
Biosci. Rep. (2015) / 35 / art:e00187 / doi 10.1042/BSR20150019

Identification of signalling cascades involved in
red blood cell shrinkage and vesiculation
Elena B. Kostova*, Boukje M. Beuger*, Thomas R.L. Klei*, Pasi Halonen†, Cor Lieftink†,
Roderick Beijersbergen†, Timo K. van den Berg* and Robin van Bruggen*1

*Department of Blood Cell Research, Sanquin Research, Plesmanlaan 125, 1066CX, Amsterdam, The Netherlands
†Division of Molecular Carcinogenesis, NKI Robotics and Screening Center, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands

Synopsis
Even though red blood cell (RBC) vesiculation is a well-documented phenomenon, notably in the context of RBC aging
and blood transfusion, the exact signalling pathways and kinases involved in this process remain largely unknown.
We have established a screening method for RBC vesicle shedding using the Ca2 + ionophore ionomycin which is a
rapid and efficient method to promote vesiculation. In order to identify novel pathways stimulating vesiculation in RBC,
we screened two libraries: the Library of Pharmacologically Active Compounds (LOPAC) and the Selleckchem Kinase
Inhibitor Library for their effects on RBC from healthy donors. We investigated compounds triggering vesiculation and
compounds inhibiting vesiculation induced by ionomycin. We identified 12 LOPAC compounds, nine kinase inhibitors
and one kinase activator which induced RBC shrinkage and vesiculation. Thus, we discovered several novel pathways
involved in vesiculation including G protein-coupled receptor (GPCR) signalling, the phosphoinositide 3-kinase (PI3K)–
Akt (protein kinase B) pathway, the Jak–STAT (Janus kinase–signal transducer and activator of transcription) pathway
and the Raf–MEK (mitogen-activated protein kinase kinase)–ERK (extracellular signal-regulated kinase) pathway.
Moreover, we demonstrated a link between casein kinase 2 (CK2) and RBC shrinkage via regulation of the Gardos
channel activity. In addition, our data showed that inhibition of several kinases with unknown functions in mature
RBC, including Alk (anaplastic lymphoma kinase) kinase and vascular endothelial growth factor receptor 2 (VEGFR-2),
induced RBC shrinkage and vesiculation.
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INTRODUCTION

Transfusion of red blood cells (RBCs) is often a life-saving ther-
apy for which no substitute exists. RBCs are transfused to im-
prove oxygen supply in a diverse group of patients, including
patients that suffer from trauma, haemoglobinopathies, cancer,
surgical procedures or sepsis. Although the beneficial effects of
transfusing RBC are clear, the use of RBC can also have ad-
verse effects. RBC undergo considerable changes during stor-
age, including lactate accumulation, decrease in ATP and 2,3-
DPG (2,3-diphosphoglycerate) levels [1] and vesicle release [2].
These modifications, known as the storage lesion, lead to altera-
tions in the function and lifespan of RBC in vivo post transfusion



Abbreviations: AMPK, AMP-activated kinase; ATA, aurintricarboxylic acid; BCR-ABL, breakpoint cluster region protein–Abelson murine leukaemia viral oncogene homologue 1; CaM,
calmodulin; CK2, casein kinase 2; Epo, erythropoietin; ERK, extracellular signal-regulated kinase; GPCR, G protein-coupled receptor; Jak, Janus kinase; LOPAC, Library of
Pharmacologically Active Compounds; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated protein kinase kinase; NO, nitric oxide; nRTK, non-receptor tyrosine kinase; PC,
phosphatidylcholine; PDGFR, platelet-derived growth factor receptor; PI3K, phosphoinositide 3-kinase; PKC, protein kinase C; PLC, phospholipase C; PS, phosphatidylserine; RBC, red
blood cell; RTK, receptor tyrosine kinase; SAGM, saline-adenine-glucose-mannitol; SCD, sickle cell disease; SMase, acid sphingomyelinase; STAT, signal transducer and activator of
transcription; VEGFR, vascular endothelial growth factor receptor; β -AR, β -adrenergic receptor.
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[3,4], which can have detrimental side effects in the recipient [5].
We and others have shown that after transfusion stored RBC re-
lease phosphatidylserine positive (PS+ ) vesicles which support
the coagulation cascade [6–8] and can scavenge nitric oxide (NO)
[9–11], leading to thrombosis and vasoconstriction in the recip-
ient respectively. In addition, RBC vesicle shedding has been
implicated in immunomodulation [12]. Vesicles released during
storage induce the production of pro-inflammatory cytokines by
monocytes promoting T-cell proliferation [12]. Moreover, gener-
ation of inflammatory vesicles is observed in sickle cell disease
(SCD) via activation of acid sphingomyelinase (SMase) followed
by ceramide accumulation [13]. The vesicles that are released are
subsequently engulfed by monocytes promoting the production
of pro-inflammatory cytokines and endothelial cell adhesion [13].
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Furthermore, several bioactive lipids are downstream of SMase
and ceramide, including PS and ceramide production, has been
linked to PS exposure and cell shrinkage in RBC [14].

As mentioned, we have previously demonstrated that stored
RBC spontaneously shed PS+ vesicles in an in vitro transfu-
sion model [6]. Phospholipid membrane asymmetry is regulated
by three enzymes: flippase, floppase and scramblase [15]. The
flippase, also called aminophospholipid translocase, is an ATP-
dependent inward-directed enzyme which transports lipids in-
cluding PS and phosphatidylethanolamine (PE) to the inner leaf-
let of the plasma membrane [16], whereas the floppase, also
known as multidrug resistant protein 1, is an outward-directed
enzyme responsible for keeping phosphatidylcholine (PC) on the
outside of the cell membrane [17]. The scramblase, on the other
hand, is able to transport lipids across the membrane in a bid-
irectional manner [18]. Recently, increasing evidence in literature
has demonstrated that the ion channel Tmem16f (transmembrane
protein 16F) also functions as the calcium-activated scramblase
[19–21]. During RBC storage, flippase activity is strongly re-
duced due to ATP depletion and potassium leakage [6]. Moreover,
increased scramblase activity is observed due to elevated intra-
cellular calcium levels. These events collectively lead to loss of
membrane asymmetry, exposure of PS on the cell surface and
finally vesicle shedding [6].

Vesiculation is not only relevant in the context of RBC stor-
age and transfusion, but is also important during RBC aging and
clearance in vivo [4]. Under physiological conditions, RBC has
a lifespan of 120 days, which implies that 0.8 % of total RBC are
cleared per day. Furthermore, RBC becomes smaller and denser
with age, a process facilitated by the release of vesicles contain-
ing haemoglobin [22,23]. Loss of membrane results in less de-
formable RBC which can no longer pass through the endothelial
slits ultimately leading to their phagocytosis by red pulp spleen
macrophages lining the endothelium [22,24]. All these data sug-
gest that RBC vesiculation is beneficial when taking place in
the spleen as a clearance mechanism [25], but deleterious when
occurring in circulation after transfusion [5,6,9].

Even though RBC vesicle release is a well-documented phe-
nomenon, little is known about the exact signalling pathways that
underlie this process. In the present study, we aimed at identifying
signalling cascades involved in RBC vesiculation by screening
the effect of compounds from two different libraries of bioactive
small molecules on RBC vesicle shedding and shrinkage. Using
these two libraries, the library of pharmacologically active com-
pounds (LOPAC) and the Selleckchem Kinase Inhibitor Library,
we confirmed the importance of well-known pathways such as
calcium signalling [26], caspase activity [27] and PKC (protein
kinase C) signalling [28], but we also discovered several cascades
not described previously to play a role in RBC vesiculation. These
include G protein-coupled receptor (GPCR) signalling via antag-
onism of β-adrenergic (β-AR) and P2Y receptors, the phosphoin-
ositide 3-kinase (PI3K)–Akt (protein kinase B) pathway, the Jak
(Janus kinase)–STAT (signal transducer and activator of tran-
scription) pathway and the Raf–MEK (mitogen-activated protein
kinase kinase)–ERK (extracellular signal-regulated kinase) path-
way. Moreover, we propose a novel role for casein kinase 2 (CK2)

in RBC shrinkage through modulation of the Gardos channel via
calmodulin (CaM). In addition, our data suggest that anaplastic
lymphoma kinase (Alk) kinase and vascular endothelial growth
factor receptor 2 (VEGFR-2) are involved in the regulation of
RBC shrinkage and vesiculation.

MATERIALS AND METHODS

Reagents
The LOPAC library, the calcium ionophore ionomycin A23187,
TRAM-34 and buffer reagents were provided by Sigma (Sigma–
Aldrich). The Kinase Inhibitor Library, containing 192 chemic-
als, was obtained from Selleckchem (Selleckchem).

Red blood cell isolation
Heparinized venous blood was obtained from healthy volun-
teers after informed consent. Blood studies were approved by the
Medical Ethical Committee of Sanquin Research and performed
in accordance with the 2013 Declaration of Helsinki. RBCs
were isolated in the following manner: blood was centrifuged at
210 g at room temperature for 15 min. Next, plasma and buffy
coat were removed and RBC were washed twice with saline–
adenine–glucose–mannitol medium (SAGM medium, 150 mM
NaCl, 1.25 mM adenine, 50 mM glucose, 29 mM mannitol,
pH 5.6; Fresenius SE) for 5 min at 570 g. Finally, RBCs were
resuspended in SAGM medium and counted on an ADVIA 2120
Hematology System (Bayer Healthcare AG).

LOPAC and Kinase Inhibitor Library screening
Freshly isolated RBCs were washed in HEPES buffer (132 mM
NaCl, 20 mM HEPES, 6 mM KCl, 1mM MgSO4, 1.2mM
K2HPO4) supplemented with 2 mM CaCl2 and 10 mM glucose.
RBCs (0.5 × 106) were plated per well in duplo on a flat-bottom
96-well plate pre-coated with compounds from the LOPAC or the
Kinase Inhibitor Library at 10 μM concentration, for all primary
screens and incubated at 37 ◦C for 30 min. Next, RBCs were
treated with HEPES or with 5 μM ionomycin at 37 ◦C for 30 min.
Validation screens were performed analogously, with compound
concentrations: 100 nM, 1 μM and 10 μM. All screens were
performed with three different donors, besides LOPAC primary
screens which were performed with two donors. All screens were
run on a LSRII + HTS (BD Bioscsiences) flow cytometer. Raw
data were analysed with FACSDiva Software (BD Biosciences).

Library screening hit selection and statistics
Separate screens were done with the LOPAC and the Kinase In-
hibitor Library and for both libraries there were different screens
for inhibition and induction. In all four cases, a primary and a val-
idation screen were performed, making a total of eight screens.
In most screens raw data were plate-normalized via dividing by
the median of the negative controls on the plate. The only ex-
ception was the primary kinase inhibitor screen where the plate
normalization was done via dividing per median of the plate, due



2 c© 2015 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC-BY) (http://creativecommons.org/licenses/by/3.0/)
which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/3.0/


Red blood cell vesiculation

Figure 1 Scatter plots and gating strategy of RBC with DMSO (A) and with (B) ionomycin stimulation
In a control setting with DMSO treatment alone (A) RBC demonstrate 2500 events in P1, 7500 events in P2 and 200
events in P3. Upon stimulation with 5 μM ionomycin at 37 ◦C for 30 min (B), RBC shrink due to Ca2 + flux and K+ efflux,
leading to vesiculation (arrow) accompanied by an increase in events in P2 to 9000. Plots represent one of six independent
measurements.

to problems with the negative controls. In case of the primary
screens, a z-score calculation was done per replicate and readout
(P1, P2, P3). Over the replicates and per readout the mean of
the z-scores was calculated. The mean z-score for the most inter-
esting readout (P2) was used as a selection criterion. In general,
in case of induction screens, the 30 highest values were selec-
ted for validation and in case of inhibition screens the lowest
30. In the validation screens three different concentrations of
the drugs were used. Per compound and concentration the me-
dian value over three replicates was calculated. Furthermore a t
test was performed comparing the values for the three replicates
with a NULL distribution consisting of the negative controls. The
resulting P-values were corrected for multiple testing using the
Benjamin–Hochberg method [29]. Adjusted P-value (Padj score)
of �0.1 was considered significant. Most compounds were con-
sidered validated hits when their median of the replicates (Rep
Median score) was smaller than 1, in case of inhibition screens
and higher than 1 in case of induction screens and the adjusted
P-value (Padj score) was smaller than 0.1 with the exception of
eight compounds which were validated according to cell scatter.
All calculations were performed using programming language
R. For plate normalization and z-scoring R package cell HTS2
version 2.8.3 [30] was used.

RESULTS

Set-up and analysis of the LOPAC and the Kinase
Inhibitor primary library screens
First, we performed four primary screens: LOPAC inhibition and
induction screens and Kinase Inhibitors Library inhibition and

induction screens. Each LOPAC screen contained 1280 small
molecules with known biological functions in the fields of cell
signalling and neuroscience, including apoptosis, gene regulation
and expression, lipid signalling, neurotransmission, phosphoryla-
tion, ion channel transport and G-protein signalling. The Selleck-
chem Kinase Inhibitor Library consisted of 192 inhibitors spe-
cifically targeting kinases from various families. We performed
inhibition and induction screens in parallel since we aimed at
identifying molecules that induce RBC vesiculation (induction
screens) and molecules that inhibit vesiculation induced by iono-
mycin (inhibition screens). In a control setting without stimu-
lation (DMSO alone), RBC scatter could be depicted by three
populations (P) each containing a specific number of events. P1
contained 2500 events; P2 contained 7500 events, whereas P3, the
gate in which larger vesicles/microparticles could be observed,
contained 200 events (Figure 1A). When RBCs were treated with
ionomycin, a change in scatter accompanied by a considerable
change in the number of events in all the three gates was observed.
Events from P1 moved to P2, which reached over 9000 events,
corresponding to a reduction in side scatter (cell shrinkage); fur-
thermore around 500 events were detected in P3 (Figure 1B;
arrow). However, in our analysis, we refer to RBC vesiculation
as increase in events in gate P2. We chose this parameter and
not the increase in P3, as the majority of vesicles will be too
small to be detected on the flow cytometer and other events,
such as debris, also fall into this gate. This renders P3 unsuit-
able for quantification of the effects of the different compounds.
On the other hand, cell shrinkage due to membrane loss invari-
ably occurs following vesiculation and can be depicted as an in-
crease in the number of events in P2, accompanied by a decrease
in events in P1. As a calcium ionophore, ionomycin induces
calcium influx in RBC, which stimulates the calcium-activated
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Table 1 List of validated LOPAC compounds inducing RBC shrinkage and vesiculation

Rep median score Padj score Name Description

1.223 0.036 ATA Calpain inhibitor[35]

1.232 0.036 ET-18-OCH3 (edelfosine) PLC inhibitor*, PKC inhibitor[34]

1.241 0.036 Rottlerin PKC inhibitor*

1.277 0.036 Reactive Blue 2 P2Y receptor antagonist*

1.255 0.036 PMA PKC activator*

1.194 0.089 Tamoxifen citrate PKC inhibitor, oestrogen receptor antagonist*

1.088 0.102 Bromoacetyl alprenolol menthane β -AR antagonist*

1.109 0.107 NNC 55-0396 T-type calcium channel inhibitor*

SCH-202676 hydrobromide GPCR modulator*

Palmitoyl-DL-carnitine chloride Modulator of PKC activity*

rac-2-Ethoxy-3-hexadecanamido- PKC inhibitor*

1-propylphosphocholine

Calmidazolium chloride CaM inhibitor*

Table 2 List of validated Kinase Inhibitor Library compounds inducing RBC
shrinkage and vesiculation

Rep median score Padj score Name Target

1.283 0.001 AP24534 pan–BCR–ABL

1.229 0.004 AS-252424 PI3kγ

1.173 0.005 Sorafenib tosylate Raf-1,B-Raf, VEGFR-2

1.068 0.009 SNS-314 mesylate Aurora kinases

1.122 0.017 A-769662 AMPK activator

1.17 0.034 BIRB 796 p38 MAPK

1.203 0.037 CX-4945 CK2

1.05 0.076 NVP-BSK805 Jak-2

1.027 0.107 AT7867 Akt

1.027 0.257 NVP-TAE684 ALK

potassium channel KCNN4 (potassium intermediate/small con-
ductance calcium-activated channel, subfamily N, member 4)
(IK-1, inwardly rectifying potassium current; SK4, small con-
ductance calcium-activated potassium channel 4; Gardos chan-
nel) leading to potassium efflux, cell dehydration, cell shrinkage,
PS exposure and ultimately vesicle release [31–33]. As inducer
of vesiculation, ionomycin was used as a positive control in all
induction screens. After analysis of the primary LOPAC screens
we identified 123 compounds inducing vesiculation and 162 com-
pounds inhibiting vesiculation, which accounted for roughly 10 %
of all tested compounds. However, of each set we selected the top
2.3 % of all compounds, considering normal distribution, which
accounted for the 29 hits that were chosen for further validation.
After analysis of the primary kinase inhibitor screens, it became
clear that the inhibition screen did not yield any hits. For the
induction screen of the Kinase Inhibitor Library we selected hits
for further validation based on z-score, which accounted for 21
compounds in total.

Set-up and analysis of LOPAC and Kinase Inhibitor
Library validation screens
After analysis of the induction screens, we identified 12 com-
pounds from LOPAC inducing cell shrinkage/vesiculation and

10 compounds from kinase inhibitor set inducing cell shrink-
age/vesiculation. All validated hits from LOPAC and kinase in-
hibitor induction screens are listed in Tables 1 and 2 respect-
ively. In case of the LOPAC screen, the description includes
relevant effects of the compounds not only provided by Sigma
(denoted by a star *) but also functions described in literature.
Validated hits had a median of the replicates value (Rep me-
dian score) higher than 1, meaning they caused an increase in
the number of events in P2 compared with controls. Neverthe-
less, four LOPAC compounds were identified by analysis of RBC
scatter alone and not by score value for the following reasons:
palmitoyl-DL-carnitine chloride and calmidazolium chloride in-
duced massive vesiculation in RBC leading to a concentration of
all events in P3 (Figures 2A and 2B), therefore an increase in P2
could not be used as a parameter. SCH-202676 hydrobromide,
on the other hand, induced vesiculation measured by an increase
in P3 but no shrinkage (Figure 2C), whereas rac-2-ethoxy-3-
hexadecanamido-1-propylphoshocholine’s effect on RBC scatter
was so strong, no events could be measured (Figure 2D). The
adjusted P-value (Padj score) of all hits in the induction screens
was �0.1, which was considered significant, with the exception
of bromoacetyl alprenolol menthane and NNC 55–0396 from the
LOPAC (Table 1) and AT7867 and NVP-TAE684 from the Kinase
Inhibitor Library (Table 2). Nevertheless, these compounds were
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Figure 2 Scatter plots of RBC treated with LOPAC compounds palmitoyl-DL-carnitine chloride, calmidazolium chloride,
SCH-202676 hydrobromide and rac-2-ethoxy-3-hexadecanamido-1-propylphosphocholine
Palmitoyl-DL-carnitine chloride (PKC modulator; A) and calmidazolium chloride (CaM antagonist; B) induced vesiculation
assessed by transfer of all events from P2 to P3. SCH-2022676 (GPCR modulator) caused vesiculation (increased number
of events in P3) but no shrinkage (no change in P2; C), whereas rac-2-ethoxy-3-hexadecanamido-1-propylphosphocholine
had a pronounced effect on RBC preventing the measurement of any events (D). RBCs were treated with the respective
compounds for 30 min at 37 ◦C, followed by flow cytometry. All compounds were diluted in DMSO and added at 10 μM
final concentration. Plots represent one of three independent measurements.

included in the validated hit list as they all had Rep median
score higher than 1 (Tables 1 and 2). In addition, these compounds
induced RBC shrinkage/vesiculation (Figures 4H, 4I, 5J and 5K),
measured by a decrease in RBC side scatter, indicating reduced
cell size (Figures 4J and 5L). The compounds from the LOPAC
library inducing cell shrinkage/vesiculation could be clustered
into four functional groups: PKC activity (six compounds in-

cluding ET-18-OCH3 [34], calcium signalling (two compounds),
GPCR signalling (three compounds) and protease activity (one
compound) [35] (Figure 3A). Overall these results underscored
the potential of our screening method, since the effects of PKC
signalling [28], Ca2 + [26] and calpain [27] on RBC have been
well studied. In addition, we identified GPCR signalling for the
first time to be involved in RBC vesiculation. Figures 2 and 4
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Figure 3 Validated compounds from LOPAC and Kinase Inhibitor Library induction screens clustered according to function
We identified 12 LOPAC compounds inducing RBC shrinkage and vesiculation, which were divided in four functional
groups (A): GPRC signalling (bromoacetyl alprenolol menthane, reactive Blue 2, SCH-202676 hydrobromide), Ca2 +
signalling (calmidazolium chloride and NNC 55-0396), PKC related (ET-18-OCH3, rottlerin, PMA, tamoxifen citrate,
palmitoyl-DL-carnitine chloride, rac-2-ethoxy-3-hexadecanamido-1-propylphosphocholine) and protease related (ATA). The
validated compounds from the Kinase Inhibitor Library inducing RBC shrinkage and vesiculation were divided in four
groups according to kinase targets (B): serine/threonine (A-769662, BIRB 796, sorafenib tosylate, SNS-314 mesylate,
CX-4945, AT7867), nRTK (NVP-BSK805, AP24534), RTK (NVP-TAE684) and PI3K (AS-252425).

illustrate the effects of all LOPAC hits on RBC scatter. Com-
pared with RBC treated with DMSO alone (Figure 4A), it is
clear that all validated hits induce RBC shrinkage, measured by
a significant increase in the number of events in P2 (Figures 4B–
4G), with the exception of bromoacetyl alprenolol menthane and
NNC 55–0396 (Figures 4H and 4I), which induced RBC shrink-
age measured by a decrease in RBC side scatter (Figure 4J).
Since the Kinase Inhibitor Library consisted exclusively of spe-
cific kinase inhibitors, we clustered the validated hits according
to the family of kinases they target (Figure 3B). Interestingly, we
discovered not only compounds targeting kinases with known
functions in RBC to induce vesiculation (Table 2), but also com-
pounds inhibiting kinases were described to be expressed in RBC,
such as Alk [36] and VEGFR-2 [37]. We could confirm VEGFR-
2 was found in RBC with a Western blot (result not shown).
Figure 5 shows representative scatter plots of RBC treated with
all validated kinase inhibitors. All induction compounds caused
a significant increase in P2 compared with treatment with DMSO
alone (Figures 5B–5I), with the exception of NVP-TAE684 and
AT7867 (Figures 5J and 5K), which induced shrinkage meas-
ured by a significant decrease in RBC side scatter (Figure 5L).
In addition, NVP-TAE684 treatment lead to vesiculation, meas-
ured by an increase in events in P3 (Figure 5J). Moreover, we
generated response plots of the hits identified in the kinase in-
hibitor induction validation screen demonstrating how strong the
effect of each compound was (Supplementary Figure). Com-
pound concentrations (100 nM, 1 μM and 1 0μM) were plotted
on the x-axis whereas the normalized P2 value was plotted on
the y-axis. The response to each compound was represented by a
solid line. The closer the line was to the positive control (dotted
red line), the stronger the effect was. No compounds inhibiting
vesiculation upon ionomycin stimulation were identified during
the LOPAC validation inhibition screen and the Kinase Inhibitor
Library inhibition screen.

CK2 regulates RBC shrinkage via modulation of the
Gardos channel
We discovered two compounds inhibiting CK2 (CX-4945 and
AS-25245) to induce RBC shrinkage measured by an increase
in the number of events in P2 (Figures 5B, 5C, 6C, and 6E).
Interestingly, CX-4945 effect on RBC volume was abrogated
once the Gardos channel was blocked with the specific inhibitor
TRAM-34. We could clearly see that inhibition of CK2 with
CX-4945 did not induce RBC shrinkage when the cells were
pre-treated with TRAM-34 (Figures 6D and 6E). These results
suggest that RBC shrinkage caused by CK2 inhibition is mediated
via the Gardos channel. Inhibition of the channel alone did not
induce any changes on RBC scatter (Figure 6B).

DISCUSSION

In the present study, we successfully identified novel pathways in-
volved in RBC vesiculation through screening of two libraries of
pharmacological inhibitors. RBC vesiculation is not only relevant
in the context of RBC clearance and repair under physiological
conditions, but also in the context of blood transfusions. Vesicles
that form during storage can cause adverse effects in the recipient
including NO scavenging [9–11] and promotion of coagulation
[6–8]. Therefore, it is imperative that we unravel the signalling
cascades contributing to these processes. To induce vesicula-
tion, we used the calcium ionophore ionomycin, which causes
calcium influx and potassium efflux via the Ca2 + -activated po-
tassium channel (Gardos channel) which leads to RBC shrinkage
and vesiculation (Figure 1B). In accordance with the evidence
in literature regarding the role of Ca2 + in RBC vesiculation,
we found two compounds related to Ca2 + signalling to induce
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Figure 4 Validated compounds from the LOPAC library inducing RBC shrinkage and vesiculation
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vesiculation in RBC: calmidazolium chloride (CaM antagonist)
and NNC 55–0396 (T-type Ca2 + channel blocker). The calcium
sensor CaM has been implicated in the regulation of RBC shape
and membrane stability by modulating cytoskeletal interactions
[38]. The mechanism by which calmidazolium chloride induces
vesiculation is probably via inhibition of the Ca2 + ATPase pump
which is regulated by CaM. Suppression of Ca2 + ATPase activ-
ity leads to ATP depletion and accumulation of calcium inside
the cell [39], similar to the events observed during ionomycin
treatment. Furthermore, calmidazolium chloride has been shown
to inhibit phosphodiestarases (PDEs) in various cell types, which
could elevate cAMP/cGMP levels inside the cell, thereby poten-
tially influencing RBC vesiculation as well [40]. Moreover, as
a Ca2 + -activated potassium channel, the Gardos channel has a
CaM-binding domain which facilitates the binding of CaM to the
channel [41]. Nevertheless, a previous study has indicated that
CaM antagonists including calmidazolium do not inhibit Gardos
channel’s activity [42], which implies that the massive vesicu-
lation observed upon calmidazolium treatment (Figure 2B) does
not involve direct effects on the Gardos channel. Furthermore,
calcium flux in RBC can activate the non-lysosomal protease
calpain μ-type [43]. Aurintricarboxylic acid (ATA) is a general
apoptosis inhibitor capable of inhibiting DNA topoisomerase II
[44] and calpain [35]. Calpain is known to cleave the Ca2 + AT-
Pase pump [45], PKC [46], spectrin, ankyrin and protein 4.1
[47] and is considered a main regulator of RBC physiology and
deformability [27]. It was also demonstrated that calpain inhib-
ition ameliorates the red cell phenotype in a SCD mouse model
via impairment of Gardos channel activity [48]. Furthermore,
calpain activation has been directly linked to microparticle form-
ation in platelets [49]. All these data suggest that inhibition of
calpain activity would rather prevent vesiculation than trigger it,
nevertheless our results demonstrate that calpain inhibition with
ATA induces RBC shrinkage (Figure 4B) and 100 % PS exposure
(result not shown). We propose that inhibition of calpain activity
has a complex role in RBC, including the induction of shrinkage
and possibly the release of nanovesicles under normal conditions
(Figure 4B).

In addition, we identified six inducers of shrinkage and vesi-
culation from the LOPAC library related to PKC activity. These
include the inhibitors rottlerin, tamoxifen citrate, rac-2-ethoxy-
3-hexadecanamido-1-propylphosphocholine, ET-18-OCH3, the
modulator palmitoyl-DL-carnitine chloride and interestingly the
activator PMA. There are five PKC isoforms expressed in RBC
described in literature: classical α, atypical ζ [50], conventional

β [51], atypical ι and PKC μ [52]. From these, PKCα [52] and
PKCβ [51] translocate to the membrane upon stimulation with
PMA which suggests that RBC vesiculation is promoted either
via activation of PKCα and PKCβ or via inhibition of the other
isoforms present in RBC. PKC has a myriad of functions in
RBC related to shrinkage [28], PS exposure [53] and Ca2 + flux
[54]. Since all of these phenomena are related to RBC vesicu-
lation, it was not surprising that we identified six compounds
exerting effects on PKC to be involved in vesiculation (Table 1).
In addition, PKC down modulates Gardos channel activity [55],
which hints to the possibility of K+ efflux stimulation upon PKC
inhibition, ultimately resulting in vesiculation. Furthermore, as
inducers of vesiculation we identified nine kinase inhibitors and
one kinase activator from the Kinase Inhibitor Library which
we divided in four functional groups (Figure 3B) depending on
the family of kinases they target (Table 2). A-769662, the only
activator, targets AMPK (AMP-activated kinase) [56], an en-
ergy sensor and regulator of metabolism, expressed in skeletal
muscle, liver, pancreas and adipose tissue [57]. AMPK is activ-
ated by AMP, hence its name AMP-activated kinase, as well as by
Ca2 + /CaM-dependent protein kinase kinase β and liver kinase
B1 [58]. AMPK is also expressed in RBC and has been previously
proposed to have a role in RBC survival. Ampk− / − mice present
with anaemia and splenomegaly and are cleared faster from circu-
lation [59], which suggests that AMPK might be involved in RBC
vesiculation as well. Furthermore, Sid et al. [60] discovered that
adding A-769662 to erythrocytes not only activates AMPK but
also leads to the phosphorylation of the downstream target Na-K-
Cl co-transporter (NKCC1) which might result in cell shrinkage.
BIRB 796, also known as doramapimod, is a highly selective p38
mitogen-activated protein kinase (MAPK)α inhibitor [61], also
shown to inhibit c-Jun N-terminal kinase 2 (Jnk-2) at 10 μM. p38
MAPK is involved in various cellular processes including regu-
lation of cell volume by activating Na+ -H+ exchanger [62]. Ga-
tidis et al. [63] have proposed that p38 MAPK plays a role in RBC
survival. Using the inhibitors SB203580 and p38 MAPK inhib-
itor III they showed that inhibition of p38 kinase leads to reduced
PS exposure upon hyperosmotic shock or ionomycin stimulation
[63]. Other studies employing pan p38 inhibitors demonstrate
that p38 MAPK inhibition induces a transient delay in murine
erythropoiesis [64]. In vivo experiments with p38 MAPK knock-
out mice show that mice die in utero or survive owing to severe
anaemia due to defective erythropoiesis resulting from reduced
erythropoietin (Epo) levels [65]. Moreover, inhibition of p38
MAPK abrogates erythropoiesis in human primary erythroblast

RBCs were treated with DMSO control (A), ATA (calpain inhibitor; B), tamoxifen citrate (PKC inhibitor; C), reactive blue 2 (P2Y
antagonist; D), ET-18-OCH3 (PKC inhibitor; E), rottlerin (PKC inhibitor; F), PMA (PKC activator; G), bromoacetyl alprenolol
menthane (β -AR antagonist; H) and NNC 55-0396 (T-type Ca2 + channel blocker; I). RBC shrinkage and vesiculation were
measured by the significant increase in events in P2, compared with DMSO control and was observed in all conditions,
with the exception of bromoacetyl alprenolol menthane (H) and NNC 55-0396 (I) which induced RBC shrinkage measured
by a significant decrease RBC side scatter (J). RBCs were treated with the respective compounds for 30 min at 37 ◦C
followed by flow cytometry. All compounds were diluted in DMSO and added at 10 μM final concentration. Plots represent
one of three independent measurements. Quantification of cell side scatter (SSC-A) upon DMSO, bromoacetyl alprenolol
menthane and NNC 55-0396 treatment (J); results shown represent mean +− S.D., n = 3; *P < 0.1, **P < 0.01, unpaired
t test was applied during the analysis.
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Figure 5 Validated compounds from the Kinase Inhibitor Library inducing RBC shrinkage and vesiculation
RBCs were treated with DMSO alone as a control (A). CX-4945 (CK2 inhibitor; B), AS-25245 (PI3K inhibitor; C), NVP-BSK805
(Jak inhibitor; D), sorafenib tosylate (Raf-1 inhibitor; E), AP24534 (pan–BCR–ABL inhibitor; F), BIRB 796 (p38 MAPK
inhibitor; G), SNS-314 mesylate (Aurora kinase inhibitor; H) and A-7699662 (AMPK activator; I), induced RBC shrinkage
and vesiculation measured by an increase in events in P2, whereas NVP-TAE684 (Alk inhibitor; J) and AT7867 (Akt inhibitor;
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Figure 6 RBC shrinkage induced by CX-4945 is mediated via the Gardos channel
RBCs were treated with DMSO alone as a control (A), 20 μM TRAM-34 (Gardos channel inhibitor; B), 10 μM CX-4945
(CK2 inhibitor; C) and TRAM-34 followed by CX-4945 (D). RBCs were treated with each compound for 30 min at 37 ◦C
followed by flow cytometry. CK2 inhibition lead to RBC shrinkage measured by an increase in events in P2 (C), which could
be prevented by blocking the Gardos channel prior to the addition of CX-4945 (D). Plots represent one of six independent
measurements. Statistical analysis of CX-4945 effect on RBC shrinkage with or without TRAM-34 treatment (E); results
shown represent mean +− S.D., n = 6; **P < 0.01, ***P < 0.001, unpaired t test was applied during the analysis.

cultures [66]. We demonstrate in vitro that p38 MAPK might in-
fluence mature RBC signalling as well by mediating RBC shrink-
age (Figure 5G). Another compound validated in our induction
screen, previously used in studies with RBC, is sorafenib tosylate
(Bay 43–9006). Sorafenib is a marketed drug (under the name of
Nexavar) approved for use against renal cell carcinoma [67], dif-
ferentiated thyroid carcinoma [68] and hepatocellular carcinoma
[69]. It inhibits several receptor tyrosine kinases (RTKs), such as
Raf-1, B-Raf and, to a lesser extent, VEGFR-2, mPDGFRβ (m-
platelet-derived growth factor receptor β) and PDGFRβ kinases
[70]. As side effects of the drug might include anaemia, Lupescu
et al. [71] already demonstrated that treatment of RBC with soraf-
enib induced shrinkage and PS exposure in RBC. Our findings

further confirm that sorafenib influences RBC volume and in-
duces vesiculation (Figure 5E), which might contribute to the
anaemia observed in these patients. Furthermore, it has been re-
ported that Raf-1 deficient embryos are anaemic and die in utero
[72]. Thus, Raf-1 has also been described to play a role in eryth-
ropoiesis, by repressing caspase activation, hence antagonizing
erythroid differentiation [73]. In addition, Raf-1 is necessary to
activate MEK–ERK pathway in erythropoiesis leading to a pos-
itive feedback loop maintaining Raf-1 expression throughout the
undifferentiated state [74]. Raf-1 function has not been described
in mature RBC to date, thus it is intriguing to explore further
how this kinase is involved in RBC signalling. Moreover, the
PI3K–Akt pathway is a well-studied signalling cascade related

RBCs were treated with DMSO alone as a control (A). CX-4945 (CK2 inhibitor; B), AS-25245 (PI3K inhibitor; C), NVP-BSK805
(Jak inhibitor; D), sorafenib tosylate (Raf-1 inhibitor; E), AP24534 (pan–BCR–ABL inhibitor; F), BIRB 796 (p38 MAPK
inhibitor; G), SNS-314 mesylate (Aurora kinase inhibitor; H) and A-7699662 (AMPK activator; I), induced RBC shrinkage
and vesiculation measured by an increase in events in P2, whereas NVP-TAE684 (Alk inhibitor; J) and AT7867 (Akt inhibitor;
K) induced shrinkage measured by a significant decrease in side scatter (L). RBCs were treated with the respective
compounds for 30 min at 37 ◦C followed by flow cytometry. All compounds were diluted in DMSO and added at 10 μM
final concentration. Plots represent one of three independent measurements. Quantification of cell side scatter (SSC-A)
upon DMSO, NVP-TAE684 and AT7867 treatment (L); results shown represent mean +− S.D., n = 3; *P < 0.1, **P < 0.01,
unpaired t test was applied during the analysis.
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to cell growth and survival [75]. Both kinase families and their
subclasses are expressed in RBC [76]. We identified two inhibit-
ors from this pathway to induce shrinkage in RBC: AS-252424
(Figure 5C) and AT7867 (Figure 5K). AS-252424 is a PI3K in-
hibitor with 30-fold selectivity for PI3Kγ over PI3Kα [77]. The
Akt inhibitor AT7867 is equally potent in inhibiting all three Akt
isoforms; nevertheless it targets PKA as well [78]. The PI3K–
Akt pathway has been demonstrated previously to play a role
in RBC deformability as Suhr et al. [76] showed that the PI3K
inhibitor wortmannin reduced RBC deformability in vitro. Inter-
estingly, we observed that wortmannin induced RBC vesiculation
as well (result not shown), which is in accordance with the data
we obtained from the kinase inhibitor screen. We speculate that
the PI3K–Akt pathway is also involved in RBC shrinkage and
vesiculation.

To our knowledge, a T-type calcium channel, a low voltage
channel, has not been described in RBC; however, there are re-
ports of non-selective voltage activated channels in RBC [79]
which have been suggested to play a role in increased pathological
cation leaks in RBC [80]. Interestingly, our data suggest that T-
type calcium channel activity might be related to RBC shrinkage
(Figure 4I). Moreover, three compounds from the LOPAC library
that we identified as vesiculation inducers are known GPCR ant-
agonists. These are: reactive blue 2 (Basilen blue E-3G, a P2Y
receptor antagonist), bromoacetyl alprenolol menthane (a β-AR
antagonist; β-blocker) and SCH-202676 hydrobromide, which
can act as GPCR agonist as well, since it is described as a gen-
eral GPCR allosteric modulator. There is evidence in literature of
GPCR signalling in RBC [81–83], even though no link to vesi-
culation has been established yet. P2Y receptors are purinergic
GPCR activated by ATP, UDP, ADP, UTP and UDP glucose with
various physiological functions including regulation of vascu-
lar tone, release of endothelial factors and platelet aggregation
[84]. Blood cells express P2Y receptors from different families
on their surface, whereas RBC are only known to express P2Y1

[85,86] and P2Y13 [87]. Interestingly, P2Y13 activation by ADP
derived from ATP decreases cAMP levels in RBC and prevents
ATP release. Furthermore, P2Y13 receptor antagonists stimulate
cAMP generation and ATP release from RBC [87]. Our data
suggest that treating RBC with a P2Y receptor antagonist can
ultimately lead to considerable RBC shrinkage (Figure 4D), pos-
sibly due to cAMP signalling and ATP depletion [87]. Moreover,
the effects of β-blockers on RBC have been intriguing scientists
for a long time. There are reports from the 1970s stating that
β-AR antagonists induce RBC K+ release [88] but the mech-
anisms underlying this phenomenon are still unknown. Several
groups have suggested that catecholamines, such as epinephrine,
have a positive effect on RBC deformability [89] and filterabil-
ity [90] via a cAMP-dependent pathway as ATP-depleted RBC
were unable to respond to epinephrine [91]. Our results suggest
that β-blockers not only reduce RBC deformability [89], but also
induce RBC shrinkage (Figure 4H). Furthermore, we discovered
several novel kinases to play a role in RBC vesiculation. To our
surprise, we identified the Aurora kinase pan inhibitor SNS-314
mesylate [92] as inducer of RBC vesiculation (Figure 5H). Even
though Aurora kinases A and B are highly expressed in transfer-

rin receptor (CD71+ ) early erythroid cells as shown in BioGPS
gene annotation portal [93], we did not find any evidence that
these kinases are expressed in mature RBC after performing a
Western blot (result not shown). Therefore, it is possible that
the effect of SNS-314 mesylate observed in RBC is due to an
off-target compound effect. For example, SNS-314 has also been
shown to inhibit Raf-1 and several RTKs such as high affin-
ity nerve growth factor receptors (TrkA, tropomyosin receptor
kinase A and TrkB, tropomyosin receptor kinase B), VEGFR-3,
colony stimulating factor 1 receptor, tyrosine-protein kinase re-
ceptor UFO (Axl) and Discoidin domain receptor 2 kinase [92].
Interestingly, none of these kinases has been described to have a
function in RBC. It is appealing to further investigate what the
precise role of these kinases is in RBC signalling and vesicu-
lation. Moreover, the two non-receptor tyrosine kinase (nRTK)
inhibitors we discovered to induce RBC vesiculation were NVP-
BSK805 (Figure 5D), targeting Jak2 and AP24534 (Ponatinib;
Figure 5F), a pan BCR-ABL (breakpoint cluster region protein–
Abelson murine leukaemia viral oncogene homologue 1) inhib-
itor. NVP-BSK805 is a Jak2 kinase inhibitor with effects towards
Jak1, Jak3 and Tyk2 kinase as well [94]. Jak2 mediates Epo sig-
nalling and is essential during erythropoiesis [95]; however, even
though Jak2 is expressed in mature RBC [96], which we could
also demonstrate with a western blot (result not shown), its func-
tion in RBC is unknown. Interestingly, our results suggest that
Jak2 might modulate RBC vesiculation. AP24534 (Ponatinib) is
a pan BCR–ABL, including BCR–ABLT315I, inhibitor used in
the clinic to treat chronic myeloid leukaemia; however, AP24534
exhibits inhibitory activity towards VEGFR-2, FGFR-1 (fibro-
blast growth factor receptor-1), scr and Lyn (protein tyrosine
kinase Lyn) kinases as well [97]. Reports demonstrate that Lyn
is essential for erythropoiesis and Epo-receptor signalling [98].
Furthermore Lyn directly phosphorylates Band-3 [99], thus reg-
ulating RBC shape and cytoskeletal rearrangement in healthy
RBC. Moreover, Lyn is involved in the pathology of acanthocyt-
osis [100]; nevertheless its role in RBC vesiculation has not been
addressed. Another target of AP24534 is the nRTK VEGFR-2.
Expression of VEGFR-2 in RBC is debatable. Sachanonta et al.
[37] have shown that malaria-infected RBC and RBC stain pos-
itive for VEGFR-2, even though the authors speculated that the
detected expression might be due to passive uptake of the receptor
by RBC from serum. We have confirmed that VEGFR-2 is present
in RBC by a Western blot (result not shown) and our data sug-
gest that VEGFR-2 inhibition regulates RBC volume. VEGFR-2
activates PI3K–Akt pathway and PLC (phospholipase C)–PKC
pathway [101], thus it is tempting to speculate that VEGFR-2
is involved in vesiculation as well since downstream targets of
VEGFR-2 are known to have various roles in RBC signalling.
The only RTK inhibitor we found to induce RBC vesiculation
was NVP-TAE684, an Alk RTK inhibitor [102]. Alk kinase is
upstream of various signalling pathways such as the MAPK–
ERK, the Jak–STAT and the PI3K–Akt pathway [103]. Alk kinase
has been described to be expressed in RBC only recently [36]
and since our screen results showed that Alk inhibition induced
RBC vesiculation (Figure 5J), it is possible that this kinase is in-
volved in RBC signalling as well. In addition, we discovered two
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Figure 7 Proposed model of signalling pathways involved in RBC shrinkage and vesiculation
Inhibition of the depicted kinases induces shrinkage and vesiculation in RBC. CaM antagonism causes ATP depletion and
Ca2 + accumulation inside the cell. CK2 inhibition leads to down-modulation of CaM, which in turn activates the Gardos
channel leading to K+ efflux and cell shrinkage. Inhibition of GPCR signalling (e.g. P2Y, β -AR) leads to cAMP increase
inside the cell and ATP depletion.

inhibitors of CK2: CX-4945 (Silmitasertib), a specific inhibitor
[104] and AS-252424, inhibitor at 10 μM [77] that induced RBC
shrinkage (Figures 5B an 5C). CK2 is highly expressed in RBC
and has been shown to play a role in immune adherence clear-
ance [105] and to mediate membrane deformability upon com-
plement receptor 1 ligation [106]. Interestingly, in neurons CK2
binds to the Ca2 + -activated potassium channel SK2 (small con-
ductance calcium-activated potassium channel 2), thus directly
regulating its function [107]. Since SK2 requires CaM signalling
for proper functioning, CK2 phosphorylation of CaM abrogates
SK2 channel’s sensitivity to calcium leading to SK2 inactivation
[107]. Interestingly, the Gardos channel, as a small conductance
calcium-activated potassium channel, shares homology with the
other SK channels [41]. Involvement of CK2 in the activity of
the Gardos channel in RBC has not been demonstrated. We sug-
gest that RBC shrinkage induced by CK2 inhibition is mediated
via the Gardos channel since blocking of the channel with the
specific inhibitor TRAM-34 prevents shrinkage induced by CX-
4945 (Figure 6). We speculate that, similar to what is observed in
neurons, CK2 might be co-assembling with the Gardos channel,
modulating its function [107]. Inhibition of CK2 would prevent
CaM phosphorylation, which could lead to constitutive activa-
tion of the potassium channel due to increased Ca2 + sensitivity
[108], resulting in cell shrinkage. Certainly, a demonstration of
the direct interaction between CK2 and the Gardos channel is

necessary to further confirm their concerted role in RBC vesi-
culation. Lastly, we did not identify any compounds inhibiting
vesiculation upon ionomycin stimulation. One reason for the lack
of hits in the inhibition screens could be the challenging task to
abrogate the strong effect of RBC vesiculation induced by iono-
mycin. In conclusion, we discovered several novel signalling
cascades to be involved in RBC vesiculation, including GPCR
signalling, the PI3K–Akt pathway, the Raf–MEK–ERK pathway,
and the Jak–STAT pathway. Moreover, we suggest for the first
time a role of CK2, Alk kinase and VEGFR-2 in RBC shrinkage
and vesiculation (Figure 7). We cannot exclude the possibility
of redundancy in some of these pathways and more research is
needed to elucidate the exact functions of these cascades in RBC
vesiculation and the storage lesion.
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