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1  | INTRODUC TION

Functional magnetic resonance imaging (fMRI) is perhaps the pri‐
mary imaging technique employed for investigating the function 

of the human brain. One of the main reasons is its excellent spa‐
tial resolution and noninvasive nature, as compared to other im‐
aging methodologies, such as positron emission tomography (PET) 
and single‐photon emission computed tomography (SPECT). In 
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Abstract
Introduction: Recent studies related to assessing functional connectivity (FC) in rest‐
ing‐state functional magnetic resonance imaging have revealed that the resulting 
connectivity patterns exhibit considerable fluctuations (dynamic FC [dFC]). A widely 
applied method for quantifying dFC is the sliding window technique. According to 
this method, the data are divided into segments with the same length (window size) 
and a correlation metric is employed to assess the connectivity within these seg‐
ments, whereby the window size is often empirically chosen.
Methods: In this study, we rigorously investigate the assessment of dFC using the 
sliding window approach. Specifically, we perform a detailed comparison between 
different correlation metrics, including Pearson, Spearman and Kendall correlation, 
Pearson and Spearman partial correlation, Mutual Information (MI), Variation of 
Information (VI), Kullback–Leibler divergence, Multiplication of Temporal Derivatives 
and Inverse Covariance.
Results: Using test–retest datasets, we show that MI and VI yielded the most consist‐
ent results by achieving high reliability with respect to dFC estimates for different 
window sizes. Subsequent hypothesis testing, based on multivariate phase randomi‐
zation surrogate data generation, allowed the identification of dynamic connections 
between the posterior cingulate cortex and regions in the frontal lobe and inferior 
parietal lobes, which were overall in agreement with previous studies.
Conclusions: In the case of MI and VI, a window size of at least 120 s was found to be 
necessary for detecting dFC for some of the previously identified dynamically con‐
nected regions.
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addition, fMRI provides a good balance between spatial resolution 
for localization of activations in the brain as well as continuously 
increasing temporal resolution, as compared to magnetoencepha‐
lography (MEG) and electroencephalography (EEG) (Huettel, Song, 
& McCarthy, 2008). Over the past years, considerable attention has 
been shifted to studying the functional organization of the brain in 
the absence of explicit tasks. Through this approach, which is com‐
monly referred to as resting‐state fMRI (rs‐fMRI), it has become 
possible to draw conclusions about brain function under healthy 
and pathological conditions, involving but not limited to, the dis‐
covery of networks comprised by distant brain regions and changes 
induced by neurological and other disorders (Buckner & Vincent, 
2007; Damoiseaux et al., 2006; De Luca, Beckmann, De Stefano, 
Matthews, & Smith, 2006; Rombouts, Barkhof, Goekoop, Stam, & 
Scheltens, 2005; Shehzad et al., 2009; Xia et al., 2013). During the 
resting‐state condition, it has been consistently found that particu‐
lar brain regions activate consisting the well‐known Default Mode 
Network (DMN) (Damoiseaux et al., 2006; Raichle et al., 2001). 
As a result, the DMN is often the subject of investigation in both 
healthy (Andrews‐Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010; 
Christoff, Gordon, Smallwood, Smith, & Schooler, 2009; Fransson 
& Marrelec, 2008; Greicius, Krasnow, Reiss, & Menon, 2003) and 
pathological conditions (Buckner, Andrews‐Hanna, & Schacter, 
2008; Horne & Norbury, 2018; Jiang et al., 2018; Padmanabhan, 
Lynch, Schaer, & Menon, 2017; Whitfield‐Gabrieli & Ford, 2012), 
expanding our knowledge regarding functional organization of the 
resting human brain and how is differentiated in nonhealthy condi‐
tions (Smith, Vidaurre et al., 2013; Zhang, Shen, & Lin, 2018).

Within the framework of rs‐fMRI, it is often customary to apply 
functional connectivity (FC) analysis for quantifying the statisti‐
cal associations or dependencies of spatially distinct and tempo‐
rally correlated brain regions (Friston, 2011; Sakoğlu et al., 2010). 
Functional connectivity was initially assessed under the assumption 
of stationarity, which assumes that the underlying connections do 
not change over time (Hutchison, Womelsdorf, Allen et al., 2013; 
Preti, Bolton, & Van De Ville, 2017). However, recent advances in 
neuroimaging have highlighted the fact that FC between brain re‐
gions is in fact dynamic, suggesting that the statistical properties of 
the corresponding correlation measures are subject to change over 
different time scales (Calhoun & Adali, 2016; Chang & Glover, 2010; 
Hutchison, Womelsdorf, Allen et al., 2013; Preti et al., 2017). This 
newly adopted approach yields promise for better understanding 
the nature of resting‐state activity and may provide new insights 
concerning a variety of brain conditions (Damaraju et al., 2014; 
Leonardi, Richiardi, & Van De Ville, 2013; Li et al., 2014).

Over the past years, several approaches have been employed 
to quantify resting‐state dynamic functional connectivity (rs‐dFC). 
These can be divided into two main categories: time domain analysis 
and time‐frequency joint mapping. The former includes the detec‐
tion of coactivation patterns (Liu & Duyn, 2013), the discovery of 
repeatable spatiotemporal patterns (Majeed et al., 2011), as well as 
the “temporal functional mode” approach which is based on tempo‐
ral independent components analysis (Smith et al., 2012). However, 

the most common approach to assess rs‐dFC is by far the sliding 
window approach, whereby the fMRI data are segmented in (pos‐
sibly overlapping) windows and functional interconnections be‐
tween different brain areas are assessed within each window (Allen 
et al., 2014; Barttfeld et al., 2015; Choe et al., 2017; Handwerker, 
Roopchansingh, Gonzalez‐Castillo, & Bandettini, 2012; Hutchison, 
Womelsdorf, Gati, Everling, & Menon, 2013).

On the other hand, assessing rs‐dFC in the time‐frequency do‐
main provides a way to quantify correlations between Blood Oxygen 
Level Dependent (BOLD) signals in different brain areas as a function 
of both time and frequency. So far, this approach has been imple‐
mented using Wavelet Transform Coherence (WTC), which decom‐
poses the BOLD time‐series into multiple scales (Chang & Glover, 
2010; Torrence & Compo, 1998). Therefore, it provides a framework 
for capturing correlations between slower/faster fluctuations pres‐
ent in rs‐fMRI data. Despite the advantages of the time‐frequency 
approach, relatively few studies have utilized it according to a re‐
cent literature review (Preti et al., 2017). On the other hand, the vast 
majority of rs‐dFC studies have employed the sliding window tech‐
nique, mainly due to its simplicity (Preti et al., 2017).

The sliding window technique requires that certain parameters 
should be selected a priori: (a) the length of the window; (b) the FC 
metric; (c) the step of window shifting; and (d) the weighting scheme 
for the data within each segment. The first choice concerns the se‐
lection of the duration of the window. This is a crucial parameter, as 
it determines the tradeoff between time resolution and estimation 
accuracy; specifically, a small window size yields improved capabil‐
ity to track fast the temporal changes but at the cost of introducing 
spurious fluctuations and increased sensitivity to noise (Leonardi 
& Van De Ville, 2015; Shakil, Billings, Keilholz, & Lee, 2018; Shakil, 
Keilholz, & Chin‐Hui, 2015). Most related studies have empirically 
converged to window size values between 30 and 60 s, while some 
have considered larger values—up to 240 s (Hutchison, Womelsdorf, 
Allen et al., 2013; Hutchison, Womelsdorf, Gati et al., 2013; Preti 
et al., 2017). Furthermore, a critical step for applying sliding win‐
dow analysis is the choice of FC metric for calculating the statistical 
interdependencies between the time‐series within each window. 
So far, the most frequently used metrics for quantifying rs‐dFC 
are the Pearson linear correlation and the covariance matrix, while 
other metrics have been used less frequently, such as Spearman 
rank correlation and Multiplication of Temporal Derivatives (MTD) 
(Damaraju et al., 2014; Hindriks et al., 2016; Preti et al., 2017; Shine 
et al., 2015). The step of window shifting, that is, the number of time 
lags by which the sliding window is shifted is commonly selected as 
one time lag (1 TR) (Allen et al., 2014; Hutchison, Womelsdorf, Allen 
et al., 2013; Hutchison, Womelsdorf, Gati et al., 2013). Different 
windowing types, which weigh the data inside each segment can be 
also applied, aiming to minimize the impact of noisy observations, 
which could result in abrupt alterations in the corresponding rs‐dFC 
time‐series (Lindquist, Xu, Nebel, & Caffo, 2014; Preti et al., 2017; 
Zalesky, Fornito, Cocchi, Gollo, & Breakspear, 2014). Commonly 
used window functions include the Hamming, Hanning and Gaussian 
functions, while the choice of window functions is reviewed in detail 
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in Preti et al. (2017). Nevertheless, a number of studies employ the 
simple rectangular window, with an increasing number of new stud‐
ies using weighted variants, for example, Gaussian and tapered win‐
dows (Preti et al., 2017).

The application of the sliding window methodology results 
in time‐series that contain the selected correlation metric values 
within each window. However, these values are the estimates of the 
true FC and thus are subject to statistical ambiguity (Hindriks et al., 
2016). Therefore, a proper statistical framework should be applied 
to determine whether the observed variation in the FC metric val‐
ues can be characterized as dynamic functional connectivity (dFC) 
(Hindriks et al., 2016). To this end, a commonly used approach is to 
generate surrogate data from the initial measurements to formulate 
the null hypothesis (stationary FC) and conclude whether any given 
FC time‐series exhibits dFC, that is, this null hypothesis can be re‐
jected (Chang & Glover, 2010; Hindriks et al., 2016; Zalesky et al., 
2014).

Despite the widespread application of the sliding window ap‐
proach, it has been suggested that a gold standard is currently ab‐
sent in the context of assessing dFC in rs‐fMRI (Sadia Shakil, Lee, & 
Keilholz, 2016). In this latter study, simulated resting‐state networks 
were constructed in order to evaluate sliding window parameters 
such as window length, offset, type and choices regarding noise 
and filtering, while employing Pearson linear correlation as the FC 
metric. Their simulation study suggested that the detection of tran‐
sitions between different brain states is highly dependent on the 
window length and offset (Sadia Shakil et al., 2016).

In this context, the main aim of the current study was to rigor‐
ously investigate the application of the sliding window technique 
to detect dFC in experimental rs‐fMRI data, focusing on the choice 
of the FC metric and the size of the window used. In particular, we 
consider a wide range of correlation metrics, some of which, to our 
knowledge, have not been employed in previous rs‐fMRI studies. 
Moreover, we thoroughly examine the effect of window size on each 
examined metric, aiming to identify the sensitivity of each metric 
to the choice of window size. We use publicly available data from 
the Human Connectome Project (Smith, Beckmann et al., 2013), col‐
lected from 100 healthy controls and divided into two groups of 50 
subjects each to form a test–retest validation scheme. A statistical 
testing framework, based on generation of surrogate data using the 
multivariate phase randomization (MVPR) and multivariate auto‐re‐
gressive (MVAR) approaches, was employed, for assessing the pres‐
ence of dFC between regions of the Default Mode Network, for all 
FC metrics and window sizes.

2  | MATERIAL S AND METHODS

The flow chart in Figure 1 illustrates the procedure that we followed. 
Below, we provide a detailed description regarding the employed 
data and their preprocessing, as well as the approach for extract‐
ing time‐series from specific brain regions. Subsequently, a compre‐
hensive description is provided for producing surrogate data and the 

various variations of the sliding window technique that we exam‐
ined. Finally, the construction of suitable null hypothesis histograms 
is described, along with the resulting hypothesis testing schemes for 
dFC assessment.

2.1 | Data acquisition and preprocessing

Resting‐state fMRI data from 100 subjects (41 males, 59 females) 
were retrieved from the Human Connectome Project (HCP) initia‐
tive (S900 release) (Smith, Beckmann et al., 2013). Individuals were 
instructed to keep their eyes open with relaxed fixation on a pro‐
jected bright cross‐hair on a dark background. Data were acquired 
using a customized Siemens scanner at 3T using a gradient‐echo 
EPI sequence, TR/TE 720∕33.1ms, flip angle 52°, field of view 
208×180mm2, matrix 104×90mm2, voxel dimensions 2×2×2mm3, 
multiband factor of 8, echo spacing 0.58ms, and BW 2290Hz∕Px cov‐
ering a period of 14 min and 33 s yielding a total of 1,200 volumes. 
In the present study, only the right–left encoded data from the first 
session were analyzed. To perform a test–retest analysis, the data‐
set was divided into two groups each one consisting of 50 subjects. 
Hereafter, the terms “Dataset A” and “Dataset B” are used inter‐
changeably with “test” and “retest,” respectively.

The minimally preprocessing pipeline was adopted (Glasser 
et al., 2013). This procedure consists of eliminating spatial distor‐
tions due to gradient nonlinearities, correction of head motion by 
aligning functional data to the single band reference image using 
6 df, correction for distortion induced by the B0 field, boundary 
based registration to the T1 weighted structural image and align‐
ment to the 2mm montreal neurological institute (MNI) space using 
nonlinear registration. All the above mentioned transformations 
are concatenated and applied to the raw data using a single spline 
interpolation scheme in order to reduce blurring effects. The final 
steps include global (four‐dimensional) intensity normalization to a 
value of 10,000, as well as smoothing using a 2mm FWHM geodesic 
Gaussian procedure. An additional step of high‐pass temporal filter‐
ing at 0.0067Hz (corresponding to a cutoff time of 150 s) was also 
performed in order to remove any slow drifts and trends present in 
the data (Smith, Beckmann et al., 2013). As a result, in all time‐se‐
ries, frequencies f>0.0067Hz were present and were common for 
all considered metrics, window sizes and surrogate data methods. 
In the study of Smith, Beckmann et al., 2013, it was suggested that 
high‐pass temporal filtering at f=0.0005Hz (2000 s) is adequate for 
removing linear trends (Smith, Beckmann et al., 2013). We also con‐
sidered this option; however, in some cases higher order trends (e.g., 
2nd, 3rd order) were still present in the data, which were removed 
using cutoff frequency of f=0.0067Hz (150 s). A representative ex‐
ample is illustrated in Figure S1 (Supporting information).

2.2 | Time‐series extraction

We focused on the brain regions comprising the Default Mode 
Network (DMN). To this end, we used the Dorsal and Ventral DMN 
functional masks (http://findlab.stanford.edu/functional_ROIs.html)  

http://findlab.stanford.edu/functional_ROIs.html
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F I G U R E  1   Overview of the examined procedure for assessing dynamic functional connectivity (dFC) using the sliding window method
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to extract BOLD time‐series (Shirer, Ryali, Rykhlevskaia, Menon, 
& Greicius, 2012). Both masks were merged into a new functional 
mask comprising of 13 regions of interest (ROIs). All 13 regions are 
listed in Table 1 along with their abbreviations and coordinates in 
MNI space. Then, the mean BOLD time‐series across all voxels in‐
side each ROI was calculated, thus yielding 13 time‐series for each 
subject.

2.3 | Surrogate data

Since the ground truth regarding the presence of dynamic con‐
nections between different brain regions is not known, one can‐
not derive conclusions by simply observing the values obtained 
by the application of sliding window technique, as spurious fluc‐
tuations may be introduced due to the use of finite data samples 
(Hindriks et al., 2016; Hutchison, Womelsdorf, Gati et al., 2013; 
Leonardi & Van De Ville, 2015). Therefore, a statistical framework 
is needed for assessing whether a particular pair of brain regions 
exhibits time‐dependent fluctuations (dFC). The most common 
approach for addressing this issue is the construction of surro‐
gate data from the initial BOLD recordings (Pereda, Quiroga, & 
Bhattacharya, 2005; Schreiber & Schmitz, 2000). Surrogate data 
typically aim to preserve basic properties that the original data 
exhibit, for example, auto‐covariance sequence, stationary cross‐
correlation, power spectral density, cross power spectral den‐
sity, and amplitude distribution (Pereda et al., 2005; Prichard & 
Theiler, 1994; Schreiber & Schmitz, 2000; Zalesky et al., 2014). In 

the context of FC studies, surrogate data are also generated under 
the assumption of stationary FC (Hindriks et al., 2016; Liégeois, 
Laumann, Snyder, Zhou, & Yeo, 2017). In the present study, to ex‐
amine whether a ROI pair exhibits time‐varying FC, two surrogate 
data methods were employed: MVPR and MVAR models (Hindriks 
et al., 2016; Zalesky et al., 2014). Below, a description is provided 
for both methods.

Phase randomization consists of the following procedure 
for producing surrogate data (Prichard & Theiler, 1994): Let 
x= [x1, x2, … , xn] denote the BOLD recordings from n=13 brain 
regions, each one of them comprising of T̃=1200 time points and 
X= [X1,X2, … ,Xn] denote their discrete Fourier transform. Next, 
a uniformly distributed random phase (𝜑= [𝜑1,𝜑2,… ,𝜑T̃]), in the 
interval [0, 2�] is generated and applied to each transformed 
signal as follows: X̂k=Xke

i�, k=1,2, … , n. This suggests that 
all signals in the frequency domain are multiplied by the same 
uniformly random phase (Hindriks et al., 2016). Finally, the in‐
verse Fourier transform is calculated and one surrogate copy 
is obtained. This procedure was applied for obtaining a total of 
250 randomized copies for each subject (Hindriks et al., 2016; 
Zalesky et al., 2014).

In the case of the autoregressive‐based approach, the multivar‐
iate version was favored over its bivariate alternative, as the latter 
may introduce a large number of significant connections (false pos‐
itives) (Liégeois et al., 2017). Autoregressive models represent the 
output of a random variable as a linear combination of its own previ‐
ous values (Efron & Tibshirani, 1986). Multivariate Auto‐Regressive 
models represent a set of signals as a combination of both their own 
past values as well as the past values of all other signals in the set 
(Lütkepohl, 2005). The weighting of the effect of past signal values 
is given by Equation (1), where a stationary MVAR model was initially 
fitted to the BOLD time‐series:

where n=13.
Moreover, Equation (1) can be written in matrix notation as 

follows:

where: x=
[
x1, x2, … , xn

]T are the simultaneously recorded BOLD 

time‐series, �=
[
�x1 , �x2 , … , �xn

]T expresses the residuals after model 

fitting and Ai=

⎡⎢⎢⎢⎢⎢⎢⎣

a
x1
i b

x1
i ⋯ w

x1
i

a
x2
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i=1,2, … , p, is the coeffi‐

cients matrix.

(1)

x1 (t)=

p∑
i=1

a
x1
i x1 (t− i)+

p∑
i=1

b
x1
i x2 (t− i)+…+

p∑
i=1

w
x1
i xn (t− i)+�x1 (t)

x2 (t)=

p∑
i=1

a
x2
i x1 (t− i)+

p∑
i=1

b
x2
i x2 (t− i)+…+

p∑
i=1

w
x2
i xn (t− i)+�x2 (t)

⋮

xn (t)=
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i=1

a
xn
i x1 (t− i)+
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p∑
i=1

w
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i xn (t− i)+�xn (t)

(2)x(t)=A1x
(
t−1

)
+A2x

(
t−2

)
+⋯+Apx (t−p)+�(t)

TA B L E  1   Nomenclature, abbreviations, and cluster centroids of 
the considered brain ROIs

Region name Abbr.

Coordinates in MNI (mm)

x y z

Cerebellum Cer 14 –46 –52

Left hippocampus L‐Hipp –24 –30 –14

Right hippocampus R‐Hipp 26 –24 –16

Medial prefrontal 
cortex

mPFC 0 52 14

Thalamus Thal 0 –10 6

Posterior cingulate 
cortex

PCC 0 –54 30

Right inferior parietal R‐IP 44 –72 32

Left inferior parietal L‐IP –36 –80 32

Left inferior 
parietal–2

L‐IP(2) –48 –66 34

Anterior cingulate 
gyrus

ACG 0 –14 36

Right middle frontal 
gyrus

R‐MFG 28 32 44

Precuneus Prec 0 –56 56

Left middle frontal 
gyrus

L‐MFG –26 14 52

Note. ROI: region of interest.
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The polynomial order p defines the number of past signal val‐
ues that is considered in the MVAR model. We selected the value 
of p based on the minimization of the Schwarz Bayesian Criterion 
(SBC) (Zalesky et al., 2014). Having estimated the coefficients 
matrix Ai, we generated randomized copies closely following 
the procedure illustrated in previous studies (Chang & Glover, 
2010; Zalesky et al., 2014). In particular, the following steps were 
implemented:

•	 Step 1

Choose a random time point t0 from the uniform distribution, sat‐
isfying 1≤ t0≤ T̃−p.

•	 Step 2

Initialize a surrogate copy xs (t)=x(̂t), where t=1,2,… ,p and 
t̂= t0,t0+1,… ,t0+p−1. This step essentially sets the first p values 
of the surrogate copy to be a set of p adjacent values from the initial 
time‐series.

•	 Step 3

For t=p+1,… ,T choose a random time point t̃ uniformly 
(1≤ t̃≤T−p) and let �̃ (t)=�(t̃). Through this step a new set of re‐
siduals is formed by randomly sampling the residuals of the model 
(Equation 2).

•	 Step 4

Set xs (t)=A1xs

(
t−1

)
+A2xs

(
t−2

)
+⋯+Apxs (t−p)+ �̃(t).

Following steps 1–4, a single randomized copy is generated. 
Again, a total number of 250 randomized copies were created for 
each subject (Hindriks et al., 2016; Zalesky et al., 2014). Concerning 
the properties of initial data, the MVPR approach better preserved 
auto‐covariance sequence, stationary cross‐correlation, power spec‐
tral density, cross power spectral density, and amplitude distribu‐
tion compared to MVAR method, as illustrated in Figure S2 in the 
Supporting information; therefore we focus on the MVPR‐obtained 
results.

2.4 | Sliding window methodology

The sliding window methodology considers each pair of time‐series 
corresponding to the above mentioned ROIs and calculates a FC 
metric in each segment of the examined BOLD signals, resulting in 
a collection of windowed metric values. After the estimation of the 
windowed metrics for all region pairs, the resulting values were as‐
sembled in a three‐dimensional matrix (regions × regions × windows) 
whereby the variance of the windowed metrics, which was subse‐
quently used to assess dFC, was calculated across the third dimen‐
sion. In the current study, a rectangular window was employed, 
shifted by one time point (1 TR).

2.5 | Employed metrics

One of the main aims of this study was to examine the performance 
of wide range of linear (Pearson full and partial correlation and 
Inverse Covariance [ICOV]) and nonlinear (Spearman full and partial 
correlation, Kendall correlation, Mutual Information (MI), Variation 
of Information (VI), Kullback–Leibler divergence, MTD) metrics for 
assessing rs‐dFC, compared to previous studies. A brief description 
of the employed metrics is presented below.

2.5.1 | Pearson linear correlation

Pearson correlation coefficient (�) is a linear, commonly used metric 
in FC studies (Preti et al., 2017). It expresses the linear dependence 
or association between two random variables X and Y as:

where � indicates the expected value while (�X, �X) and (�Y,�Y) 
denote the mean and standard deviation values of random vari‐
ables X and Y, respectively.

2.5.2 | Pearson partial correlation

Partial correlations can be advantageous in cases where the desired 
measure is the degree of correlation between two random variables 
after removing the effect of all other variables, usually through linear 
regression (Smith et al., 2011). Let X,Y be the two random variables 
and Z be the set of variables whose effect must be removed from X 
andY. Initially, a linear regression step is performed between X and Z, 
as well as between Y and Z as:

After calculating the regression coefficients (�X,�Y) and residu‐
als (�X,�Y), the Pearson partial correlation is obtained by calculating 
the Pearson linear correlation of the residuals, that is, by assessing 
�(�X,�Y) according to Equation (3).

2.5.3 | ICOV representation

An alternative linear metric, commonly employed in FC analyses, 
is the ICOV matrix which is also referred to as the precision ma‐
trix. However, earlier studies have suggested that direct computa‐
tion of the covariance matrix by matrix inversion is an ill‐posed 
problem, especially in cases where the number of data points in 
the considered time‐series is comparable to the number of brain 
region connections. This yields a poor estimate which may diverge 
from the real covariance matrix (Varoquaux & Craddock, 2013). 
To tackle this problem, an iterative optimization procedure based 
on Ledoit–Wolf shrinkage assessment has been suggested for di‐
rectly estimating the precision matrix and has been reported to 

(3)ρ(X,Y)=
�
[(
X−�X

) (
Y−�Y

)]
�X�Y

(4)
X=�XZ+�X

Y=�YZ+�Y
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achieve superior performance compared to standard matrix in‐
version (Ledoit & Wolf, 2004; Varoquaux & Craddock, 2013). The 
optimization procedure consists of applying a cost function in the 
form of a L1 norm to the precision matrix, in order to enforce a 
small number of coefficients to be nonzero. This cost is controlled 
by a regularization parameter � which was set to 0.1 in the present 
study, following (Barttfeld et al., 2015).

2.5.4 | Spearman rank correlation

The Spearman correlation coefficient (�s) is a nonlinear metric 
quantifying the rank interrelationship between two random vari‐
ables X and Y  (Thompson & Fransson, 2015). Its estimation con‐
sists of calculating the Pearson linear correlation between the 
ranked variables rX and rY , as obtained by arranging the values 
of each random variable in ascending order and assigning rank 
labels first, second, third to each of them. Subsequently, �s can 
be calculated as:

where (�rX, �rX) and (�rY,�rY) indicate the mean and standard deviation 
values of the ranked variables rX and rY, respectively.

2.5.5 | Spearman partial correlation

Similar to Pearson partial correlation, the Spearman partial cor‐
relation quantifies the rank association between two random 
variables, when the effects of all the remaining ones have been 
regressed out (Smith et al., 2011). Similar to the procedure de‐
scribed above for Pearson partial correlation, a linear regression 
step was performed as shown in Equation (4) and, subsequently, 
the residuals were utilized for calculating the Spearman partial 
correlation �s(�X,�Y) (Equation 5).

2.5.6 | Kendall correlation

The Kendall correlation (�) is another nonlinear metric for assessing 
rank equivalence (Kendall, 1938). In order to perform the calculation, 
the values of the random variables X and Y are arranged in pairs: (
xi,yi

)
,i=1,2,… ,N, where N is the total number of observations. 

Subsequently, a comparison is conducted between all pairs 
(
xi,yi

)
 

and 
(
xj,yj

)
 with i≠ j, in order to conclude whether pairs can be labeled 

as concordant, discordant or none of those. The conditions for such 
characterization are:

•	 If 
{
(xi>xj)AND (yi>yj)

}
OR

{
(xi<xj)AND (yi<yj)

}
, the pairs are con-

cordant. The total number of concordant pairs is denoted as NC.
•	 If 

{
(xi>xj)AND (yi<yj)

}
OR

{
(xi<xj)AND (yi>yj)

}
, the pairs are  

discordant. The total number of concordant pairs is denoted as ND.
•	 If (xi=xj)AND (yi=yj), the pairs cannot be classified as concor‐

dant or discordant and therefore are not considered in Kendall's � 
calculation.

Finally, Kendall correlation is computed as:

2.5.7 | Mutual information

The MI between two random variables 
(
X,Y

)
 can be defined as the 

amount of information shared by X and Y, as shown in Equation (7). 
Mutual Information is a nonlinear metric and is commonly measured 
in bits (Brown, Pocock, Zhao, & Luján, 2012).

where p(x,y) and p (x) ,p(y) denote the joint and marginal probability 
density functions (PDFs) of Xand Y, respectively. The correspond‐
ing PDFs were estimated using histogram estimators with number 
of bins equal to the total number of time points (Brown et al., 2012). 
Following histogram assessment, the probability of each observed 
value was calculated as the corresponding frequency of occurrence. 
Finally, a normalization by the total number of time points was per‐
formed (Brown et al., 2012).

2.5.8 | Variation of information

The VI is a newly introduced nonlinear metric, initially utilized for 
estimating the distance between two partitions (clusterings) of the 
same dataset (Meilă, 2007). In our case, this metric was employed 
for estimating the distance between two random variables, X,Y, as 
shown below (Meilă, 2007):

where H
(
X
)
 is the entropy of X calculated as: 

H
�
X
�
=
∑N

i=1
p
�
xi
�
log2p(xi). The entropy of Y is calculated in a simi‐

lar manner, while p
(
xi
)
 expresses the probability of observing the 

value xi and was calculated as mentioned above for MI metric.

2.5.9 | Kullback–Leibler divergence

The Kullback–Leibler (KL) divergence between two random variables 
X and Y is a measure of the similarity between their respective PDFs 
(Kullback, 1997). By denoting p(x) and p(y) the PDFs of X and Y, re‐
spectively, the KL divergence can be estimated as:

As can be seen from the above definition, the Kullback–Leibler 
divergence is not symmetric since KL(X‖Y)≠KL(Y‖X). In order to 
overcome this issue, a symmetrized version, which was utilized in 
the present study, has been proposed (Johnson & Sinanovic, 2001):

(5)ρs(X,Y)=
�
[(
rX−�rX

) (
Y−�rY

)]
�rX�rY

(6)�(X,Y)=
2(NC−ND)

N(N−1)

(7)I
(
X,Y

)
=
∑
x∈X

∑
y∈Y

p (x,y) log2

(
p(x,y)

p (x) p(y)

)

(8)VI
(
X,Y

)
=H

(
X
)
+H

(
Y
)
−2I(X,Y)

(9)KL(X‖Y)=
N�
i=1

p(x)log2
p(x)

p(y)

(10)KLs(X‖Y)= KL(X‖Y)+KL(Y‖X)
2
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2.5.10 | Multiplication of temporal derivatives

Multiplication of temporal derivatives is a recently proposed nonlin‐
ear metric for quantifying dFC and involves calculating the temporal 
derivative (dt) and standard deviation of the derivative (�dt) of the 
examined time‐series (Shine et al., 2015). These quantities are then 
combined in order to obtain the final metric by averaging in a win‐
dowed manner over time as:

where i,j represent the brain regions, t expresses the time, and w is 
the window length.

2.6 | Window length

The window length is a crucial parameter, which may considerably 
affect the final results (Hutchison, Womelsdorf, Allen et al., 2013; 
Hutchison, Womelsdorf, Gati et al., 2013). There is still a debate 
concerning the optimal value of window length (Preti et al., 2017). 
Therefore, we have rigorously examined the effect of window size 
by considering window sizes between 20 and 150 s with a step of 
10 s, for balancing between sufficient number of window sizes, that 
is, 14, and the increased processing time for deriving null hypothesis 
distributions.

2.7 | Null hypothesis distribution

To proceed to hypothesis testing, histograms of the variance of win‐
dowed metric values corresponding to the null hypothesis (stationary 
FC) were constructed using the surrogate data. This initially yielded a 
collection of variances of windowed metrics, corresponding to a 
regions × regions × subjects×surrogates (13 × 13×100 × 250) matrix. 
Subsequently, the average across subjects was calculated yielding a 
13 × 13 × 250 matrix, defining a null distribution for each region pair 
(Hindriks et al., 2016). Specifically, 78 distributions were generated, 

since 
(
13

2

)
=78. A previous study proposed aggregating all individ‐

ual null distributions into a single highly resolved distribution and sub‐
sequently performing hypothesis testing (Zalesky et al., 2014). In the 
present study, both options were examined, that is, a null distribution 
for each pair and a null distribution for all pairs. This procedure was 
repeated for all employed FC metrics and window lengths.

2.8 | Hypothesis testing

As illustrated in the previous section, through surrogate data analy‐
sis, it is possible to define the distribution of the null hypothesis and 
then perform hypothesis testing for assessing the presence of dFC. 
The resulting statistical hypothesis can be formally expressed as:

In the current study, the variance (�2) of windowed metrics is consid‐
ered as a measure of dFC; therefore, the hypothesis testing can be 
expressed as follows (Choe et al., 2017):

Independent of the chosen null distribution mode (null distri‐
bution for each pair vs. all pairs), hypothesis testing is initialized 
by finding the �th percentile from the null distribution. This critical 
value (T*) corresponds to the limit at which the null hypothesis can 
be rejected. Subsequently, the variances of windowed metrics (ini‐
tial data) from all subjects were considered, that is, a matrix with 
dimensions regions × regions × subjects as described in Section 2.4, 
and the average across subjects was calculated in order to derive 
conclusions at the group level. These average variances were then 
compared with the previously obtained value of T*, thus resulting 
in a total of 78 comparisons. If an observed value was found to be 
greater than T*, the null hypothesis that the examined region pair 
yields stationary connectivity was rejected and it was concluded 
that these two brain areas exhibit statistically significant dFC.

2.9 | Implementation details

All aforementioned methodologies were implemented in MATLAB® 
(MathWorks®, Natick, MA) based on in house scripts as well as already 
available code. Specifically, implementation of the MTD metric was 
based on code provided by (Shine et al., 2015), while ICOV calculation 
was implemented through the L1precisionBCD.m function (Schmidt, 
2006). Moreover, for the implementation of information based metrics, 
that is, MI and VI, the MIToolbox v.3.0.1 was utilized (Brown et al., 2012). 
Code snippets from Schneider and Neumaier, (2001) and Kugiumtzis 
and Tsimpiris, (2010) were employed for implementing the MVAR sur‐
rogate method, while the implementation of MVPR was based on the 
publicly available code at https://github.com/CommonClimate/com‐
mon-climate/blob/master/phaseran.m (version 21/08/2011).

3  | RESULTS

3.1 | Effect of window size on windowed metric 
time‐series

To examine the effect of window size on the obtained windowed 
metric values, representative plots are presented for each metric 
and chosen window length (subject 100206—HCP nomenclature), 
indicating how the windowed metric values fluctuated over time. 
Specifically, Figure 2 shows the windowed metric variations during 
one scanning session between two core DMN regions (mPFC and 
PCC), for window sizes of 40, 60, 100, and 140 s. The windowed 
metrics in Figure 2 were plotted at the middle time point of each 
window size for easier visual comparison. Increasing window sizes 
resulted in shorter windowed metrics series, due to the lower total 
window number. Moreover, the obtained range of values for each FC 

(11)MTDijt=
1

2w+1

t+w∑
k=t−w

dtik×dtjk

�i×�j

(12)
H0: dFC absence

H1: dFCpresence

(13)
H0: 𝜎

2=0

H1: 𝜎
2>0

https://github.com/CommonClimate/common-climate/blob/master/phaseran.m
https://github.com/CommonClimate/common-climate/blob/master/phaseran.m
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metric decreased for increasing window size. Longer duration win‐
dows resulted in FC metric values that were gradually more concen‐
trated around their mean value, whereby the latter was different for 
each metric. The same can be seen in Figure 3, where the variance 
of the windowed FC metrics is shown across all window lengths. In 

particular, Figure 3 illustrates the deviation for the full range of val‐
ues and variance values between [0,0.2] (figure inset) for better reso‐
lution. Specifically, a decrease is observed in the variance values for 
the majority of FC metrics as the window size increases. This decline 
is steeper for window sizes between 20 and 60 s.

F I G U R E  2   Windowed metrics between medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) for all functional 
connectivity (FC) metrics and window lengths of (a) 40 s (b) 60 s (c) 100 s and (d) 140 s. A larger window size yielded in shorter windowed 
metric series converging to their mean value, different for each FC metric. Metrics abbreviations: MI: mutual information, VI: variation of 
information, KL: Kullback–Leibler divergence, MTD: multiplication of temporal derivatives, ICOV: Inverse Covariance



10 of 29  |     SAVVA et al.

3.2 | Reproducibility of dFC estimates

To assess the reproducibility of the examined FC metrics in the con‐
text of assessing dFC, the initial dataset of 100 subjects was divided 
into two disjoint groups each one consisting of 50 subjects (Section 
2.1). To examine the degree of similarity, Pearson correlation was 
calculated between dFC estimates (variance of windowed metric 
time‐series) for all 78 ROI pairs of the two groups, for each FC metric 
and window size, after averaging over all subjects within each group. 

The corresponding results are illustrated in Figure 4. As can be seen, 
the majority of metrics yielded high test–retest reproducibility (cor‐
relation) of dFC estimates throughout the examined window size 
range (correlation values above 0.85). Some exceptions include the 
KL and MTD, whereby the former showed a steep decline to cor‐
relation values around 0.75 for window sizes up to 120 s. Moreover, 
the MTD yielded the lowest correlation values compared to all 
other metrics, although it increased with an increasing window size. 
Figure 4 suggests that MI and VI are the most reproducible metrics 

F I G U R E  2   (Continued)
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overall. Moreover, although these two metrics yielded higher cor‐
relation values for smaller window sizes, for example, 20–60 s, it 
should not be interpreted as a suitable window size range to use, 
as the estimation of dFC in these window lengths could suffer from 
a poor estimate of the respective PDFs due to the small number of 
data points inside each window.

3.3 | Effect of FC metric and window size to the 
number of dynamic connections

The use of fluctuations in the windowed metrics (Section 3.1) as an 
indicative measure of dFC may be misleading as the calculated FC 
values are an estimation of the true FC (Hindriks et al., 2016). The 
results presented in Figures 2 and 3 provide some insights regarding 
the effect of window size on the variance of the windowed metrics, 
while from Figure 4 it is possible to export conclusions regarding 
the reproducibility of dFC estimates from each FC metric. However, 
these illustrations cannot lead to an answer to the question: “can 
the examined FC metric identify dynamically connected regions in 
rs‐fMRI?” Moreover, the second scope of the present study is to ex‐
plore the effect of window size on resting‐state dFC analyses. Even 
though Figure 3 suggests that the variance of the windowed met‐
rics remains relatively stable for window sizes larger than 60 s and 

Figure 4 suggests that the test–retest correlation of MI and VI was 
higher for window sizes [20s,60s], they cannot be directly used to 
identify a suitable value or range of values for the window length. 
Therefore, the statistical analysis framework described in Sections 
2.7–2.8 was employed to assess the presence of dFC (H0 is rejected) 
between all possible region pairs for all metrics and window sizes, 
at a significance level of 0.05. To control for family‐wise error rate, 
the Bonferroni correction was employed (Hindriks et al., 2016). 
Moreover, a single null distribution for all pairs was utilized by ag‐
gregating individual distributions, to obtain a distribution with a 
large number of samples (250×78=19500), following Zalesky et al. 
(2014).

The corresponding number of dynamically connected region 
pairs using the MVPR approach is illustrated in Figure 5 for both the 
test and retest datasets. The corresponding results from the MVAR 
approach are presented in Section S3 in the Supporting informa‐
tion (Figure S3). A general remark is that longer windows generally 
yielded a larger number of region pairs exhibiting dFC, except for the 
case of MTD for both the test and retest datasets. In this case, the 
number of dynamically connected regions was significantly higher 
(≥25) compared to the remaining metrics. The MI and VI yielded 
more than 10 dynamically connected region pairs for window sizes 
larger than 80 and 110 s for the test–retest datasets, respectively.

F I G U R E  3   The variance of windowed 
metrics as a function of window size, 
for all examined functional connectivity 
metrics, sharply declines for window sizes 
between 20 and 60 s. For larger window 
sizes, variance gradually converges to 
zero. Metrics abbreviations: MI: mutual 
information, VI: variation of information, 
KL: Kullback–Leibler divergence, MTD: 
multiplication of temporal derivatives, 
ICOV: Inverse Covariance

F I G U R E  4   Test–retest reproducibility 
for all examined functional connectivity 
(FC) metrics and window sizes. MI and 
VI yielded the highest correlation of 
dynamic functional connectivity estimates 
between the two datasets, while KL and 
MTD seem to poorly perform in a test–
retest approach, since the correlation 
was lower than the remaining FC 
metrics. Metrics abbreviations: MI: mutual 
information, VI: variation of information, 
KL: Kullback–Leibler divergence, MTD: 
multiplication of temporal derivatives, 
ICOV: Inverse Covariance
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3.4 | Identifying dynamic connections with the 
Posterior Cingulate Cortex

The number of dynamically connected regions should not be inter‐
preted as increased statistical power for each metric and window 
size, due to the absence of a ground truth (Sadia Shakil et al., 2016). 
In Section 3.2, it was suggested from Figure 4, that MI and VI yielded 
high correlation values with respect to dFC estimates between the 
test and retest groups, without considering which specific region 
pairs corresponded to statistically significant dFC.

To identify which metric and window size values are most suit‐
able to use in dFC analyses, results from the study of Chang and 
Glover (2010) were employed. Specifically, in Chang and Glover 
(2010) a seed in the PCC was utilized for examining the presence 
of dynamic connections with both correlated (mPFC, L/R–IP) and 
anticorrelated (L/R insula, L/R dorsolateral prefrontal cortex, L/R 
supramarginal gyrus) brain regions. Analysis based on the wavelet 
transform concluded that coherence and phase coupling between 
these regions and the PCC was variable in time and frequency, pro‐
viding evidence of dFC (Chang & Glover, 2010). In Table 2, results 
are shown for the MVPR method, (the corresponding ones from the 
MVAR technique are illustrated in Table S1 in the Supporting infor‐
mation), focusing on the PCC–mPFC, PCC–R‐IP, and PCC–L‐IP pairs, 
which were commonly identified in Chang and Glover (2010) and 
in the present study. As can be seen, MI and VI identified some of 
the aforementioned pairs (i.e., PCC–R‐IP) as dynamically connected 

using window sizes as small as 40 s. However, to characterize all 
the aforementioned dynamic connections, a window size of 120 s 
was found to be necessary for both datasets, except for the case 
of PCC–L‐IP in Dataset B (retest), where the corresponding FC was 
labeled as stationary. Based on these results, a window size of 120 s 
can be deemed as adequate, since it yielded all these ROI pairs as 
being dynamically connected. In the case of MVAR approach (Table 
S1 in the Supporting information), MI and VI also yielded good per‐
formance with a slightly larger window size (150 s). When utilizing 
MVPR and MTD, all the aforementioned pairs were identified as ex‐
hibiting dFC for window sizes larger than 20 s. Furthermore, some of 
the identified dynamically connected pairs involved the Cerebellum, 
which has been previously characterized as being the least dynamic 
(Zalesky et al., 2014), suggesting that this metric may be overly sen‐
sitive with respect to dFC detection. Finally, the remaining metrics, 
identified only one (e.g., ICOV) or no (e.g., Pearson linear correlation) 
dynamic connections, suggesting that these metrics are less sensi‐
tive with regard to detecting dFC.

3.5 | Identifying dynamic connections between all 
region pairs

To further assess the effect of different FC metrics and window 
size values on the results, we provide a detailed list of the dynami‐
cally connected regions in Table 3, using the MVPR technique. The 
corresponding results from the MVAR approach can be found in 

F I G U R E  5   Number of dynamically connected regions for all functional connectivity metrics and window sizes with the multivariate 
phase randomization (MVPR) approach, using test (upper) and retest (lower) datasets. In general, an increasing window size yielded in more 
dynamically connected regions of interest for all metrics compared to a shorter one, except MTD metric. Metric abbreviations: MI: mutual 
information, VI: variation of information, KL: Kullback–Leibler divergence, MTD: multiplication of temporal derivatives, ICOV: Inverse 
Covariance
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Table S2 in the Supporting information. The third and fifth column 
in Table 3 list the minimum window size which resulted in rejecting 
the null hypothesis for each FC metric and region pair. In all cases, 
the respective region pairs were found to be dynamically connected 
for all window sizes larger than these minimum values, except when 
an indication “†” is provided, for example, the pair mPFC–L‐IP, in the 
retest group, was identified as being dynamically connected using 
Pearson partial correlation and window sizes [120s,130s]. In the lat‐
ter case, the “window size” column reports the range of window 
length, whereby the corresponding regions yielded dFC. The results 
obtained by employing the MTD metric were different in terms of 
the identified dynamic connections; that is, if a pair was identified 
as dynamically connected for a particular window size, the same 
pair was identified as exhibiting stationary FC for a larger window 
size. This was also shown in Figure 5, where the number of dynami‐
cally connected regions identified with MTD did not increase with 
an increasing window size. Therefore, all dynamic connections of 
MTD are presented in Figures S4 and S5 in the Supporting informa‐
tion, for all window sizes and the test–retest datasets respectively. 
All metrics identified region pairs among the frontal lobe, posterior 
cingulate cortex as well as the inferior parietal lobes and precuneus 
as exhibiting dynamic associations during the scanning session, 
which are generally in line with previously reported results (Chang 
& Glover, 2010; Zalesky et al., 2014). However, this delineation of 
pairs exhibiting dFC occurs at different window sizes for each FC 
metric.

The results of Table 3 are also visualized in Figures 6 and 7 in 
the form of 13×13 matrices, for the test and retest datasets, re‐
spectively. Red color denotes the pair of regions exhibiting dFC and 
blue color indicates the region pairs which were not found to be 

dynamically connected (H0 could not be rejected). The left panels 
of Figures 6 and 7 present the results of hypothesis testing for the 
minimum window size for which any dynamic connections were de‐
tected, that is, 20 s for all metrics except Pearson and Spearman par‐
tial correlation (Figure 6b,e), for which this size was found to be 60 s. 
In agreement to Table 3, smaller window sizes yielded a lower num‐
ber of dynamically connected regions. The right column of Figures 
6 and 7 corresponds to the window size above which no additional 
dynamically connected regions were identified (third and fifth col‐
umn of Table 3).

The results of hypothesis testing as presented in Figures 6 and 7, 
display a binary outcome: H0 rejected or accepted. Therefore, they 
do not specify which connections are more dynamic in comparison 
to others. To this end, we show the averaged (over all subjects within 
test and retest datasets) obtained variance of windowed metric 
values for all significant dynamic connections in Table 4, which il‐
lustrates in detail the dFC strength of significantly dynamic edges 
in descending order. Table 4 suggests that specific region pairs ex‐
hibit more pronounced dFC, suggesting that they exhibited higher 
dFC values (variance of windowed metric values—see also Section 
2.8) compared to other pairs using the same FC metric – note that 
they should not be interpreted as isolated numbers. For instance, in 
Table 4, a dFC strength value of 0.0265 (mPFC–Prec pair in Dataset 
A) using Pearson linear correlation, compared to values from the 
same metric, for example, from 0.0245 (mPFC–L‐IP pair in Dataset 
A) to 0.0183 (R‐MFG–Prec pair in Dataset A), provides evidence of 
a stronger dFC for the mPFC–Prec pair relative to other pairs, for 
example, mPFC–L‐IP, using Pearson linear correlation.

Region pairs exhibiting more pronounced dFC include connec‐
tions of mPFC with Prec, R‐IP, L‐IP, as well as connections between 

TA B L E  2   Connections with the PCC identified as dynamic using the sliding window approach for all examined FC metrics, using the 
MVPR approach

MVPR

Metric

PCC–mPFC PCC–R‐IP PCC–L‐IP

Dataset A Dataset B Dataset A Dataset B Dataset A Dataset B

Pearson linear correlation – – – – – –

Pearson partial linear 
correlation

– – – – – –

Inverse Covariance matrix ≥20 s ≥20 s – – – –

Spearman rank correlation – – – ≥120 s – –

Spearman partial rank 
correlation

– ≥120 s – – – –

Kendall correlation – – – ≥70 s ≥140 s –

Mutual Information ≥70 s ≥120 s ≥40 s ≥90 s ≥100 s –

Variation of Information ≥70 s ≥120 s ≥40 s ≥90 s ≥90 s –

Kullback–Leibler – – – – – –

Multiplication of Temporal 
Derivatives

≥20 s ≥20 s ≥20 s ≥20 s ≥20 s ≥20 s

Note. L‐IP: Left Inferior Parietal; mPFC: medial prefrontal cortex; MVPR: multivariate phase randomization; PCC: posterior cingulate cortex; R‐IP: right 
inferior parietal.
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TA B L E  3   Dynamically connected region pairs identified using the sliding window and MVPR approach for different FC metrics and 
window sizes. In all cases, dFC between regions listed in the second and fourth column were detected for all window sizes larger than the 
value reported in the third and fifth column, respectively, unless indicated with “†.” In the latter case the “window size” column reports the 
range of window length whereby the corresponding regions yielded dFC

Metric

Dataset A Dataset B

Dynamically connected 
regions Window size (s)

Dynamically connected 
regions Window size (s)

Pearson linear correlation mPFC–R‐IP ≥20 mPFC–R‐IP ≥20

mPFC–L‐IP ≥40 mPFC–L‐IP ≥30

mPFC–Prec ≥20 mPFC–Prec ≥20

PCC–Prec ≥100 PCC–Prec ≥60

L‐IP–R‐MFG ≥140 L‐IP–R‐MFG ≥110

L‐IP(2)–Prec ≥30 L‐IP(2)–Prec ≥30

R‐MFG–Prec ≥140 R‐MFG–Prec ≥150

– – mPFC–L‐MFG ≥40

– – R‐IP–L‐IP(2) ≥70

Pearson linear partial 
correlation

mPFC–R‐IP ≥70 mPFC–R‐IP ≥20

mPFC–Prec ≥60 mPFC–Prec ≥20

PCC–Prec ≥140 PCC–Prec ≥60

– – mPFC–L‐IP (†) [120, 130]

Inverse Covariance mPFC–PCC ≥20 mPFC–PCC ≥20

mPFC–R‐MFG ≥60 mPFC–R‐MFG ≥70

L‐IP–Prec ≥60 L‐IP–Prec ≥120

– – R‐IP–Prec ≥80

– – R‐IP–R‐MFG ≥120

Spearman rank correlation mPFC–R‐IP ≥20 mPFC–R‐IP ≥20

mPFC–L‐IP ≥40 mPFC–L‐IP ≥30

mPFC–Prec ≥30 mPFC–Prec ≥20

PCC–Prec ≥100 PCC–Prec ≥60

L‐IP–R‐MFG ≥130 L‐IP–R‐MFG ≥110

L‐IP(2)–Prec ≥40 L‐IP(2)–Prec ≥40

– – R‐IP–L‐IP(2) ≥80

– – mPFC–L‐MFG ≥40

– – PCC–R‐IP ≥120

Spearman rank partial 
correlation

mPFC–R‐IP ≥110 mPFC–R‐IP ≥30

mPFC–Prec ≥60 mPFC–Prec ≥20

PCC–Prec ≥150 PCC–Prec ≥50

mPFC–L‐MFG ≥120 mPFC–R‐MFG ≥150

– – mPFC–PCC ≥120

– – mPFC–L‐IP ≥90

Kendall correlation mPFC–R‐IP ≥20 mPFC–R‐IP ≥20

mPFC–L‐IP ≥40 mPFC–L‐IP ≥20

mPFC–Prec ≥20 mPFC–Prec ≥20

mPFC–L‐MFG ≥60 mPFC–L‐MFG ≥30

PCC–Prec ≥70 PCC–Prec ≥40

PCC–L‐MFG ≥150 PCC–L‐MFG ≥80

L‐IP–R‐MFG ≥100 L‐IP–R‐MFG ≥100

(Continues)
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Metric

Dataset A Dataset B

Dynamically connected 
regions Window size (s)

Dynamically connected 
regions Window size (s)

L‐IP(2)–Prec ≥50 L‐IP(2)–Prec ≥80

R‐MFG–Prec ≥100 R‐MFG–Prec ≥110

PCC–L‐IP ≥140 PCC–R‐IP ≥70

– – R‐IP–L‐IP(2) ≥90

Mutual information mPFC–PCC ≥70 mPFC–PCC ≥120

mPFC–R‐IP ≥30 mPFC–R‐IP ≥80

mPFC–L‐IP ≥80 mPFC–L‐IP ≥120

mPFC–R‐MFG ≥90 mPFC–R‐MFG ≥140

mPFC–Prec ≥60 mPFC–Prec ≥70

PCC–R‐IP ≥40 PCC–R‐IP ≥90

PCC–Prec ≥80 PCC–Prec ≥100

R‐IP–L‐IP ≥20 R‐IP–L‐IP ≥20

R‐IP–R‐MFG ≥70 R‐IP–R‐MFG ≥100

R‐IP–Prec ≥20 R‐IP–Prec ≥20

R‐IP–L‐MFG ≥80 R‐IP–L‐MFG ≥110

L‐IP–Prec ≥40 L‐IP–Prec ≥50

L‐IP–L‐MFG ≥120 L‐IP–L‐MFG ≥150

R‐MFG–Prec ≥90 R‐MFG–Prec ≥110

Prec–L‐MFG ≥90 Prec–L‐MFG ≥110

L‐IP–R‐MFG ≥120 – –

L‐IP(2)–Prec ≥140 – –

L‐Hipp–R‐IP ≥150 – –

L‐Hipp–Prec ≥120 – –

mPFC–L‐MFG ≥120 – –

PCC–L‐IP ≥100 – –

PCC–R‐MFG ≥140 – –

Variation of information mPFC–PCC ≥70 mPFC–PCC ≥120

mPFC–R‐IP ≥30 mPFC–R‐IP ≥80

mPFC–L‐IP ≥80 mPFC–L‐IP ≥120

mPFC–R‐MFG ≥100 mPFC–R‐MFG ≥130

mPFC–Prec ≥60 mPFC–Prec ≥70

PCC–R‐IP ≥40 PCC–R‐IP ≥90

PCC–Prec ≥80 PCC–Prec ≥100

R‐IP–L‐IP ≥20 R‐IP–L‐IP ≥20

R‐IP–R‐MFG ≥70 R‐IP–R‐MFG ≥100

R‐IP–Prec ≥20 R‐IP–Prec ≥20

R‐IP–L‐MFG ≥80 R‐IP–L‐MFG ≥110

L‐IP–Prec ≥40 L‐IP–Prec ≥50

L‐IP–L‐MFG ≥120 L‐IP–L‐MFG ≥150

R‐MFG–Prec ≥90 R‐MFG–Prec ≥110

Prec–L‐MFG ≥90 Prec–L‐MFG ≥110

L‐IP–R‐MFG ≥120 – –

PCC–L‐MFG ≥150 – –
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PCC, R‐IP, L‐IP, and Prec. Particularly, dynamic connections be‐
tween mPFC and Prec, R‐IP, L‐IP were the most prominent and were 
identified using the majority of FC metrics (Pearson full and partial 
correlation, Spearman full and partial correlation, Kendall correla‐
tion, KL divergence, ICOV). On the other hand, connections be‐
tween the R‐IP/L‐IP and Prec were more pronounced in the case of 
MI and VI, while dynamic connections with the mPFC were weaker. 
These differences in dFC strength could be partly attributed to the 
use of different FC metrics for quantifying correlations between 
regions. Finally, it is only meaningful to compare dFC strength val‐
ues for each FC metric. For instance, one cannot directly compare a 
dFC strength value of 0.0265 (mPFC–Prec pair in Dataset A), using 
Pearson linear correlation to the dFC strength value of 0.0142 
(mPFC–Prec pair in Dataset A), using Kendall correlation, due to 
the different nature of these metrics. However, it can be concluded 
that, using two different metrics, the pair mPFC–Prec was sorted 
first among all pairs, suggesting that it is a strongly dynamic con‐
nection in the resting human brain. Moreover, results in Table 4 also 
suggest that FC metrics reproduced previous results regarding the 
most dynamically connected regions, since regions of the frontal 
and inferior parietal lobes were highlighted among those having the 
highest dFC strength (Zalesky et al., 2014). Specifically, in the case 
of MI and VI, the bilateral parietal lobes were found to be involved 

in the most dynamic connections, a result that is in agreement to 
(Zalesky et al., 2014).

4  | DISCUSSION

4.1 | Overview of the current study

The present study rigorously examined the sliding window meth‐
odology for assessing dFC in the DMN using rs‐fMRI data focusing 
on: (a) the effect of window size and (b) the effect of FC metric. To 
this end, a total of 14 window sizes between 20 and 150 s were 
employed, along with 10 FC metrics, some of which, to our knowl‐
edge, have not been used in previous rs‐fMRI studies. To assess the 
presence of dFC, surrogate data based on the MVPR and MVAR 
approaches were used to generate a suitable null hypothesis (dFC 
absence), focusing on the MVPR, as it better preserved proper‐
ties of the initial data (Section 2.3 and Section S2 of Supporting 
information). The obtained results suggest that small window sizes 
(e.g., from 20 to 50 s) yielded relatively few dynamically connected 
regions, while longer windows yielded additional dynamic connec‐
tions (Figures 5‒7 and Table 2). Finally, MI and VI were found to 
yield the most reproducible dFC estimates (Figure 4) compared 
to all other FC metrics, identifying at the same time, dynamic 

Metric

Dataset A Dataset B

Dynamically connected 
regions Window size (s)

Dynamically connected 
regions Window size (s)

L‐IP(2)–Prec ≥140 – –

L‐Hipp–R‐IP ≥150 – –

L‐Hipp–Prec ≥120 – –

mPFC–L‐MFG ≥120 – –

PCC–L‐IP ≥90 – –

PCC–R‐MFG ≥130 – –

Kullback–Leibler divergence mPFC–R‐IP ≥20 mPFC–R‐IP ≥20

mPFC–L‐IP ≥50 mPFC–L‐IP ≥40

mPFC–Prec ≥40 mPFC–Prec ≥20

mPFC–L‐MFG ≥100 mPFC–L‐MFG ≥70

R‐IP–L‐IP(2) (†) [30, 120] R‐IP–L‐IP(2) (†) 20, [70, 150]

L‐IP(2)–Prec ≥20 L‐IP(2)–Prec ≥20

L‐IP–L‐IP(2) ≥150 PCC–Prec ≥110

Cer–mPFC ≥150 PCC–L‐MFG ≥130

L‐Hipp–Prec ≥150 – –

R‐IP–ACG ≥90 – –

Multiplication of Temporal 
Derivatives

a  a  a  a 

Note. ACG: anterior cingulate gyrus; Cer: cerebellum; dFC: dynamic functional connectivity; FC: functional connectivity; L‐Hipp: left hippocampus; L‐IP: 
left inferior parietal; L‐MFG: left middle frontal gyrus; mPFC: medial prefrontal cortex; MVPR: multivariate phase randomization; PCC: posterior cingu‐
late cortex; Prec: Precuneus; R‐Hipp: right hippocampus; R‐IP: right inferior parietal; R‐MFG: right middle frontal gyrus; ROI: region of interest; Thal: 
Thalamus.
aPlease refer to Supporting information (Section S4) for all dynamically connected ROI pairs for each window size. 
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F I G U R E  6   Statistical inference on dynamic functional connectivity utilizing the test set with (a) Pearson linear correlation, (b) Pearson 
partial correlation, (c) ICOV, (d) Spearman rank correlation, (e) Spearman partial correlation, (f) Kendall correlation, (g) MI, (h) VI, and (i) 
KL divergence. Left panels correspond to the minimum window size whereby dynamically connected regions were identified, while right 
panels correspond to a window size above which no dynamic connections were highlighted. Results of hypothesis testing using the MTD 
are explicitly shown in Figure S4 of Supporting information, for all window sizes. Metrics abbreviations: ICOV: Inverse Covariance, MI: 
mutual information, VI: variation of information, KL: Kullback–Leibler divergence, MTD: Multiplication of Temporal Derivatives. Regions 
abbreviations: Cer: cerebellum, L‐Hipp: left hippocampus, R‐Hipp: right hippocampus, mPFC: medial prefrontal cortex, Thal: thalamus, PCC: 
posterior cingulate cortex, R‐IP: right inferior parietal, L‐IP: left inferior parietal, L‐IP(2): left inferior parietal–2, ACG: anterior cingulate gyrus, 
R‐MFG: right middle frontal gyrus, Prec: precuneus, L‐MFG: left middle frontal gyrus
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connections that have been previously reported in the literature 
(Chang & Glover, 2010; Zalesky et al., 2014), using a window size 
larger than 120s (Table 2).

4.2 | Previous work and comparison to the 
present study

In a recent study, Shakil et al. (2016) investigated the effect of dif‐
ferent sliding window parameters, that is, window size, step and 
type on the assessment of dFC and the detection of brain states. 
The authors employed simulated resting‐state networks created by 

segmenting real BOLD responses at predefined time points and mix‐
ing the resulting time‐series to form an experimental setting where 
the transitions from one brain state to the other were known. Their 
results suggested that detecting brain state transitions was greatly 
affected by the chosen window size and step. Specifically, window 
sizes close to the duration of each state and small window offsets 
resulted in accurate detection of state changes in the simulated net‐
works (Shakil et al., 2016).

In the present study, we sought to answer similar questions using 
experimental data instead of simulated BOLD time‐series, analyz‐
ing a total of 100 high quality rs‐fMRI data, from the HCP project 
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F I G U R E  7   Statistical inference on dynamic functional connectivity utilizing the retest set with (a) Pearson linear correlation, (b) Pearson 
partial correlation, (c) ICOV, (d) Spearman rank correlation, (e) Spearman partial correlation, (f) Kendall correlation, (g) MI, (h) VI, and (i) 
KL divergence. Left panels correspond to the minimum window size whereby dynamically connected regions were identified, while right 
panels correspond to a window size above which no dynamic connections were highlighted. Results of hypothesis testing using the MTD 
are explicitly shown in Figure S5 of Supporting information, for all window sizes. Metrics abbreviations: ICOV: Inverse Covariance, MI: 
mutual information, VI: variation of information, KL: Kullback–Leibler divergence, MTD: Multiplication of Temporal Derivatives. Regions 
abbreviations: Cer: cerebellum, L‐Hipp: left hippocampus, R‐Hipp: right hippocampus, mPFC: medial prefrontal cortex, Thal: thalamus, PCC: 
posterior cingulate cortex, R‐IP: right inferior parietal, L‐IP: left inferior parietal, L‐IP(2): left inferior parietal–2, ACG: anterior cingulate gyrus, 
R‐MFG: right middle frontal gyrus, Prec: precuneus, L‐MFG: left middle frontal gyrus
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(Smith, Beckmann et al., 2013) and dividing them into two separate 
groups of 50 subjects each, for facilitating a test–retest validation 
scheme. The effect of different sizes and metrics on dFC assess‐
ment was investigated. One important difference to the simulation 
study of Shakil et al. (2016) is there is no ground truth; therefore, we 
also compared our results to results reported in the literature. With 
regard to the effect of window size, it was found that an increas‐
ing window size resulted in windowed metric series that gradually 
converged toward their mean value, which was different for each 
metric (Figure 2). Similar observations were reported in Chang and 
Glover (2010), where the authors, additionally to wavelet analysis, 

utilized the sliding window method with Pearson linear correlation 
evaluated in windows of 2 and 4 min and in Hutchison, Womelsdorf, 
Gati et al. (2013). In the latter study, the above mentioned remarks 
were observed using Pearson linear correlation and window sizes 
of 30, 60, 120, and 240 s, for two datasets, that is, awake human 
and anesthetized macaques (Hutchison, Womelsdorf, Gati et al., 
2013). However, this did not result in a larger number of dynamic 
connections for shorter windows; on the contrary, for all examined 
FC metrics, except MTD, a larger number of dynamically connected 
regions were identified for longer windows (Table 3 and Figure 5). 
For some FC metrics, the number of dynamic connections stabilized 
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TA B L E  4   DFC strength of significant edges in descending order, using the MVPR approach

Metric–window size (s)

Dataset A Dataset B

Dynamically connected 
regions dFC strength

Dynamically connected 
regions dFC strength

Pearson linear correlation—150 mPFC–Prec 0.0265 mPFC–Prec 0.0312

mPFC–L‐IP 0.0245 mPFC–R‐IP 0.0304

L‐IP(2)–Prec 0.0241 mPFC–L‐MFG 0.0255

mPFC–R‐IP 0.0234 mPFC–L‐IP 0.0241

PCC–Prec 0.0197 L‐IP(2)–Prec 0.0239

L‐IP–R‐MFG 0.0183 R‐IP–L‐IP(2) 0.0228

R‐MFG–Prec 0.0183 PCC–Prec 0.0223

– – L‐IP–R‐MFG 0.0211

– – R‐MFG–Prec 0.0202

Pearson linear partial 
correlation—140

mPFC–Prec 0.0171 mPFC–R‐IP 0.0174

mPFC–R‐IP 0.0170 mPFC–Prec 0.0171

PCC–Prec 0.0157 PCC–Prec 0.0161

Inverse Covariance—120 L‐IP–Prec 0.0358 mPFC–PCC 0.0359

mPFC–PCC 0.0319 mPFC–R‐MFG 0.0346

mPFC–R‐MFG 0.0313 R‐IP–Prec 0.0341

– – R‐IP–R‐MFG 0.0309

– – L‐IP–Prec 0.0307

Spearman rank correlation—130 mPFC–Prec 0.0297 mPFC–Prec 0.0335

mPFC–L‐IP 0.0276 mPFC–R‐IP 0.0333

L‐IP(2)–Prec 0.0273 mPFC–L‐MFG 0.0285

mPFC–R‐IP 0.0258 mPFC–L‐IP 0.0266

PCC–Prec 0.0226 L‐IP(2)–Prec 0.0258

L‐IP–R‐MFG 0.0218 PCC–Prec 0.0253

– – R‐IP–L‐IP(2) 0.0252

– – L‐IP–R‐MFG 0.0241

– – PCC–R‐IP 0.0234

Spearman rank partial 
correlation—150

mPFC–Prec 0.0155 mPFC–R‐IP 0.0155

mPFC–R‐IP 0.0147 mPFC–Prec 0.0155

mPFC–L‐MFG 0.0143 mPFC–PCC 0.0147

PCC–Prec 0.0141 mPFC–L‐IP 0.0146

– – PCC–Prec 0.0146

– – mPFC–R‐MFG 0.0140

Kendall correlation—150 mPFC–Prec 0.0142 mPFC–Prec 0.0153

mPFC–L‐IP 0.0129 mPFC–R‐IP 0.0149

mPFC–R‐IP 0.0119 mPFC–L‐MFG 0.0129

PCC–Prec 0.0118 PCC–Prec 0.0122

L‐IP(2)–Prec 0.0114 mPFC–L‐IP 0.0118

L‐IP–R‐MFG 0.0105 PCC–R‐IP 0.0113

mPFC–L‐MFG 0.0099 R‐IP–L‐IP(2) 0.0107

R‐MFG–Prec 0.0098 L‐IP–R‐MFG 0.0106

PCC–L‐IP 0.0096 L‐IP(2)–Prec 0.0106

PCC–L‐MFG 0.0096 R‐MFG–Prec 0.0104

– – PCC–L‐MFG 0.0099

(Continues)
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Metric–window size (s)

Dataset A Dataset B

Dynamically connected 
regions dFC strength

Dynamically connected 
regions dFC strength

Mutual information—150 R‐IP–Prec 0.0582 R‐IP–Prec 0.0523

L‐IP–Prec 0.0550 R‐IP–L‐IP 0.0478

R‐IP–L‐IP 0.0501 L‐IP–Prec 0.0478

mPFC–Prec 0.049 mPFC–Prec 0.0454

PCC–Prec 0.0471 mPFC–R‐IP 0.0401

R‐MFG–Prec 0.0458 R‐MFG–Prec 0.0394

Prec–L‐MFG 0.0452 PCC–Prec 0.0388

PCC–R‐IP 0.0437 Prec–L‐MFG 0.0386

mPFC–R‐IP 0.0430 R‐IP–R‐MFG 0.0376

R‐IP–R‐MFG 0.0423 mPFC–PCC 0.0372

mPFC–PCC 0.0415 R‐IP–L‐MFG 0.0365

mPFC–L‐IP 0.0401 mPFC–L‐IP 0.0363

R‐IP–L‐MFG 0.0399 PCC–R‐IP 0.0363

PCC–L‐IP 0.0396 mPFC–R‐MFG 0.0357

mPFC–R‐MFG 0.0393 L‐IP–L‐MFG 0.0346

L‐Hipp–Prec 0.0390 – –

L‐IP–R‐MFG 0.0372 – –

L‐IP–L‐MFG 0.0368 – –

mPFC–L‐MFG 0.0364 – –

PCC–R‐MFG 0.0359 – –

L‐IP(2)–Prec 0.0351 – –

L‐Hipp–R‐IP 0.0336 – –

Variation of information—150 R‐IP–Prec 0.0568 R‐IP–Prec 0.0507

L‐IP–Prec 0.0542 L‐IP–Prec 0.0469

mPFC–Prec 0.0486 R‐IP–L‐IP 0.0465

R‐IP–L‐IP 0.0486 mPFC–Prec 0.0448

PCC–Prec 0.0460 mPFC–R‐IP 0.0393

R‐MFG–Prec 0.0452 R‐MFG–Prec 0.0390

Prec–L‐MFG 0.0444 PCC–Prec 0.0385

PCC–R‐IP 0.0430 Prec–L‐MFG 0.0379

mPFC–R‐IP 0.0424 R‐IP–R‐MFG 0.0373

mPFC–PCC 0.0411 mPFC–PCC 0.0366

R‐IP–R‐MFG 0.0411 R‐IP–L‐MFG 0.0360

mPFC–L‐IP 0.0394 PCC–R‐IP 0.0358

R‐IP–L‐MFG 0.0394 mPFC–L‐IP 0.0357

PCC–L‐IP 0.0393 mPFC–R‐MFG 0.0355

L‐Hipp–Prec 0.0386 L‐IP–L‐MFG 0.0339

mPFC–R‐MFG 0.0386 – –

L‐IP–R‐MFG 0.0366 – –

L‐IP–L‐MFG 0.0360 – –

mPFC–L‐MFG 0.0358 – –

PCC–R‐MFG 0.0357 – –

L‐IP(2)–Prec 0.0347 – –
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Metric–window size (s)

Dataset A Dataset B

Dynamically connected 
regions dFC strength

Dynamically connected 
regions dFC strength

L‐Hipp–R‐IP 0.0330 – –

PCC–L‐MFG 0.0330 – –

Kullback–Leibler divergence—120 mPFC–R‐IP 0.0115 mPFC–R‐IP 0.0134

mPFC–L‐IP 0.0105 mPFC–Prec 0.0120

mPFC–Prec 0.0100 mPFC–L‐IP 0.0110

L‐IP(2)–Prec 0.0097 mPFC–L‐MFG 0.0108

R‐IP–ACG 0.0091 L‐IP(2)–Prec 0.0108

mPFC–L‐MFG 0.0089 R‐IP–L‐IP(2) 0.0104

Cer–mPFC 0.0086 PCC–L‐MFG 0.0096

L‐IP–L‐IP(2) 0.0085 PCC–Prec 0.0095

L‐Hipp–Prec 0.0084 – –

Multiplication of Temporal 
Derivatives—150

PCC–R‐IP 0.0329 mPFC–R‐MFG 0.0434

R‐IP–Prec 0.0290 mPFC–L‐MFG 0.0313

mPFC–R‐MFG 0.0286 PCC–Prec 0.0206

PCC–Prec 0.0264 R‐IP–L‐IP 0.0201

mPFC–R‐IP 0.0252 mPFC–Prec 0.0196

mPFC–Prec 0.0212 mPFC–PCC 0.0192

mPFC–PCC 0.0205 R‐MFG–L‐MFG 0.0188

mPFC–L‐MFG 0.0183 mPFC–R‐IP 0.0177

R‐IP–L‐MFG 0.0179 PCC–L‐MFG 0.0177

R‐IP–L‐IP 0.0177 mPFC–L‐IP 0.0174

R‐IP–L‐IP(2) 0.0156 R‐IP–Prec 0.0154

R‐IP–R‐MFG 0.0153 R‐IP–R‐MFG 0.0147

mPFC–L‐IP 0.0152 PCC–R‐IP 0.0146

Prec–L‐MFG 0.0152 PCC–L‐IP 0.0144

PCC–L‐MFG 0.0150 PCC–R‐MFG 0.0131

PCC–R‐MFG 0.0136 R‐MFG–Prec 0.0129

R‐MFG–Prec 0.0135 L‐IP–Prec 0.0127

PCC–L‐IP 0.0127 L‐Hipp–Prec 0.0115

L‐IP–Prec 0.0126 R‐Hipp–Thal 0.0115

Cer–R‐IP 0.0124 mPFC–Thal 0.0114

R‐MFG–L‐MFG 0.0123 Prec–L‐MFG 0.0114

Cer–PCC 0.0120 L‐IP–R‐MFG 0.0112

L‐IP(2)–Prec 0.0117 L‐IP–L‐IP(2) 0.0108

L‐Hipp–PCC 0.0116 L‐Hipp–R‐Hipp 0.0106

L‐IP–L‐IP(2) 0.0113 Cer–mPFC 0.0102

PCC–L‐IP(2) 0.0111 R‐Hipp–Prec 0.0102

L‐IP–R‐MFG 0.0104 L‐Hipp–mPFC 0.0099

Cer–Prec 0.0102 mPFC–L‐IP(2) 0.0099

L‐Hipp–Prec 0.0098 Cer–PCC 0.0096

mPFC–L‐IP(2) 0.0098 R‐IP–L‐IP(2) 0.0096

L‐Hipp–R‐Hipp 0.0093 L‐IP–L‐MFG 0.0096
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above a minimum window length value that was both region‐ and 
metric‐specific (Figures 6 & 7 and Table 3).

4.3 | Number of dynamically connected region pairs

One important observation from the present study is that an in‐
creasing window size for almost all examined metrics yielded a 
larger number of dynamically connected region pairs for both MVPR 
(Figure 5) and MVAR (Figure S3 of Supporting information), except 
for MTD combined with MVPR. This can be justified by the fact 
that larger window sizes are able to capture slower fluctuations at 
a greater extent compared to shorter windows, whereby only faster 
oscillations can be captured, suggesting that low frequency compo‐
nents are more important for assessing dFC from rs‐fMRI compared 
to high frequency FC fluctuations (Achard, Salvador, Whitcher, 
Suckling, & Bullmore, 2006; Biswal, Zerrin Yetkin, Haughton, & 
Hyde, 1995; Salvador et al., 2005; Zou et al., 2008). In line with this, 
in Chang and Glover (2010), it was shown that regions strongly cor‐
related to the PCC (mPFC, L/R–IP) exhibited dFC at a peak frequency 
of f≈0.016Hz, further supporting the remark of dominant low fre‐
quency components in the context of assessing dFC.

The segregation of the examined region pairs to dynamic and 
nondynamic also suggests that the DMN network may be function‐
ally divided into multiple subsystems (Andrews‐Hanna et al., 2010; 
Andrews‐Hanna, Smallwood, & Spreng, 2014). The employed meth‐
odology considered the DMN as a single entity using a 13‐variable 
model for constructing surrogate data and aggregating all 78 individ‐
ual null distributions to a single one. However, recent work proposed 
that this approach (considering the DMN as a single entity) may be 
somewhat simplistic, suggesting that the DMN can be divided into 
three distinct subsystems: the medial temporal (hippocampus, para‐
hippocampal cortex, retrosplenial cortex, posterior inferior parietal 
lobe, and ventromedial prefrontal cortex), the dorsal medial (dorsal 
medial prefrontal cortex, temporoparietal junction, lateral temporal 
cortex, and the temporal pole), and the midline core (anterior medial 
prefrontal cortex and posterior cingulate cortex) (Andrews‐Hanna et 
al., 2010). Specifically, in Andrews‐Hanna et al., (2010), this hypothe‐
sis was examined using a hierarchical clustering approach and it was 
suggested that the medial temporal and dorsal medial subsystems 
were both highly correlated with the midline core, signifying that the 

DMN may be organized in different subsystems. For a more com‐
prehensive discussion please refer to Andrews‐Hanna et al., (2014). 
This subsystem organization may be reflected on the presence of 
differentially dynamic connections between different region pairs 
within the DMN. The current set of methods, that is, the formulated 
hypothesis testing, only allows the distinction between two con‐
ditions which are as follows: dFC absence or presence for a given 
confidence level and therefore, a similar to the above reported dis‐
tinction (DMN divided into three subsystems) cannot be obtained. 
Future work should address this by separating the initial 13 regions 
to three groups and examining dFC within these subsystems.

MTD yielded a large number (≥25) of dynamically connected 
pairs (Figure 5) using window sizes as small as 20 s, involving con‐
nections with the PCC (Table 2), as well as connections with the 
Cerebellum (Section S4 of Supporting information), which has been 
previously characterized as being the least dynamic (Zalesky et al., 
2014). These results suggest that MTD may be overly sensitive with 
respect to dFC detection. One possible reason is that, as MTD relies 
on derivatives, it may be affected more by fast fluctuations in FC 
metrics and may also tend to amplify them, resulting in the identifi‐
cation of dFC even when using short window sizes, whereby larger 
fluctuations in FC values cannot be captured. However, this seems 
to result in spurious dFC estimation, as implied by the obtained re‐
sults (Figure 5; Table 2 and Section S4 of Supporting information).

4.4 | Suitability of FC metrics and window sizes for 
identifying dFC

To better identify the metrics and window sizes that are best suited 
for rs‐fMRI dFC analyses, results from the study of Chang and 
Glover (2010) were employed for further comparison. Specifically, 
Chang and Glover (2010) utilized a seed in the PCC for examining the 
presence of dynamic connections with both correlated (mPFC, L/R–
IP) and anticorrelated (L/R insula, L/R dorsolateral prefrontal cortex, 
and L/R supramarginal gyrus) brain regions. To assess the presence 
of dFC, Chang and Glover (2010) estimated the wavelet transform 
of each BOLD signal for each region separately, as well as the cross 
wavelet spectrum between each region pair. Individual and cross 
wavelet transforms were then combined to estimate WTC—a meas‐
ure of correlation in the time‐frequency domain similar to Pearson 

Metric–window size (s)

Dataset A Dataset B

Dynamically connected 
regions dFC strength

Dynamically connected 
regions dFC strength

L‐Hipp–R‐IP 0.0091 – –

PCC–ACG 0.0087 – –

L‐IP–L‐MFG 0.0086 – –

R‐Hipp–Thal 0.0085 – –

Note. ACG: anterior cingulate gyrus; Cer: cerebellum; dFC: dynamic functional connectivity; L‐Hipp: left hippocampus; L‐IP: left inferior parietal; L‐MFG: 
left middle frontal gyrus; mPFC: medial prefrontal cortex; MVPR: multivariate phase randomization; PCC: posterior cingulate cortex; Prec: Precuneus; 
R‐Hipp: right hippocampus; R‐IP: right inferior parietal; R‐MFG: right middle frontal gyrus; ROI: region of interest; Thal: Thalamus.
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correlation (Chang & Glover, 2010; Grinsted, Moore, & Jevrejeva, 
2004). Subsequently, high coherence areas in WTC maps were high‐
lighted to yield Time‐Averaged Coherence (TAC) curves, which dis‐
played peaks at particular frequencies, for example, f=0.016Hz and 
f=0.03Hz, (Section 4.3) indicating that each examined region pair 
interacted at different timescales, thus providing evidence of dFC 
(Chang & Glover, 2010).

Table 2 illustrates the PCC correlated regions from the study 
of Chang and Glover (2010) and the window sizes for which they 
were identified as dynamically connected using all FC metrics. For 
instance, the pair PCC–R‐IP was identified as dynamically con‐
nected with MI and VI using a window size of 40s in the test data‐
set. Simultaneously, the remaining pairs (PCC–mPFC and PCC–L‐IP) 
were characterized as exhibiting stationary FC using a window size 
of 40 s, while in the study of Chang and Glover (2010), they were 
identified as being dynamically connected.

In another study, Zalesky et al. (2014) employed a whole‐brain 
approach based on the Automated Anatomical Labeling (AAL) atlas 
with 6,670 unique pairs along with the sliding window technique. 
Pearson linear correlation combined with an exponential window 
size of 60s was used for identifying a set of 19 regions characterized 
as “consistently dynamic,” belonging to frontal and parietal areas of 
the brain. Their results are in general agreement with our results 
(Figures 6 & 7; Tables 2 & 3) (Zalesky et al., 2014). Specifically, MI and 
VI identified dynamic connections belonging to frontal and parietal 
areas (Figures 6 & 7 and Table 2), while the same metrics also iden‐
tified parietal regions as having the highest dFC strength (Table 4), 
which is in agreement to Zalesky et al. (2014).

4.5 | Surrogate data methodologies

A significant point in question was which methodology should be 
employed in order to produce randomized copies for hypothesis 
testing (surrogate data). There are two main approaches in the litera‐
turewhich includes: Auto‐Regressive (AR) and Phase Randomization 
(PR) methods. Also, the AR method includes both a bivariate (Chang 
& Glover, 2010; Zalesky et al., 2014) and a multivariate (Liégeois et al., 
2017) variant. The bivariate AR approach considers all pairs of time‐
series and generates null data for each region combination separately. 
The bivariate AR procedure was examined in Zalesky et al. (2014), 
whereby it was reported that the null hypothesis of stationarity was 
successfully rejected for only ~4% of the examined pairs (293 out of 
6,670). This result was also validated in a recent study utilizing bivari‐
ate AR, where it was reported that ~4.6% of the considered region 
pairs (306 out of 6,441) were detected as exhibiting dFC (Liégeois  
et al., 2017). However, the same study advised caution in the inter‐
pretation of results as derived from bivariate AR surrogates, as the 
latter may introduce false positives compared to MVAR surrogates. 
This was also shown using simulated data (Liégeois et al., 2017). Using 
real data along with the MVAR method, Liégeois et al. (2017) reported 
that less than 40 region pairs (out of 6,441) were identified as dynami‐
cally connected (Liégeois et al., 2017). In the current study, the MVAR 
method was implemented based on a 13‐variable MVAR model.

The rs‐fMRI literature has also employed the PR randomiza‐
tion framework for constructing null hypothesis data (Hindriks et 
al., 2016). This procedure considers a set of time‐series which are 
suitably processed in order to yield a set of randomized data, the 

F I G U R E  8   Average number of dynamically connected regions across all functional connectivity metrics, for each window size using the 
multivariate auto‐regressive and multivariate phase randomization surrogate methods
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auto‐covariance structure of which is the same as the initial data 
(Prichard & Theiler, 1994). As before, a bivariate or MVPR approach 
can be used for generating surrogate data. We primarily focused on 
the MVPR approach as it better preserved properties (auto‐cova‐
riance, stationary cross‐correlation, power spectral density, cross 
power spectral density, and amplitude distribution) of the initial data 
(Figure S2 in the Supporting information). Overall, the number of dy‐
namically connected regions was found to be larger compared to the 
MVAR approach, which contradicts Liégeois et al. (2017), where it 
was found that the MVAR approach yielded more dynamic connec‐
tions compared to the MVPR. This difference is mainly attributed to 
the MTD metric, as some discrepancies were observed compared to 
the MVAR approach. Figure 8 shows the average number of dynamic 
connections across all metrics for each examined window size. It can 
be seen that the MVPR method yields a larger average number of 
dynamically connected regions compared to MVAR.

4.6 | Null hypothesis distributions

To conclude whether an examined region pair exhibits dFC, the defi‐
nition of a null distribution through randomization of initial BOLD 
time‐series is required. In the present study, two options were im‐
plemented for hypothesis testing; one null distribution for each re‐
gion pair and a single null distribution for all pairs. The latter was 
achieved by aggregating the 78 distributions into a single one con‐
sisting of 19,500 values. In Section S5 of Supporting information, ex‐
amples of the resulting null hypotheses are provided for both cases, 
which generally yielded different results. Specifically, the usage of 
a single distribution for each region pair resulted in rejecting H0 for 
almost all region pairs for small window sizes and for all region pairs 
using larger window sizes. This result was observed for all employed 
metrics. Therefore, the results presented above using a single null 
distributions support earlier studies for aggregating the individual 
null hypothesis distributions (Zalesky et al., 2014).

4.7 | Study limitations

An important parameter of the sliding window methodology is the 
window size and previous studies reported how it affected the re‐
sulting windowed correlations relative to the frequency component 
of the initial signals (Leonardi & Van De Ville, 2015; Shakil et al., 
2015, 2018). In these latter studies, BOLD signals were modeled as 
a sum of sinusoidal signals and analytical derivation of their correla‐
tion was possible, resulting in a precise definition of the frequen‐
cies in each windowed correlation time‐series. Subsequent analysis 
suggested that the window size should be larger than the inverse 
frequency of the minimum frequency present in initial signals (Shakil 
et al., 2015, 2018). In the present study, such an approach was not 
considered for avoiding additional assumptions. Instead, we as‐
sessed the performance of different FC metrics with respect to the 
test–retest reproducibility of dFC estimates, as well as the resulting 
dynamically connected region pairs as compared to previous results 
(Chang & Glover, 2010; Zalesky et al., 2014).

The fact that Pearson linear and partial correlation metrics were 
found to be the least sensitive, in terms of identifying previously re‐
ported dynamic connections (Table 2) is remarkable since the majority 
of previous studies have relied on this metric to examine dFC. One pos‐
sible reason for this could be that Pearson correlation quantifies linear 
correlations between the examined variables, a condition which may 
not be always met when examining BOLD signals, i.e., some regions 
of the brain may be nonlinearly correlated. The results of the present 
study suggest that Pearson correlation may yield decreased sensitiv‐
ity when detecting dFC; however, they should not be interpreted as a 
negative criticism on studies using these metrics or (Leonardi & Van De 
Ville, 2015; Shakil et al., 2015, 2018), where a mathematical approach 
was employed, setting the basis for a more systematic and analytical 
approach for dFC estimation. We suggest that MI and VI should be 
used along with Pearson correlation and the obtained results should 
be reported and compared.

Moreover, MI and VI also have their own limitations. For instance, 
to obtain a reliable estimate, each window must contain an adequate 
number of data points. From the presented results (Table 2), it is sug‐
gested that at least 160≈120∕TR (TR=0.72s) data points were able 
to yield a reliable estimate. In an experimental setting with a 5‐minute 
scanning session and a TR=2.5s, the total number of available data 
points would be 120. In this case, the usage of MI in sliding windows 
may not produce reliable estimates, due to the limited number of time 
points in each window, while the Pearson correlation may be more ro‐
bust in the presence of a relatively low number of data points.

5  | CONCLUSIONS

In this study, a thorough examination of dFC in the DMN using high 
quality rs‐fMRI data with sub‐second sampling rate was performed, 
by employing a sliding window approach along with 10 FC metrics 
over a wide range of window sizes. The purpose was to examine 
how different window sizes and FC metrics affect dFC assessment. 
To achieve this, a hypothesis testing framework was applied using 
surrogate data based on MVPR and MVAR approaches, focusing on 
the MVPR technique as it better preserved properties of the initial 
data. The obtained results suggest that MI and VI were able to yield 
more reproducible results in a test–retest analysis, as well as identify 
previously reported dynamic connections within the DMN, com‐
pared to alternative metrics, using a window size larger than 120 s. 
Additionally, since these two metrics have not been utilized in previ‐
ous rs‐fMRI studies, as opposed to Pearson linear correlation, it is 
also suggested to jointly apply them and report their results.
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