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Prediction of Protein�compound Binding Energies from
Known Activity Data: Docking-score-based Method and its
Applications
Yoshifumi Fukunishi,*[a] Yasunobu Yamashita,[b] Tadaaki Mashimo,[b, c] and Haruki Nakamura[d]

Abstract: We used protein�compound docking simulations
to develop a structure-based quantitative structure�activity
relationship (QSAR) model. The prediction model used
docking scores as descriptors. The binding free energy was
approximated by a weighted average of docking scores for
multiple proteins. This approximation was based on a
pharmacophore model of receptor pockets and com-
pounds. The weights of the docking scores were restricted
to small values to avoid unrealistic weights by a regulariza-
tion term. Additional outlier elimination improved the
results. We applied this method to two groups of targets.
The first target was the kinase family. The cross-validation
results of 107 kinase proteins showed that the RMSE of

predicted binding free energies was 1.1 kcal/mol. The
second target was the matrix metalloproteinase (MMP)
family, which has been difficult for docking programs. MMPs
require metal-binding groups in their inhibitor structures in
many cases. A quantum effect contributes to the
metal�ligand interaction. Despite this difficulty, the present
method worked well for the MMPs. This method showed
that the RMSE of predicted binding free energies was
1.1 kcal/mol. In comparison, with the original docking
method the RMSE was 1.7 kcal/mol. The results suggest that
the present QSAR model should be applied to general
target proteins.

Keywords: Binding free energy · ChEMBL · Docking score · Protein�compound docking

1 Introduction

The quantitative structure�activity relationship (QSAR) ap-
proach is a useful tool for optimizing leads and predicting
target/off-target activities and toxicity. QSAR-based affinity
predictions are useful for the general drug development
process, including the repositioning (repurposing) of al-
ready approved drugs, poly-pharmacology, and the predic-
tion of drug�drug interactions.[1–15] The recent accumulation
of protein�compound affinity data in public repositories,
such as the PubChem and ChEMBL projects, has enabled us
to carry out proteome-wide target/off-target predic-
tions.[16,17] These predictions are based on QSAR models for
multiple proteins, just as in conventional computer-aided
drug design and virtual screening.

Wide application of QSAR-based models in computer-
aided drug development, such as protein�compound bind-
ing free energy (affinity) prediction, target/off-target pre-
dictions, and counter screening based on QSAR models, has
succeeded in many studies, including ours.[3,4,7,8] Most QSAR
models rely on descriptors with sets of two-dimensional
(2D) substructures; the most popular such descriptors are
MDL’s MACCS key and 0-3D molecular descriptors (e.g.,
5,270 descriptors recorded in Dragon (Kode srl, Pisa, Italy)).
In our previous studies, we developed QSAR methods for
the affinity prediction of a compound by using docking
studies against multiple proteins.[17–19] We used a
protein�compound affinity matrix as the set of descriptors

and applied principal component regression (PCR).[18] The
Q2 value of calculated binding free energies was 0.44 and
the RMSE was 1.54 kcal/mol for about 97 kinases and 18,491
compounds selected from the ChEMBL database. However,
the coefficients of the regression equations for some targets
were unrealistically (103–105) higher than those for other
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targets. Either these coefficients should be restricted to a
range of realistic values, or the applicability domain should
be very restricted around the known experimental data.

In the present study, we applied a combination of the
ridge (Tikhonov regularization) regression, robust estima-
tion, and principal component analysis to the
protein�compound affinity matrix.[19-21] The robust estima-
tion was expected to reduce the problem of error in the
experimental data. The present method restricted the
coefficients of the generated prediction equation around
realistic values. The method was applied to the kinases and
the matrix metalloproteinases (MMPs) of the ChEMBL data-
base.[22–24]

MMPs, which have zinc ions in the reaction pockets,
require metal-binding groups in their inhibitor structures in
many cases.[25] The metal�ligand interaction shows quan-
tum effects such as electron donation and back donation,
that form a weak covalent bond, in addition to the
electrostatic and van der Waals interactions.[26–36] The
quantum effect makes it difficult to estimate binding
energy. A method to evaluate metal interaction has long
been sought. In the framework of the classical force field,
several methods have represented metal interactions. One
is to add a metal contact term such as the van der
Waals�type potential and the potential considering the
coordination number of the central metal ion.[27–31] The
other method is to modify the parameters of the atomic
charge and the van der Waals potential of the original force
field.[32–34] The metal parameters depend on the environ-
ments of the metal atom, so the user should tune the
parameters for each protein.[35,36] The metal contact terms
enable the user to reproduce protein�ligand complex
structures and the absolute value of the binding energy.
However, protein-dependent parameter tuning has been a
time-consuming process, especially when the user analyzes
multiple target proteins.

In addition, we evaluated the effect of the elimination of
outlier data points from these multiple data points corre-
sponding to each single protein�compound pair, and we
improved the present regression model. The method, which
we call the “docking-score-based QSAR model”, predicted
the protein�compound binding affinities of 107 kinases
that have no metals in their pocket, and those of 5 MMPs
(MMP2, MMP3, MMP7, MMP9, and MMP13) that have a zinc
ion in each pocket. The docking-score QSAR method
worked for these various targets. Namely, the RMSE values
were ~1 kcal/mol, respectively.

2 Materials and Methods

2.1 Background of Prediction Models

In the present study, we develop a binding-energy (affinity)
prediction method based on the protein�compound dock-

ing scores obtained by a docking program; the present
method is a modified version of our QSAR method.[18]

In our present and previous QSAR models, the affinity of
compounds can be estimated by using a pharmacophore
model of the target protein. The IUPAC guidelines define a
pharmacophore as “an ensemble of steric and electronic
features that is necessary to ensure the optimal
supramolecular interactions with a specific biological target
and to trigger (or block) its biological response”.[37] Hydro-
gen donors, hydrogen acceptors, hydrophobic groups of
ligands and receptors are called “pharmacophore features”
and the functional groups can give these features.[38] These
features are usually depicted as spheres connected by lines
those lengths represent the spatial distances among these
features of the ligands and receptors. In the present study,
we temporarily define a pharmacophore as a set of spatially
distributed pharmacophore features. Each pharmacophore
feature represents the probability of existence of a hydro-
gen-bond donor, a hydrogen-bond acceptor, and both
electrostatic and hydrophobic interaction sites. Both recep-
tors and ligands have pharmacophores. We approximate
that the receptor�ligand binding energy is given by the
sum of interactions between the pairs of the ligand
pharmacophore (fl) and the receptor pharmacophore (fr).
Here, we introduce a function for the interaction k and let
k(fr, fl) be an interaction value between the two pharmaco-
phores.

Because we discuss only the interaction, we do not need
to explicitly represent fs, but rather we need only the value
of the function k(fr, fl) for the interaction. Our final DG-
estimation equation does not include fs explicitly but
consists of docking scores. In this framework, the interaction
between the receptor and ligand pharmacophores gives
the binding energy of the pharmacophore l in a ligand to
the pharmacophore r in a protein, DGl

r, as

DGr
l ¼ gr

l kð�r; �lÞ ð1Þ

where gl
r is a parameter.

We try to generalize this discussion by introducing a
linear combination of a basic pharmacophore. Suppose F

(= {f1, f2, f3, …..}) is a set of all pharmacophores. The f
functions form the basis set of the pharmacophores of any
kind of ligand or receptor. Each pharmacophore (fi) does
not have to be found in an actual protein structures. In this
discussion, pharmacophores work as descriptors of both
protein and compound. The pharmacophores are used only
to derive a regression model, and we do not calculate them
explicitly. And the total number of pharmacophores could
be infinite in the present discussion. We suppose that the
binding energy of the i-th compound and the r-th
pharmacophore in a protein is

DGr
i ¼

X

l2i

gr
l kð�r; �lÞ ¼

X

l2i

DGr
l ; ð2Þ
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Then the protein�compound binding energy (DGi
a)

between the a-th protein and the i-th compound is given
by the following linear combination of binding energies to
pharmacophores {fm; m = 1, 2, 3,…}, where wr

a are the
scaler coefficients (see Figure 1).

DGa
i ¼

X

r2a

wa
r k

X

l2i

gr
l kð�r; �lÞ

 !
¼
X

r2a

wa
r DGr

i ð3Þ

Various protein pockets correspond to the various
pharmacophores, and they work as probes for a given
compound instead of f in eqs. 2 and 3. Thus the binding
free energy can be estimated by the regression based on
the docking scores for the various protein structures. This is
a simplified model, since it does not include the intra-
molecular interaction or the conformational entropy of the
compound.

Figure 2 shows the procedure of the present QSAR
method. This method requires a learning set of 3D
structures of compounds, the binding energy data between
those compounds, and target proteins. We assume that
protein�ligand docking programs give DGi

a. We proposed
an approximation, as follows.[18]

DGa
i �

X

b

Ra
b � sb

i þ ba
ð4Þ

Here, si
b, Rb

a, and ba are the docking score of the i-th
compound to the b-th protein, the weight parameter, and
the parameter for fitting, respectively. The set of {b} can
include the target protein (the a-th protein). Equation 4
showed the RMSE of predicted binding energies was
1.5 kcal/mol.[18] One of the most serious problems with
QSAR models is, in general, the limited range of applicability
domains, since these models cannot work for input data
that is too different from the training data set.[39] Since
docking scores have been developed to mimic binding free
energy, we assume that a docking score is equal to the
binding free energy, DGi

a = si
a, Ra

a = 1, ba = 0, and Rb
a = 0 for

a¼6 b in eq. 4. In this case, eq. 4 can work without any
experimental affinity data, and the problem of identifying
an applicability domain is avoided.

Eq. 4 gives a linear regression model whose descriptors
are docking scores, and the number of parameters is equal
to the number of proteins.

In the previous[18] and present models, the protein (a) –
compound (i) binding energy DGi

a is approximated by the
PCR method based on the protein�compound docking
scores {si

b}. The optimal principal component (PC) axis was
selected to maximize the correlation coefficient by the

Figure 1. Schematic representation of the pharmacophore expan-
sion of a ligand-binding site of a protein. The interaction between
the ligand and protein pharmacophores gives the binding energy.
a: Example of pharmacophore of the ligand pharmacophore. The
dotted circles represent the pharmacophore features. b: Example of
pharmacophores. HH, HA, and HD indicate hydrophobic, hydrogen-
bond acceptor, and hydrogen-bond donor sites, shown by open,
grey and black circles, respectively. Only three pharmacophores (f1,
f2, and f3) are depicted. The lines represent the specific distances
between pharmacophore features of each pharmacophore. c:
Example of pharmacophore expansion of the receptor pharmaco-
phore following eqs. 2 and 3.

Figure 2. Schematic representation of the docking-score QSAR
method. a: The table represents a protein�compound docking
score matrix. In the table, the values are depicted in grayscale. b:
The PC analysis projects the score vector (column vector) of each
compound into a point in the PC space. In the PC analysis, each dot
represents a compound. The red, green, and blue dots represent
the strong, medium, and weak affinity compounds, respectively. In
this example, the first and second principal component axes (PC1
and PC2) are not useful to describe the affinity difference. c: The
factor rotation method selected the representative axes (PC-M and
PC-N) from the total Np axes. PC-N and PC-M describe the affinity
difference clearly. d: Finally, the regression model is constructed by
using PC-N and PC-M.
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leave-one-out (LOO) cross-validation test. The PC axes are
selected by factor rotation (see Figure 2). The factor rotation
method selects the axes that show major contributions in
the PC analysis among the total axes. We rewrote eq. 4, as
follows.

DGa
i ¼

XNaxis

j¼1

ca
j � pj

i þ ba ð5Þ

pj
i ¼
XNp

b¼1

dj
b � sb

i � sb
� �

: ð6Þ

Here, cj
a, ba, p, and db

j are the parameter, offset
parameter, principal component vector, and loading vector,
respectively. The total number of optimal PC axes is Naxis.
The upper bar represents an average. The PC axis of the
protein�compound docking-score matrix s gives the load-
ing vector d and the principal component vector (axis) p.
The parameters c and b are determined by multilinear
regression (MLR).

Naxis and Np are the number of selected axes by the
factor rotation and the total number of proteins used in the
docking study as the compound descriptors, respectively.
Here, Naxis (Naxis<Np) is determined to maximize the
correlation coefficient obtained by the LOO cross-valida-
tions. The parameters are determined based on the learning
set and then are used for prediction.

To calculate the protein�compound docking scores si
b,

we used our own program, Sievgene,[40,41] a protein�ligand
flexible docking program for in silico drug screening.
Sievgene is a part of the myPresto system, which is available
online (http://presto.protein.osaka-u.ac.jp/myPresto4/) and
is free for academic use.

2.2 New Prediction Model with Restricted Regression
Method

In the present study, we introduced a regularization term
and robust estimation into the previously developed QSAR
model based on docking scores using eqs. 5–6. In eq. 5, the
coefficients cj

a and b were determined by the multiple linear
regression in our previous study.[18] In some cases, cj

a was
unrealistically large (103–105). The value should be 0 or 1
when the target protein structure is used in the docking
calculation (we call this cj

a value “ideal value”), and the
docking score is equal to the binding energy. We would like
to restrain cj

a to around this values. In the present study, the
coefficients were determined by minimizing the objective
function by introducing the regularization term. Let Objf (a)
be the objective function for the a-th target protein for the
determined parameters c and b.

Obif ðaÞ ¼
XNcmp

i¼1

DGa
expi
�

XNaxis

j¼1

ca
j � pj

i þ ba

 ! !2

þl
XNaxis

j¼1

ca
j � ca

idealj

� �2

ð7Þ

Here, cideal j
a is the ideal value of cj

a, and ba and l are
parameters. Ncmp is the total number of compounds. cideal j

a

is unknown. DGexp represents the experimental DG value.
The last term restrains cj

a to around the ideal values.
Equation 7 is a generalized version of the Tikhonov
regularization.[19–21] To estimate the l value, we considered
the following things. Since eq. 4 suggest that ci

a =DGi
a

under the ideal conditions (DGi
a = si

a, Ra
a = 1, ba = 0, and

Rb
a = 0 for a¼6 b, discussed in section 2.1) and that {cj

a}
values should correspond to DG values. The larger the l

value is, the smaller the { jcj
a j} values are. In general, most j

DG j <18 kcal/mol. In the present study, l was set to 0,
00001, 0.0002,.., 0.01, to satisfy { jcj

a j}<18 kcal/mol. Also,
cideal j

a was set to 0, since the protein set providing the
docking scores does not include the target protein
structures in the present study.

In addition, we apply the maximum-likelihood-like
estimation (M estimation), a robust estimation method.[42]

The M estimation method weights the difference between a
calculated value and an experimental value considering the
predicted experimental error. The M estimation version of
our objective function is given as follows:

Obif ðaÞ ¼
XNcmp

i¼1

w di
a

� �
DGa

expi
�

XNaxis

j¼1

ca
j � pj

i þ ba

 ! !2

þl
XNaxis

j¼1

ca2

j

ð8Þ

where

wðdÞ ¼
1� d

W

� �2� �2

dj j � W

0 dj j > W

8
><

>:
ð9Þ

and

d ¼
XNcmp

i¼1

DGa
expi
�

XNaxis

j¼1

ca
j � pj

i þ ba

 !
ð10Þ

Here, W and d are the upper limit of allowed error and a
scalar value, respectively. The d value is the difference
between the experimental value and the fitted value. The
parameters c and b are determined to minimize the
objective function. The derivation of eq. 8 is not linear, and
we solve eqs. 8–10 by an iterative procedure. The M
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estimation method places a higher weight on likely reliable
data than unreliable data. W = 0, 5, 10, 15,…, 100 were
examined in the present study. We call this model (eq. 8)
the “docking score QSAR model”.

2.3 Generation of the Docking-score Index by
Protein�compound Docking

The protein�compound docking scores si
b were calculated by

the protein�compound docking program Sievgene.[40] This
ligand-flexible program reconstructed about 50% of the
receptor�compound complexes in PDB (132 in total) with an
accuracy of less than 2 Å root mean square deviation (RMSD)
in a self-docking test.[40] The computational setup in the
present study was exactly the same as that in the previous
study. Namely, Sievgene generated up to 100 conformers for
each compound, and 200 3 200 3 200 grid potentials were
adapted for all proteins. The pocket regions were suggested
by the coordinates of the original ligands in the
receptor�compound complex structures, and each edge
length of the grid was about 35–45 Å. The docking-scoring
function is based on the physical chemistry (accessible surface
area, van der Waals potential, and electrostatic potential). The
estimated error in binding free energy is almost 2.5 kcal/
mol.[42] It takes 1 second to dock one compound against one
protein on a single core of a Xeon 5570 CPU (2.98 GHz).

2.4 Probe Protein Sets

To generate {si
b} in eqs. 5–8, we performed a protein–

compound docking simulation based on the soluble protein
structures registered in the Protein Data Bank (PDB). The
probe protein set consisted of 600 arbitrarily selected
protein structures, as in our previous study (see APPENDIX
A in Supporting Information). All of these structures were
protein�ligand complexes. The protein set did not include
the present target proteins. For protein sets, the complexes
containing a covalent bond between the protein and ligand
were removed, and all missing hydrogen atoms were added
to form all-atom models of the proteins. All water molecules
and cofactors were removed from the protein structures. All
Asp and Glu were prepared as negatively charged forms,
while Lys and Arg were prepared as positively charged
forms. The atomic charges of the proteins were the same as
those in AMBER parm99.[43] The docking pocket of each
protein was indicated by the coordinates of the original
ligand.

2.5 Training Set: Target Proteins and Compounds

To compare the present and previous results, the com-
pounds and their assay information (compound structures,
affinities against kinases) were downloaded from the Kinase

SARfari website (https://www.ebi.ac.uk/chembl/sarfari/kina-
sesarfari/downloads) in the ChEMBL database, as in our
previous work.[18] Note that the ChEMBL main page does
not link to the KinaseSARfari website directly. The biochem-
ical assay data, namely, Ki, IC50, %residual activity, and/or
%inhibition values of human kinase protein-inhibitor sys-
tems, were also extracted from the bioactivity table in
KinaseSARfari, and these data were converted to binding
free energy by the software package used in our previous
report.[18] The biochemical assay data were translated into
the binding free energy by the Cheng�Prusoff equation and
others.[14,44]. We assumed that the experimental conditions
were the same in all the assays. The procedure is described
in details in APPENDIX B in the Supporting Information.

The first target was the kinase family. As target proteins,
107 kinases were selected. The 3D structures of the
compounds were energy-optimized by cosgene[32] with the
general AMBER force field (GAFF),[45] and the atomic charges
were calculated by the MOPAC AM1 model using the Hgene
program of the myPresto suite. Each functional group in all
molecules was set to the dominant ionic form at pH 7.
Finally, the filter condition reduced the number of data
points used, and 45,663 assay data points of 107 kinases
were derived.

The second target was the MMP family. We selected
MMP2, MMP3, MMP7, MMP9, and MMP13. The protein
structures were extracted from the PDB. The PDB IDs were
1hov, 2y6d, 4g9l, 5b5o, and 5cuh for MMP2, MMP3, MMP7,
MMP9, and MMP13, respectively.[46–50] The protein structures
were prepared in the same manner as the kinases. The zinc
atom charges of these MMPs were set to + 2, which is the
formal charge of the most stable singlet zinc ion. As
mentioned in the previous works, the actual charges were
smaller than the formal charge and the charge values
should differ from each other depending on the pocket
structures. The protein�compound interaction data were
extracted from the ChEMBL database. The compound
structures and the DG values were prepared in the same
manner as the kinases.

2.6 Definitions of Q2 and RMSE

The definition of Q2 and root-mean-square error (RMSE) are
determined as follows.

Q2 ¼ 1�

PNcmp

i¼1

DGpredi
� DGexpi

� �2

PNcmp

i¼1

DGexpi
� DGexpi

� �2

ð11Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNcmp

i¼1

DGpredi
� DGexpi

� �2

Ncmp

vuuut ð12Þ
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Here, DGpred, DGexp, and the upper bar represent the
predicted in validation and experimental DG values and the
average, respectively. In the present study, we do not
compare the Q2 values of kinases to that of MMPs, since the
variances of the experimental data were different to each
other.[51]

3 Results and Discussion

3.1 Cross-validation Tests of the Docking-score QSAR
Model

Each of the compounds that gave assay data for one or
more of the 107 target proteins was docked to all proteins
of a protein set to generate the protein�compound
docking-score matrix s. Then we adopted eq. 8 with
changes to l and W values and the LOO cross-validation
test to calculate the Q2. In addition, we applied the 4-fold
cross validation test in all kinase cases to verify the results.

Table 1 summarizes the RMSE and Q2 values of DGs
calculated by the docking-score QSAR model with changes
to the l value in eq. 8 without the M estimation. The Q2 and
RMSE depended on l, and l= 0.0001 showed the best Q2

and RMSE. These values did not change appreciably when l

was >0.00001 and <0.005. The regularization term worked
well, and l was set to around 0.0001–0.005 in the following
calculations. In the present study, our regression model did
not use the docking scores for the target proteins and
instead used the 600 probe proteins. Indeed, we found the
coefficient Rb

a values reasonably low. Namely, the maximum
and minimum values of Rb

a were 3.9 and �3.8, respectively,
and the average and standard deviations of Rb

a were 0.01
and 0.1, respectively.

In eq. 8, the estimated error d was unknown a priori. The
d value was estimated by an iterative solution method.
Starting from d = 0, the new d value was estimated by using
the previous d value. The iteration converged within 4–6
steps in all cases. Tables 2 and 3 summarize the Q2, and
RMSE of calculated DGs obtained by the docking-score
QSAR model with changes to the W value in eq. 9. The data

in Tables 2 and 3 were obtained by the LOO and 4-fold cross
validation tests, respectively. The Q2 and RMSE values were
improved when 20 kcal/mol<W<100 kcal/mol in many
cases compared to the result by eq. 7 (W value is “�“ in
Tables 2 and 3) and the prediction with W = 5 kcal/mol gave
the worst Q2 and RMSE values (Figure S1). The Q2 and RMSE
values depended on W weakly, and the results with W>
20 kcal/mol were almost equal to each other. The M
estimation improved the results slightly.

Equation 8 with l= 0.0002 and W = 20 kcal/mol in the
LOO cross validation and that with l= 0.005 and W =
20 kcal/mol in the 4-fold cross validation gave the best Q2

and RMSE values. Figure 3 shows the results of the LOO
cross-validation test with l= 0.0002 and W = 20 kcal/mol for
all 107 kinases. The average error reached 1.08 kcal/mol and
Q2 = 0.70 in the binding free energy. Some of the datasets
showed very high accuracy, considering that the thermal
fluctuation was about 0.6 kcal/mol at room temperature
(Table S1). The results of the 4-fold cross-validation test with
l= 0.005 and W = 20 kcal/mol for all 107 kinases showed
qualitatively the same trends as those in Figure 3 (Table S2).
The W value was originally in the acceptable error range,
and the regression/analysis ignored the data points with
the estimation error (d)>W. The optimal W value was much
bigger than the standard deviation of DG values that are
multiply observed for each target protein�compound pair

Table 1. Average Q2 and RMSE values obtained by the LOO cross
validations of the docking-score QSAR model with various l and
W = 0 for all 107 proteins.

l Q2 RMSE
(kcal/mol)

l Q2 RMSE
(kcal/mol)

0 0.423 1.544 0.0005 0.704 1.074
0.00001 0.702 1.087 0.001 0.702 1.076
0.00002 0.703 1.081 0.002 0.687 1.089
0.00005 0.704 1.077 0.005 0.680 1.101
0.0001 0.705 1.074 0.01 0.669 1.122
0.0002 0.704 1.075 0.1 0.392 1.627

Table 2. Average Q2 and RMSE values obtained by the LOO cross
validations of the docking-score QSAR model with various W for all
107 proteins.

W (kcal/mol) l= 0.0001 l= 0.0002
Q2 RMSE

(kcal/mol)
Q2 RMSE

(kcal/mol)

– 0.702 1.087 0.704 1.075
5 0.622 1.27 0.623 1.268
10 0.698 1.099 0.698 1.097
15 0.704 1.077 0.704 1.078
20 0.704 1.076 0.704 1.075
50 0.705 1.074 0.705 1.074
100 0.704 1.076 0.705 1.074

Table 3. Average Q2 and RMSE values obtained by the 4-fold cross
validations of the docking-score QSAR model with various W for all
107 proteins.

W (kcal/mol) l= 0.002 l= 0.005
Q2 RMSE

(kcal/mol)
Q2 RMSE

(kcal/mol)

– 0.629 1.236 0.629 1.225
5 0.577 1.345 0.579 1.334
10 0.627 1.240 0.627 1.230
15 0.629 1.235 0.629 1.225
20 0.628 1.236 0.629 1.224
50 0.628 1.236 0.629 1.224
100 0.629 1.235 0.629 1.224
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(see section 3.2), meaning that the regression used all the
data points with almost equal weight.

3.2 Effect of Elimination of Outliers from the
Experimental Data

There are multiple experimental affinity data for some single
protein�compound pairs in the database. This is because
the experimental data depend on the experimental con-
ditions such as pH, temperature, density of buffer salt, and
cell line, and then the unique protein�compound pairs in
the database correspond to these different experimental
affinity data points under different experimental conditions.
Some kinases are anti-cancer drug targets, and the amino-
acid mutation of kinases causes drug resistance. The data-
base includes such kinase data, and these mutants with
different affinities share unique protein IDs in the database.

In this case, a drug-resistant protein should show weaker
binding affinity to the same compound than to a native
protein. The enzyme activity could depend on the effector
protein in the protein�protein interaction network. In this
case, the observed enzyme activity depends on the
experimental environment, such as whether it is in vivo or in
vitro. Also, the protein activities depend on the temper-
ature, pH, and density of the salt of the buffer solvent.
These conditions are not shown in the ChEMBL database
clearly.

The average standard deviation of the Log10Ki affinity
data was about 0.24 kcal/mol, that of Log10IC50 was about
0.44 kcal/mol, and that of Log10 (%-inhibition or %-residual

activity) was 0.093 kcal/mol. When all the experimental data
were translated to DG, the average deviation of the binding
affinity was about 0.73 kcal/mol (Table S3).

We examine the effect of eliminating outliers among
multiple data on the prediction result. When multiple
affinity data correspond to a single pair of a protein ID and
a compound ID, we eliminate outliers among the multiple
data. Let the number of multiple data points for the a-th
protein and the i-th compound be Ma

i and the k-th affinity
value be Ea

i(k). We define Ea
i(k) as an outlier of the data set

when Ea
i(k) satisfies the following relationship.

Ei
aðkÞ � DGi

a

�� �� > N � si
a ð13Þ

si
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PMi

a

m¼1

Ei
aðmÞ � DGi

a

� �2

Mi
a � 1

vuuut ð14Þ

where DGa
i is the average value of a set of Ea

i (m), m = {1,..,
Ma

i}, and sa
i is the deviation of the data. Equation 14 defines

the k-th compound as an outlier when the k-th compound
satisfies this condition. In the present study, we removed
outliers from all experimental data trying N = 0.2, 0.4, 0.5,
0.6, 0.8, 1, 2, and 3 before the following cross-validation
tests.

Table 4 summarizes the cross-validation results for N =
0.2, 0.4, 0.5, 0.6, 0.8, 1, 2, and 3. In Table 4, the regression
models used were eq. 8 with l= 0.0002 (LOO cross
validation) and l= 0.005 (4-fold cross validation), respec-
tively. In both tables, W = 20 kcal/mol. In all cases, the
elimination of outliers in the test data set improved the
prediction results with decreasing N. Elimination of outliers
worked well when N s was set to N<0.8. Figure 4 shows
the result of the 4-fold cross-validation test for all 107
kinases. The result by the LOO cross validation was similar
to Figure 4. Some of the data points are located vertically at
�4 kcal/mol. These data points correspond to 0% inhib-
itions or 100% residual activities. Except for these data
points, the predicted data points clearly correlate to the
experimental data. Also, we examined the 4-fold cross
validation case with l= 0.002, and the result was close to
that summarized in Table 5 (Table S4).

When N = 0.2, 0.5, 0.8, and 1.0, eqs. 13–14 eliminated
23%, 21%, 17%, and 4% of the data, respectively, out of the
total of 45,663 data points. Since the standard deviation of
the experimental DG values was 0.7 kcal/mol, the results of
RMSE<0.7 kcal/mol should be the accurately predicted
cases. The outlier elimination increased the accurately
predicted cases (RMSE<0.7 kcal/mol) from 20 to 42 cases
out of the 107 targets in the LOO cross validation.

We selected 24 targets arbitrarily from the total of 107
kinases examined above (Table S1) and analyzed the
individual results carefully. For these targets, 12 protein
structures were available in the PDB (Table S5). These
protein coordinates were prepared in the same manner as

Figure 3. Correlation between the experimental and prediction
data for all 107 kinase proteins obtained by the docking-score
QSAR model with l= 0.0002 and W = 20 kcal/mol. The dots
represent the predicted data points by the LOO cross-validation
test.
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described in sections 2.3 and 2.4. We applied the docking-
score QSAR method (l= 0.005, W = 20 kcal/mol, N = 0.8, 4-
fold cross validation) and the naı̈ve docking. In each
individual target, the docking-score QSAR result was better
than that by the naı̈ve docking study (Figure S2). Namely,
the average RMSE values by the naı̈ve docking and the
docking-score QSAR were 1.6 and 1.2 kcal/mol, respectively.
The average Q2 values were 0.11 and 0.65 for the naı̈ve
docking and the docking-score QSAR method, respectively
(Table S5).

In some cases, the outlier elimination did not work and
the prediction accuracy remained low. The data sets with
more than 1000 data points showed particularly low
accuracy, such as the sets for cyclin-dependent kinase 2,
epidermal growth factor receptor erbB1, tyrosine-protein
kinase SRC, vascular endothelial growth factor receptor 2,
and MAP kinase p38 alpha. The reason for this was unclear.
When a target protein has multiple ligand binding sites,
such as orthosteric and allosteric sites, the linear regression
model is not suitable. In this case, nonlinear regression,
such as logistic regression and neural networks, may solve
the problem. But the present model is based on eqs. 2–4.
When the target protein structure gave the docking score
without computational error, then DGi

a = si
a. The nonlinear

regression must satisfy this simple condition. This problem
is somewhat troublesome. We will examine it in the future.

The ChEMBL database did not provide details on the
experimental conditions (density of native ligand, temper-
ature, etc.). The DG values should be precise by using the
actual experimental information. But this method requires
natural language analysis, which is an expensive approach.
One possible improvement of the present method might be
batch effect correction.[52] That is, we could determine some
optimal artificial values as the experimental parameters,
such as the densities of ligands and substrates, in order to
minimize the prediction error. In this approach, first the
present method generates a prediction model based on the
experimental data with the standard experimental values,
then the batch-effect correction method would optimize
the experimental parameters of each batch to minimize the
computational error of the set of data points of the batch.

The outlier elimination improved accuracy more than
the M-estimation did. This gap might be attributable to the
fact that the standard deviations of DG values differ from
each other among the different targets and different
compound sets, while the W value is consistent throughout
all the data. This difference could be the reason why the
outlier elimination improved the results better than the M
estimation.

3.3 Application to MMPs

We studied MMP2, MMP3, MMP7, MMP9, and MMP13 by
the docking-score QSAR method and the naı̈ve
protein�compound docking simulations. We applied the

Table 4. Average Q2 and RMSE values obtained by the LOO cross
validation (W = 20 kcal/mol and l= 0.0002) and 4-fold cross
validation (W = 20 kcal/mol and l= 0.005) tests of the docking-score
QSAR model with various N for all 107 proteins.

Ns Total no. of
compounds

LOO cross validation 4-fold cross
validation

Q2 RMSE
(kcal/mol)

Q2 RMSE
(kcal/mol)

0.2s 35050 0.762 0.919 0.678 1.132
0.4s 35736 0.763 0.913 0.680 1.134
0.5s 36249 0.763 0.915 0.679 1.133
0.6s 36804 0.758 0.918 0.678 1.136
0.8s 38124 0.760 0.913 0.685 1.117
s 44063 0.704 1.052 0.645 1.192
2s 45549 0.694 1.079 0.631 1.220
3s 45650 0.693 1.084 0.631 1.223

Figure 4. Correlation between experimental and prediction data for
all 107 kinase proteins obtained by the docking-score QSAR model
eliminating outliers with l= 0.005, W = 20 kcal/mol, and N = 0.8.
The dots represent the predicted data points by the 4-fold cross-
validation test.

Table 5. Q2 and RMSE data obtained by the Sievgene docking
program and the LOO cross validation tests of the docking-score
QSAR model over all MMPs.

Protein No of
ligands

Na�ve docking Docking-score QSAR
Q2 RMSE

(kcal/mol)
Q2 RMSE

(kcal/mol)

MMP-2 489 0.004 1.81 0.774 1.23
MMP-3 369 0.029 2.50 0.672 1.48
MMP-7 98 0.058 0.99 0.922 0.46
MMP-9 445 0.048 1.82 0.64 1.61
MMP-13 148 0.044 1.34 0.903 0.62
Average 309.8 0.037 1.692 0.782 1.08
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naı̈ve protein�ligand docking calculation by Sievgene.[40]

Figure 5A shows the correlation between the experimental
and the calculated protein�compound binding free ener-
gies of MMP2 by Sievgene. The averaged values of the Q2

and RMSE were 0.037 and 1.692 kcal/mol, respectively.
Table 5 summarizes the total number of ligands as well as
the Q2 and RMSE values of MMPs by naı̈ve docking. The
accuracy was poor and the results did not show any
experimental trends, since the Sievgene docking program
does not have a metal-contact term to support the metal
ions.

Next, we applied the docking-score QSAR method to the
same data sets. We applied the LOO cross-validation test to
the MMPs. Figure 5B shows the correlation between the
experimental and calculated protein�compound binding
free energies of MMP2 by eq. 8. The Q2 and RMSE values by
the LOO cross-validation test were 0.88 and 1.08 kcal/mol,
respectively. The RMSE values by the docking-score QSAR
method were much better than those by the naive docking,
while both methods used the same docking program
(Table 5).

We checked the individual correlation results. The results
obtained by the docking-score QSAR method were much
better than those by the naı̈ve docking in many cases. The
overall trends of the results were the same as those in the
kinase cases (Figure S3). Namely, the average RMSE value by
the naı̈ve docking studies was 1.7 kcal/mol. These values
were close to the deviation of the experimental DG values.
On the other hand, the docking-score QSAR showed an
average RMSE of 1.1 kcal/mol and a better Q2.

The docking-score QSAR method used only the Siev-
gene docking scores and was exactly the same program
used in the above naı̈ve docking study without any
parameter tuning for the quantum mechanical interaction
between the metal and the ligand. The docking-score QSAR
method should take into account the quantum mechanical

interaction implicitly to improve the prediction results. The
RMSE values were similar to those given in Section 3.2.

The docking-score QSAR method was based on the
docking program without consideration of the quantum
effect between the metal atom and the ligands, but it
improved the RMSE by 0.6 kcal/mol, the same as in the
kinase cases. Thus, the present method predicted DG values
with an RMSE of 1 kcal/mol even for the difficult targets like
the MMPs, and it could be applied to general target
proteins.

The force-field parameters for the metal�ligand inter-
action are generally poor, because such interactions should
include quantum effects, which depend on the environ-
ment. Consequently, the naı̈ve docking simulations could
not provide good scores for the MMP systems. The current
docking-score QSAR model is based on a docking score that
does not include a quantum effect, but this QSAR model is
a completely different approach from that of the naive
docking study. The machine learning procedures provided
smaller RMSE value than the naive docking study.

4 Conclusions

We developed a docking-score QSAR model based on
combinations of multiple docking scores from protein�drug
docking simulations, and applied this model to 107 kinase
proteins from the ChEMBL public database. The prediction
model employed a descriptor-based weighted PCR with a
regularization term and robust estimation (M estimation)
methods in order to realize more realistic prediction than
that by the ordinal multilinear regression model. The
compound descriptor was a set of docking scores against
many nontarget proteins. The LOO and 4-fold cross-
validation tests showed that the addition of the regulariza-
tion term improved the RMSE from 1.5 kcal/mol to 1.1 kcal/
mol. In addition, the data preparation with outlier elimina-
tion worked to improve the results. We also applied the
present method to MMPs that were difficult targets because
of the quantum mechanical interaction. The present
method improved the RMSE values for the MMPs without
any manual parameter tuning, the same as in the kinase
cases. The LOO cross-validation tests showed that the
docking-score QSAR method improved the RMSE from
1.7 kcal/mol by the naı̈ve docking calculation to 1.1 kcal/
mol. These results suggested that this method is applicable
to general target proteins. The analysis performed was
based on the cross-validation tests only, and there was no
prospective experimental validation in this study. Further
analysis of the validation tests designed for extrapolation
should be performed.

Figure 5. Correlation between experimental and prediction data for
MMP2 (unit in kcal/mol). (A) obtained by the na�ve protein�ligand
docking calculation by Sievgene, and (B) obtained by the docking-
score QSAR model with l= 0.0002, W = 20 kcal/mol. The dots
represent the predicted data points by the LOO cross-validation
test.
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Supporting Information

The appendices, Figures S1–S3, and Tables S1–S5 were
supplied as described in the Supporting Information.
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