 5D shows that DISCERN detects genes with
many TFs differentially bound between cancer and normal better than the other network per-
turbation detection methods (LNS and D-score) and ANOVA.

Considering hypersensitive sites identified by DNase-seq data as the indication of “general”
binding of TFs or other DNA-associated proteins, we assume that a gene is differentially bound
if there is a DNase signal within a 150bp window around its TSS in one condition (cancer or
normal), but not in the other condition. We observe that the DISCERN scores of the genes that
are differentially bound are significantly higher than those of the genes that are not (Fig 5E).
These results suggest that DISCERN identifies possible regulatory mechanisms underlying net-
work perturbation more accurately than existing network perturbation detection methods (LNS
and D-Score) and a method for identifying differential expression levels (ANOVA).

As a specific example, STAT3 has been shown to differentially regulate the mRNA expres-
sion of BATF in myeloid leukemia but not in normal condition [87]. We found that STAT3 dif-
ferentially binds to BATF in the AML cell line but not in the normal cell line based on our
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differential binding analysis using the DNase-seq/motif data, as described above (S4 Table).
Interestingly, DISCERN identifies BATF as a perturbed gene in AML (FDR corrected p-
value< 0.05). DISCERN also identifies STAT3 as the strongest regulator for BATF in AML
expression data, but STAT3 is not selected as an expression regulator in normal expression
data (S1 File). Interestingly, LNS and D-Score detect STAT3 as an expression regulator of
BATF in both conditions, not as a differential expression regulator.

Two of the Tier 1 ENCODE cell lines—K562 (chronic myeloid leukemia cell line) and
GM12878 (a lymphoblastoid cell line)—correspond to blood cancer and normal tissues as well
[88]. Tier 1 data contain the largest number of TFs with ChIP-seq datasets, which allows us to
perform this kind of analyses using ChIP-seq datasets for these TFs. We repeated the same
analysis with these cell lines and showed similar results (see S4 and S5 Figs).

Combining DISCERN with ENCODE data improves the enrichment of
known pathways
Additionally, we investigated whether one can use DISCERN as a filtering step to increase the
power in a pathway enrichment analysis. We consider hypersensitive sites identified by

Fig 5. Kolmogorov-Smirnov test p-value measuring the significance of the difference in score between genes differentially bound by the
corresponding transcription factor (TF) (x-axis) and those not differentially bound by the corresponding TF.We performed the one-sided test with an
alternative hypothesis that differentially bound genes have higher scores; thus high −log10(p-value) means that high-scoring genes tend to show differential
binding. The TFs are divided into the 3 sets: (A) TFs that are known to be associated with leukemia, (B) TFs that are known to be associated with cancer, and
(C) TFs that are currently not known to be associated with cancer or leukemia, based on the gene-disease annotation database Malacards [81]. (D)
Comparison of the p-values for the Pearson’s correlation between the score of each gene and the proportion of differential TFs out of all TFs bound to the
genes. (E) Kolmogorov-Smirnov test (one-sided as above) p-value measuring the significance of the difference in score between the genes with differential
binding purely based on the DNase-seq data and those not. Here, a differentially bound gene is defined as a gene that has a DNase signal within a 150bp
window around its TSS in one condition but not in the other condition.

doi:10.1371/journal.pcbi.1004888.g005
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DNase-seq data as the indication of “general” binding of TFs or other DNA-associated pro-
teins, and important regulatory events. As describe above, we identified differentially regulated
genes between AML and normal cell lines (NB4/ CD34+) by identifying gene that have DNase-
seq peaks within 150bp around the TSS in one condition (cancer or normal), but not in the
other condition. There are 3,394 differentially regulated genes selected based on the DNase-seq
data, of which 339 are significant DISCERN genes (S1 File). Presumably, these disease specific
targets should be enriched for pathways or categories that will help us understand mechanisms
underlying the disease. Alternatively, some targets may be spurious, especially considering the
use of cell lines that are not a perfect match to healthy and diseased bone marrow samples and
experimental noise.

Here we attempt to identify differentially regulated genes between AML and normal sam-
ples, by integrating the information on the DNase-seq data (i.e., differentially bound genes)
and significantly perturbed genes identified by DISCERN based on the expression datasets
from AML samples and normal non-leukemic bone marrow samples. To show that combining
these two pieces of information helps us to identify pathways that are specifically active in one
condition not in the other, we compared the significance of the enrichment for Reactome path-
ways measured in fold enrichment between 1) 339 differentially bound DISCERN genes (inter-
section of 3,394 differentially bound genes and high DISCERN-scoring genes), and 2) 3,394
differentially bound genes. S6 Fig shows that for most of the pathways, using the intersection of
differentially bound and perturbed genes increases the fold enrichment compared to when dif-
ferentially bound genes were used (Wilcox p-value<7 × 10−5).

Among the pathways, ‘platelet activation signalling and aggregation’ shows significant
improvement in fold enrichment: 1) when differentially bound DISCERN genes were used
(f = 2.9; FDR q-value = 0.01), compared to 2) when differentially bound genes were used
(f = 1.03). It has been shown that the interactions between platelets and AML cells have consid-
erable effects on metastasis, and the various platelet abnormalities have been observed in AML
and other leukemias [89]. G-alpha signalling-related pathways also show significant boost in
fold enrichment when DISCERN was used as a filtering mechanism for differentially bound
genes. ‘Gq signalling pathway’ shows significant increase in fold enrichment: 1) when differen-
tially bound DISCERN genes were used (f = 2.16; FDR q-value = 0.05), compared to 2) when
differentially bound genes were used (f = 0.92). ‘G12/13 signalling pathway’ shows significant
improvement in fold enrichment: 1) when differentially bound DISCERN genes were used
(f = 3.4; q-value<0.03), compared to 2) when differentially bound genes were used (f = 1.5).
These pathways have been implicated in leukemias [90].

Discussion
We present a general computational framework for identifying the perturbed genes, i.e., genes
whose network connections with other genes are significantly different across conditions, and
tested the identified genes with statistical and biological benchmarks on multiple human cancers.
Our method outperforms existing alternatives, such as LNS, D-score, and PLSNet, based on syn-
thetic data experiments and through biological validation performed using seven distinct cancer
genome-wide gene expression datasets, gathered on five different platforms and spanning three
different cancer types—AML, breast cancer and lung cancer. We demonstrated that DISCERN is
better than other methods for identifying network-perturbation in terms of identifying genes
known to be or potentially important in cancer, as well as genes that are subject to differential
binding of transcription factor according to the ENCODE DNase-seq data. We also demon-
strated a method to use DISCERN scores to boost signal in the enrichment test of targets of dif-
ferential regulation constructed using DNase-seq data available through the ENCODE Project.
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Methods

Data preprocessing
Raw cell intensity files (CEL) for gene expression data in AML1, AML2, and AML3 were
retrieved from GEO [91] and The Cancer Genome Atlas (TCGA). Expression data were then
processed using MAS5 normalization with the Affy Bioconductor package [92], and mapped
to Enztrez gene annotations [93] using custom chip definition files (CDF) [94], and batch-
effect corrected using ComBat [95] implemented in package sva from CRAN.

BRC1 expression data were accessed through Broad Firehose pipeline (build 2013042100).
We checked whether BRC1 processed by Firehose shows evidence of batch effects. We con-
firmed that the first three principal components are not significantly associated with the plate
number (which we assumed to be a batch variable), which indicates no strong evidence of
batch effects. BRC2 and BRC3 were accessed through Synapse (syn1688369, syn1688370). All
probes were then filtered and mapped using the illuminaHumanv3.db Bioconductor package
[96]. Probes mapped into the same genes were then collapsed by averaging if the probes being
averaged were significantly correlated (Pearson’s correlation coefficient greater than 0.7).

LUAD1 expression data were accessed through Broad Firehose pipeline (build
2015110100). Genes which had a very weak signal were filtered out of the LUAD1 data. We
then applied the voom normalization method that is specifically designed to adjust for the poor
estimate of variance in count data, especially for genes with low counts [51]. The voom algo-
rithm adjusts for this variance by estimating precision weights designed to adjust for the
increased variance of observations of genes with low counts. This would stabilize the estimated
distribution of RSEM values in the LUAD data, making it more normally distributed. Since
LUAD data comes from different tissue source sites, we have applied batch-effect correction
using ComBat.

For all datasets, only probes that are mapped into genes that have Entrez gene names were
considered. Table 1 shows the number of samples and genes used in each dataset. For AML1,
BRC1, and LUAD1 that were used for score computationa, we splitted each dataset into two
matrices, one with only cancerous patients and one with normal patients. These matrices are
normalized to 0-mean, unit-variance gene expression levels for each gene, before each network
perturbation score (DISCERN, LNS, and D-score) was computed, which is a standard normali-
zation step for accurately measuring the difference in the network connectivity. For methods
that measure the differential expression levels (ANOVA), such normalization was not applied.

Lastly, candidate regulators are identified from a set of 3,545 genes known to be transcrip-
tion factors, chromatin modifies, or perform other regulatory activity, which have been used in
many studies on learning a gene network from high-dimensional expression data [43–46] (S1
Table).

DISCERN score
DISCERN uses a likelihood-based scoring function that measures for each gene how much
likely the gene is differently connected with other genes in the inferred network between two
conditions (e.g., cancer and normal). We model each gene’s expression level based on a sparse

linear model. Let yðsÞi be a standardized expression levels of gene i in an individual with a condi-

tion s (cancer or normal) modeled as: yðsÞi �
Xp

r¼1

wðsÞ
ir x

ðsÞ
r , where xðsÞ1 ; . . . xðsÞp denote standardized

expression levels of candidate regulator genes in a condition s. Standardization is a standard
practice of normalizing expression levels of each gene to be mean zero and unit stadard devia-

tion before applying penalized regression method [47–50]. To estimate weight vector wðsÞ
i lasso
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[47] optimizes the following objective function: argmin
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ir j; where the subscript j in the formula iterates over all patients, used as training

instances for lasso. Here, yðsÞij corresponds to the expression level of the ith gene in the jth patient

in the sth state and xðsÞij similarly corresponds to the expression level of the ith regulator in the jth

patient in the sth state. The second term, the L1 penalty function, will zero out many irrelevant
regulators for a given gene, because it is known to induce sparsity in solution [47].

After estimating wðsÞ
i for each s, the DISCERN score measures how well each weight vector

learned on one condition explains the data in the other condition, by using a novel model selec-
tion criteria defined as:

DISCERNi ¼
per sample � log� likelihood based on wðsÞ

i on data in the other condition s0

per sample � log� likelihood based on wðsÞ
i on data in the same condition s

¼ erriðc; nÞ þ erriðn; cÞ
erriðc; cÞ þ erriðn; nÞ

;

ð1Þ

where erriðs; s0Þ ¼ 1
ns
jjyðsÞi �Pp

r¼1

wðs0Þ
ir xðsÞr jj22. Here ns is the number of samples in the data from

condition s. The numerator in Eq (1) measures the error of predicting gene i’s expression levels
in cancer (normal) based on the weights learned in normal (cancer). If gene i has different sets
of regulators between cancer and normal, it would have a high DISCERN score. The denomi-
nator plays an important role as a normalization factor. To show that, we defined an alternative
score, namely the D0 score that uses only the numerator of the DISCERN score, Eq (1):

D0
i ¼ erriðc; nÞ þ erriðn; cÞ

¼ 1

nc

jjyðcÞi �
Xp

r¼1

wðnÞ
ir x

ðcÞ
r jj22 þ

1

nn

jjyðnÞi �
Xp

r¼1

wðcÞ
ir x

ðnÞ
r jj22

ð2Þ

The first step of calculating the DISCERN score and D0 score is to fit a sparse linear model
(such as lasso [47]) for each gene’s expression level. We used the scikit-learn Python package
(version 0.14.1) to calculate these scores with the values of the sparsity tuning parameters λ
chosen by using the 5-fold cross-validation tests.

ANOVA score computation
Analysis of Variance (ANOVA) is a standard statistical technique to measure the statistical sig-
nificance of the difference in mean between two or more groups of numbers. For each gene, the
1-way ANOVA test produces a p-value from the F-test, which measures how significantly its
expression level is different between conditions (e.g., cancer and normal). The ANOVA score
was computed as negative logarithm of a p-value, obtained from 1-way ANOVA test using
f_oneway function in scipy.stats Python package.

PLSNet score computation
PLSNet score attempts to measure how likely each gene is differently connected with other
genes between conditions. It was computed using dna R package version 0.2_1 [34]. The
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network perturbation score for each gene is computed based on the empirical p-value from
1,000 permutation tests.

LNS score computation
In Guan et al. (2013) [35], the authors defined the local network similarity (LNS) score for
gene i that is defined as correlation of the Fisher’s z-transformed correlation coefficients
between expression of gene i and all other genes between two conditions:

LNSi ¼ corrðarctanhðcnijÞ; arctanhðccijÞÞ; ð3Þ

where csij represents the correlation coefficient between expression levels of genes i and j in con-

dition s = n for normal and s = c for cancer.

D-score score computation
For synthetic data analysis, we have also introduced a D-score, computed as following (as used
in Wang et al. (2009) [36]):

Di ¼ kdn
ij � dc

ijk1; ð4Þ

where ds
ij is a normalized correlation (normalized to have zero mean and unit variance across

genes) between genes i and j in condition s, also known as Glass’ d score [97].

Synthetic data generation
We generated 100 pairs of datasets, each representing disease and normal conditions. Each
pair of datasets contains 100 variables drawn from the multivariate normal distribution with
zero mean and covariance matrices S1 and S2. Each dataset contains n1 and n2 samples, respec-
tively, where n1 is randomly selected from uniform distribution between 100 and 110, and n2 is
from uniform distribution between 16 and 26. This difference in n1 and n2 reflects the ratio of
the cancer samples and normal samples in the gene expression data (Table 1).

For each of the 100 pairs of datasets, we divided 100 variables into the following three cate-
gories: 1) variables that have different sets of edge weights with other variables across two con-
ditions, 2) variables that have exactly the same sets of edge weights with each other across the
conditions, and 3) variables not connected with any other variables in the categories 2) and 3)
in both conditions. For example, in Fig 1A, ‘1’ is in category 1) (i.e., perturbed genes). ‘2’, ‘4’,
‘6’, and ‘7’ are in category 2), and ‘3’ and ‘5’ is in category 3). In each of the 100 pairs of datasets,
the number of genes in category #1 (perturbed genes), p, is randomly selected from uniform
distribution between 5 and 15. The number of genes in each of the other two categories #2 and
#3 is determined as (100 − p)/2.

We describe below how we generated the network edge weights (i.e., elements of S�1
1 and

S�1
2 ) among the 100 variables. To ensure that only the genes in #1 have differing edge weights

between two conditions, we generated two p × pmatrices, X1 and X2, with elements randomly
drawn from a uniform distribution between -1 and 1. Then, we generated symmetric matrices,
X⊺

1X1 and X
⊺
2X2, and added positive values to the diagonal elements to these symmetric matri-

ces, if its minimum eigenvalue is negative—a commonly used method to generate positive defi-

nite matrices [98]. They become submatrices of S�1
1 and S�1

2 for these p variables. Similarly, we
generate a common submatrix for the variables in category #2—variables that have the same
edge weights with other variables across conditions. Variables in category #3 have identity
matrix as the inverse covariance matrix among the variables in that categories. Finally, we
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added mean zero Gaussian noise to each element of S�1
1 and S�1

2 , where the standard deviation
of the Gaussian noise is randomly selected between 0.5 and 5.

This procedure allows having datasets of varying levels of difficulty in terms of high-
dimensionality and network perturbation, which provides an opportunity to compare the aver-
age performances of the methods in various settings.

Conservative permutation tests
To generate a conservative null distribution, we performed permutation tests by randomly
reassigning cancer/normal labels to each sample, preserving the total numbers of cancer/nor-
mal samples. The correlation structure among genes would be preserved, because every gene is
assigned the same permuted label in each permutation test. We then computed the DISCERN
score for a random subset of 300 genes. We repeated this process to get over one million DIS-
CERN scores to form a stable null distribution, which was used to compute empirical p-values.

Identifying survival-associated genes
For the survival-associated genes enrichment analysis, we first computed the association
between survival time and each gene expression level. Genes that had a p-value from the Cox
proportional hazards model (computed using survival R package) smaller than 0.01 were con-
sidered significantly associated with survival. These include 1,280 genes (AML), 1,891 genes
(BRC) and 1,273 genes (LUAD) (S3 Table). Statistical significance of the overlap with top N
DISCERN, LNS, D-score and ANOVA -scoring genes was computed by using the Fisher’s exact
test based on the hypergeometric distribution function from scipy.stats Python package [99].

Gene sets previously known to be important in cancer
We presented the results on the comparison with three sets of genes that are known to be
important in cancer (S2 Fig). Here, we describe how we obtained these gene sets. First, Mala-
cards genesets were constructed based on the data from malacards.org website accessed in Sep-
tember 2012. Second, we used a set of 488 genes we downloaded from Catalogue of Somatic
Mutations in Cancer website (CGC) [82]. For each cancer type, we considered the intersection
between this list and the genes that are present in the expression data. Finally, a set of genes
likely to contain driver mutations selected by MutSig was defined as those that pass q< 0.5
threshold based on 20141017 MutSig2.0 report from Broad Firehose.

Cross-dataset survival time prediction
To evaluate the performance of the DISCERN score on identifying genes to be used in a prog-
nosis prediction model, we trained the survival prediction model using one dataset and tested
the model on an independent dataset (Fig 4). To train the survival prediction model, we used
the elastic net regression (α = 0.5) using glmnet CRAN package (version 1.9-8). Available
clinical covariates—age for AML, and age, grade and subtype for BRC—were added as unpena-
lized covariates. Regularization parameter λ was chosen by using the built-in cross-validation
function. Testing was always performed in the independent dataset with held-out samples
from the dataset that was not used for training. For comparison, we trained the prediction
model using 22 LSC genes [54] with age in AML, and 67 genes from the 70-gene-signature [83]
(3 genes from the signature were missing in the dataset we were using) with clinical covariates
(age, stage, and subtype) in BRC, as shown in Fig 4B and 4D, respectively.

Network Perturbation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004888 May 4, 2016 21 / 30



Epigenomics analysis
The Encyclopedia of DNA Elements (ENCODE) is an international collaboration providing
transcription factor binding and histone modification data in hundreds of different cell lines
[100]. Data for ENCODE analysis were accessed through the UCSC Genome Browser data
matrix [101] and processed using the BedTools and pybedtools packages [102, 103]. Two of
the ENCODE cell lines—NB4 (an AML subtype [84]) and CD34+ (mobilized CD34 positive
hematopoietic progenitor cells)—are closest to AML and normal conditions, and the DNase-
seq data from these cell lines are available.

For each cell line, we used the DNase-seq data and the position weight matrices (PWMs) of
57 transcription factors (TFs) available in the JASPAR database [85] to find the locations of the
PWMmotifs that are on the hypersensitive regions. We identified the locations of these PWM
motifs on the hg38 assembly by using FIMO [86] (p-value�10−5). We then intersected these
motif locations with hypersensitive regions identified by the DNase-seq data for each TF. We
repeated this process to identify active binding motifs of the 57 TFs in each of the cell lines,
NB4 and CD34+.

For each TF, we identified the genes the TF differentialy binds to between cancer and nor-
mal cell lines. We assumed that a certain TF is bound near a gene if the center of the peak is in
the active enhancer regions (marked by H3K27Ac) within 15kbs of the transcription start site
(TSS) of the gene or the 5kb around the gene’s transcription start site. We show that for most
of the TFs, differentially bound genes have significantly high DISCERN scores than those not
(Fig 5A–5C).

The differential regulator score for each gene was computed by taking the number of differ-
entially bound TFs and dividing it by the total number of TFs bound to the gene in any condi-
tion. We show that the differential regulator score is highly correlated with the DISCERN score
(Fig 5D). For DNase-based analysis (Fig 5E), we defined a gene to be differentially regulated if
hypersensitive sites detected by DNase-seq are within 150bp upstream of the gene in one con-
dition and not in another.

Reactome enrichment and DISCERN filtering
A set of 605 Reactome pathways was downloaded through Broad Molecular Signature Data-
base (MSigDB) [59]. We postulate that hypersensitive sites identified by DNase-seq in a partic-
ular cell line indicate the regions where important regulatory events occur, such as
transcription factor binding. We constructed the list of differentially regulated genes by com-
paring the hypersensitive sites identified by DNase-seq data between cancer and normal cell
lines within 150bp upstream from TSS of each gene. For each pathway, we computed the fold

enrichment (¼ number of genes in the intersection of two groups of genes
number of genes in the intersection by random chance

) that measures the significance of the

overlap between genes in the pathway and the identified differentially regulated genes. We
compared the fold enrichment with when the genes in the intersection of differentially regu-
lated genes and 1,351 significantly perturbed genes identified by DISCERN were used (S6 Fig).
To reduce the noise, we only considered the pathways that had�5 genes in the overlap before
filtering. The p-values were then FDR corrected for multiple hypothesis testing. Although p-
values would measure the significance of the overlap between a gene set with a pathway, we
used the enrichment fold as a measure of the significance of the overlap because we compared
a set of genes with another set much smaller size.

Supporting Information
S1 File. Lists of genes used in various analyses in this paper, created based on Cancer Gene
Census, Malacards, TCGA mutation profiles, ENCODE epigenomic data, and survival-
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associated genes for each cancer type.
(ZIP)

S1 Fig. A scatter plot that shows the relationship between the DISCERN score (y-axis) and
the mean expression level of each gene.We show that genes with very low mean expression
levels do not tend to have high enough DISCERN score to be considered in our analysis. The
Pearson’s correlation between the mean expression before standardization and the DISCERN
score ranges from 0.08 and 0.43. Positive correlation is induced because genes with very low
mean expression tend to have lower DISCERN scores, indicating that there is probably not an
issue in terms of overly selecting genes whose expression are essentially noise. In LUAD, the
voom normalization method removes many genes with low expression. We can see that many
dots were removed between -5 and -10 for LUAD (bottom).
(TIFF)

S2 Fig. Comparison of the enrichment for survival associated genes in gene sets known to
be important in cancer and high DISCERN-scoring genes.We consider a set of genes previ-
ously known to be cancer drivers based on Cancer Gene Census (CGC) [82], genes annotated
to be associated with the disease (AML, breast cancer or lung cancer) in the gene-disease anno-
tation database Malacards [81], and genes predicted to have driver mutations identified by
MutSig [5] in the corresponding cancer type. We compare these 3 gene sets with genes with
high DISCERN scores: 1,351 genes (AML), 2,137 genes (BRC), and 3,836 (LUAD) genes whose
FDR corrected significance p-values are less than 0.05. We evaluated each method in terms of
the enrichment p-value for survival-associated genes in the following datasets: (A) AML2 con-
taining 400 CGC genes, 716 Malacards genes, and 38 MutSig genes; (B) BRC3 containing 258
CGC genes, 2160 Maracards genes, and 34 MutSig genes; and (C) LUAD containing 400 CGC
genes, 514 Malacards genes, and 238 MutSig genes.
(EPS)

S3 Fig. Epigenomic data analysis using the mobilized CD34+ cell line and NB4 cell line.
Kolmogorov-Smirnov test p-value measuring the significance of the difference in score
between genes differentially bound by the corresponding transcription factor (TF) (x-axis) and
those not differentially bound by the corresponding TF. We assume that a TF binds to a gene if
the TF has a peak within 5kbs of the transcription state site (TSS) of the gene. We performed
the one-sided test with an alternative hypothesis that differentially bound genes have higher
scores; thus high −log10(p-value) means that high-scoring genes tend to show differential bind-
ing. The TFs are divided into the 3 sets: (A) TFs that are known to be associated with leukemia,
(B) TFs that are known to be associated with cancer, and (C) TFs that are currently not known
to be associated with cancer or leukemia, based on the gene-disease annotation database Mala-
cards [81]. (D) Comparison of the p-values from the Pearson’s correlation between the score of
each gene and the proportion of differential TFs out of all TFs bound to the genes. (E) Kolmo-
gorov-Smirnov test (one-sided as above) p-value measuring the significance of the difference
in score between the genes with differential binding purely based on the DNase-seq data and
those not. Here, the differentially bound gene is defined as the gene has a DNase signal within
a 150bp window around its TSS in one condition but not in the other condition.
(EPS)

S4 Fig. Epigenomic data analysis using the GM12878 cell line and K562 cell line. Kolmogo-
rov-Smirnov test p-value measuring the significance of the difference in score between genes
differentially bound by the corresponding transcription factor (TF) (x-axis) and those not dif-
ferentially bound by the corresponding TF. We assume that a TF binds to a gene if the TF has a
peak in the active enhancer regions (marked by H3K27ac) within 15kbs of the transcription
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state site (TSS) of the gene. We performed the one-sided test with an alternative hypothesis
that differentially bound genes have higher scores; thus high −log10(p-value) means that high-
scoring genes tend to show differential binding. The TFs are divided into the 3 sets: (A) TFs
that are known to be associated with leukemia, (B) TFs that are known to be associated with
cancer, and (C) TFs that are currently not known to be associated with cancer or leukemia,
based on the gene-disease annotation database Malacards [81]. (D) Comparison of the p-values
from the Pearson’s correlation between the score of each gene and the proportion of differential
TFs out of all TFs bound to the genes. (E) Kolmogorov-Smirnov test (one-sided as above) p-
value measuring the significance of the difference in score between the genes with differential
binding purely based on the DNase-seq data and those not. Here, the differentially bound gene
is defined as the gene has a DNase signal within a 150bp window around its TSS in one condi-
tion but not in the other condition.
(EPS)

S5 Fig. Epigenomic data analysis using the GM12878 cell line and K562 cell line. Kolmogo-
rov-Smirnov test p-value measuring the significance of the difference in score between genes
differentially bound by the corresponding transcription factor (TF) (x-axis) and those not dif-
ferentially bound by the corresponding TF. We assume that a TF binds to a gene if the TF has a
peak within 5kbs around the transcription state site (TSS) of the gene. We performed the one-
sided test with an alternative hypothesis that differentially bound genes have higher scores;
thus high −log10(p-value) means that high-scoring genes tend to show differential binding. The
TFs are divided into the 3 sets: (A) TFs that are known to be associated with leukemia, (B) TFs
that are known to be associated with cancer, and (C) TFs that are currently not known to be
associated with cancer or leukemia, based on the gene-disease annotation database Malacards
[81]. (D) Comparison of the p-values from the Pearson’s correlation between the score of each
gene and the proportion of differential TFs out of all TFs bound to the genes. (E) Kolmogorov-
Smirnov test (one-sided as above) p-value measuring the significance of the difference in score
between the genes with differential binding purely based on the DNase-seq data and those not.
Here, the differentially bound gene is defined as the gene has a DNase signal within a 150bp
window around its TSS in one condition but not in the other condition.
(EPS)

S6 Fig. Integrative analysis of differential binding using DNase-seq data and high DIS-
CERN-scoring genes improves the enrichment of known pathways.We compared the fold
enrichment of Reactome pathways between 3,394 differentially regulated genes (x-axis) and
339 differentially regulated DISCERN genes (y-axis). We considered 33 Reactome pathways,
which is a subset of 605 pathways that has�5 genes.
(EPS)

S1 Table. The 3,545 candidate regulators used as potential features for the gene regulation
model for each gene.
(TXT)

S2 Table. Lists of genes with significant DISCERN scores: 1,351 genes (AML), 2,137 genes
(BRC), and 3,836 (LUAD) genes whose FDR corrected significance p-values are less than
0.05.
(CSV)

S3 Table. Survival p-values computed in AML2 and LUAD1. Genes that had a p-value from
the Cox proportional hazards model (computed using survival R package) smaller than 0.01
were considered significantly associated with survival. These include 1,280 genes (AML), and
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1,273 genes (LUAD). The BRC2 data are not publicly available.
(CSV)

S4 Table. Lists of genes differentially bound by STAT3 in NB4 and CD34+ cell lines.
(CSV)
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