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Background: Ischemic heart diseases are a major cause of death worldwide. Different
animal models, including cardiac surgery, have been developed over time. Unfortunately,
the surgery models have been reported to trigger an important inflammatory response
that might be an effect modifier, where involved molecular processes have not been fully
elucidated yet.

Objective: We sought to perform a thorough characterization of the sham effect in
the myocardium and identify the interfering inflammatory reaction in order to avoid
misinterpretation of the data via systems biology approaches.

Methods and Results: We combined a comprehensive analytical pipeline of mRNAseq
dataset and systems biology analysis to characterize the acute phase response of
mouse myocardium at 0 min, 45 min, and 24 h after surgery to better characterize
the molecular processes inadvertently induced in sham animals. Our analysis showed
that the surgical intervention induced 1209 differentially expressed transcripts (DETs).
The clustering of positively co-regulated transcript modules at 45 min fingerprinted the
activation of signalization pathways, while positively co-regulated genes at 24 h identified
the recruitment of neutrophils and the differentiation of macrophages. In addition, we
combined the prediction of transcription factors (TF) regulating DETs with protein-
protein interaction networks built from these TFs to predict the molecular network which
have induced the DETs. By mean of this retro-analysis of processes upstream gene
transcription, we revealed a major role of the Il-6 pathway and further confirmed a
significant increase in circulating IL-6 at 45 min after surgery.

Conclusion: This study suggests that a strong induction of the IL-6 axis occurs in
sham animals over the first 24 h and leads to the induction of inflammation and tissues’
homeostasis processes.
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INTRODUCTION

In the widely used mouse or rat in vivo models of acute
myocardial infarction, access to the heart requires chest opening
usually following either sternotomy or rib breaking. These
surgery interventions, as well as the time delay up to the end of
the experiment, trigger local and systemic reaction that might act
as a confounding factor when exploring the pathophysiology of
ischemia-reperfusion injury. Michael et al. (1985) reported that
surgical trauma induces the release of glycogen phosphorylase
and creatine kinase enzymes in the lymph of dogs subjected to
open-chest surgery. Nossuli et al. (2000) showed that surgical
procedure induces significant variations in the expression
profiles of inflammatory cytokines, such as IL-6 and TNF-α,
in mouse heart. Genomic profiling of the mouse blood cells at
6 h post-surgery displayed a noteworthy change in the gene
expression profiles (Coon et al., 2010). More recently, a study
by Hoffmann et al. (2014) showed that sham-operated and MI
animals display a similar monocyte and granulocyte circulation
pattern over time, resulting in a background inflammatory
response which prohibited the assessment of the MI-induced
inflammatory response.

Unfortunately, myocardial transcriptomic studies seldom
analyzed the gene modifications induced by the surgery
procedure itself (Harpster et al., 2006; Roy et al., 2006) and to
the best of our knowledge the influence of the “cytokine storm”
on the modification of genes expression in cardiac cells has not
been deciphered.

Therefore, we combined freely available R packages and
databases in order to analyze a kinetic dataset of sham
animals in order (1) to identify immune cells recruitment
and differentiation in the acute phase (within first 24 h after
surgery), and, (2) to identify the main cytokine/signalization
pathways/transcription factors controlling the modifications in
DETs. Our pipeline includes sorting out differential expressed
transcripts, gene ontology analysis, time-dependent clustering
of co-regulated transcripts, cross-identification of transcription
factors (TFs) involved in the expression of transcript
clusters and finally prediction of TFs-based protein-protein
interaction (PPI) networks.

In one hand, we took advantage of the gene clustering achieved
by weighted gene co-expression network analysis WGCNA
(Langfelder and Horvath, 2008) to isolate the different temporal
groups of transcripts prior to analyzing their GO terms and
comparing them to the ones predicted from the whole list of
DETs. We identified inflammation and immune responses as
major biological processes that involved neutrophil, monocyte
and macrophage cell markers. In the other hand, we figured out
the history of DETs by retrieving the TFs most likely involved
in DETs regulation prior to predicting the most probable PPI
networks that could rule the activity of the highly enriched TFs.
As a result, we identified a group of highly similar networks
whose main characteristic was to predict a master role of
interleukine-6 (IL-6) as a regulator of the selected TFs and
DETs. We validated these numerical predictions by measuring
IL-6 in the plasma of mice subjected to the transcriptomic
analysis where a strong induction 45 min post-surgery was

detected. Throughout our transcriptomic analysis and functional
validation, we confirmed that surgery per se induces a strong
inflammatory response. It also induces the recruitment of
neutrophils to the myocardium and macrophages’ phenotypic
changes at 24 h through the IL-6 signalization pathway.

MATERIALS AND METHODS

Mouse Surgery Model
Male C57BL/6J mice, aged 8–12 weeks and weighing 20–
30 g were obtained from Charles River Laboratories (L’arbresle,
France). Mice were housed in the animal facility of the laboratory
in a controlled environment with standard cycle of 12 h
light/12 h dark and had free access to water and standard diet.
Animals were anesthetized with pentobarbital (73 mg/kg) intra-
peritoneally accompanied with (0.075 mg/kg) of buprenorphine
as an analgesic. Mice were intubated orally and ventilated via
a rodent ventilator. Rectal thermometer was used to monitor
body temperature that was maintained within normal range by
means of a heating pad. Left thoracotomy was performed and
a small curved needle with an 8-0 polypropylene suture was
passed, under a Euromex microscope, around the left anterior
descending coronary artery. The suture was not tied and was
removed after 0 or 45 min. A third group of mice underwent chest
closure after 45 min and were kept alive for 24 h post-surgery.

This study was approved by the Ethics Committee of the
Université Claude Bernard Lyon 1 (Approval number DR2017-
48) in compliance with NIH Guide on the Use of Laboratory
Animals (NIH Publication No. 85-23, revised 1996).

Tissue Collection and RNA Extraction
Animals (n = 8 per time point) were randomly assigned to each
group. At t = 0, 45 min, and 24 h post-surgery, mice were
anesthetized and euthanized, hearts were harvested and the left
ventricle was dissected to maximally provide the myocardium
known to be at risk in ischemic hearts. Myocardium samples were
placed in RNAlater stabilizing solution (Ambion, Thermo Fisher
Scientific) and stored at−80◦C until use.

RNA was extracted by Tripure reagent solution (Roche),
treated with Proteinase K (Qiagen) and purified by RNeasy
Mini kit (Qiagen) where DNase I (Qiagen) is treated on
column. RNA purity, quantity and integrity were assessed
both by spectrophotometry (NanoDrop ND-1000, NanoDrop
Technologies) and nanoelectrophoresis (2100 Bioanalyzer,
Agilent Technologies). RNA purity: A260/280 ∼ 1,8 and A260/230
∼ 2 and RNA integrity number: 8–10.

RNA Sequencing
Purified RNA samples were provided to ProfileXpert, Inc., for
library construction and sequencing. Quality and quantity checks
were performed by means of Fragment Analyzer (Agilent) and
QuantiFluor RNA dye (Promega). Library construction was
carried out using NextFlex Rapid Directional mRNA-Seq (Bioo-
Scientific, PerkinElmer Company) following the manufacturer
protocol. Libraries were applied to an Illumina flow cell High and
run on the Illumina Nextseq 500 as a single end read for 76 pb.
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On average, 12 samples were loaded to each flow cell. Image
analysis and base calling was carried out using the NCS 2.0.2 and
RTA 2.4.11 Illumina software suite implemented on the Illumina
sequencing machine. Final file formatting, demultiplexing, and
fastq generation were carried out using Bcl2fastq v2.17.1.14.

Bioinformatic Analysis
Trimming of reads was performed using cutadapt v1.9.1 software
(Martin, 2011). Then the reads were mapped to the mm10
genome using TopHat v2.1.0 (Kim et al., 2013) software
with default parameters (bowtie 2.2.9; Langmead and Salzberg,
2012). Reads were counted using htseq-count v0.6.0 software to
generate raw counts.

Several pipelines and software packages have been developed
to aid in the management and analysis of the high throughput
data. These packages differ considerably in their analytical
pipeline, statistical model (Robinson and Smyth, 2007; Tarazona
et al., 2015) and normalization tool (Bullard et al., 2010; Robinson
et al., 2010; Trapnell et al., 2012; Rapaport et al., 2013; Love et al.,
2014; Evans et al., 2017). The choice between the normalization
methods strongly influences the differential expression analysis
(Burden et al., 2014), where EdgeR and DESeq2 are the most
frequently used ones (Lamarre et al., 2018). In our study,
differentially expressed transcripts (DET) were computed with
DESeq2 (Love et al., 2014) package version 1.20.0 supplied by
R software (version 3.4.4) (R Core Team, 2019) via a likelihood
ratio test implemented in DESeq function. For all the analysis,
we kept transcripts with FDR less than 0.05 corrected via the
Benjamini–Hochberg method (Benjamini and Hochberg, 1995).

Transformed counts by DESeq2 were visualized with a
principal component analysis (PCA) [prcomp()] in R. PCA is a
dimensionality reduction method that maximizes the variability
explained by the newly formed dimensions. 1–3 dimensions
known by principal components (PC) can be chosen to represent
the data, where each PC is orthogonal to the other (Abdi and
Williams, 2010; Lever et al., 2017).

To construct transcript co-expression network, we ran the
cutreeDynamic function of the (WGCNA) R package (version
1.63) (Langfelder and Horvath, 2008) on the matrix of
normalized counts for the DETs identified with DESeq2.

The matrix of normalized counts was computed with
the varianceStabilizingTransformation function of the DESeq2
package. WGCNA applies PCA where the first PCs of each
formed module are called eigengenes. Soft threshold (beta) that
represents the exponential parameter for power law distribution
was chosen based on a scale free topology criterion. Adjacency
matrix was constructed and then transformed into a topological
overlap matrix. Transcripts were hierarchically clustered using
the flashClust function and clusters of transcripts having similar
profiles, referred to as modules, were formed.

Gene Ontology Analysis
Differentially expressed transcripts were subjected to functional
enrichment analysis by STRING software version 10.51

(Franceschini et al., 2013). Hypergeometric tests are used

1https://string-db.org/

to identify enriched terms that are sorted by their FDR. GO
terms with FDR < 10−4 were kept for further analysis. We have
proposed a score, named z-score (z), to measure the enrichment
of the GO terms in modules as follows:

z =

(
x− 0.5− B×n

N
)

2
√

n× B
N×

(
1−

( B
N
)) (1)

x: count of observed transcripts in each GO term of module.
B: count of observed transcripts in each GO term of DETs.
n: total count of observed transcripts in module.
N: count of DETs.
Our z-score estimates whether a given GO term is enriched

in a gene module compared to all DETs and is thus assessing
whether a module is clustering genes involved in a common
biological process. We assumed that a GO term is enriched in a
certain module if z-score > 2.

Transcription Factor Enrichment Analysis
oPOSSUM 3.0 (Kwon et al., 2012), a freely available web
accessible software was used to identify enriched transcription
factors binding sites (TFBSs) in the 5000 bp upstream and
downstream sequence of the DETs. Default search parameters
of the single site analysis were kept as they are originally set
in the software. oPOSSUM performs an exact Fisher test which
measures the probability of a non-random association between
the co-expressed gene/transcript set and the TFBS of interest
and calculate a F-score as equal to −ln(p-value). F-score is
thus assessing the probability that at least one TFBS would be
significantly associated with the observed transcript list. Besides,
a z-score is calculated using the normal approximation to the
binomial distribution to compare the rate of occurrence of a
TFBS in the target set of genes/transcripts to the expected rate
estimated from the pre-computed background set. Thus, the
z-score is estimating the specific enrichment of given TFBS in the
gene/transcript set compared to background gene set. TFs were
ranked by F-score and z-score, respectively and were clustered
into five groups.

Functional Network Inference
Protein-protein interaction (PPI) networks were generated using
the freely available STRING database version 10.5 (Franceschini
et al., 2013). Clustered TFs were inputted separately in STRING
to generate background networks based on the predicted
associations between these TFs (curated or experimentally
determined interactions). Resulting TF-PPI networks were
expanded into several layers (shells) via sequentially adding
predicted associated proteins (nodes) until networks of five
layers were generated as explained in Supplementary Figure S6.
During each step, GO terms with FDR < 10−4 were assigned to
major biological processes. The major biological processes were
then normalized to the total number of identified GO terms in
each network. To find out how similar is the processes’ prediction
to that of DETs, shared biological processes between TF-PPI
network and DET were sorted out and then were normalized
by the total number of shared GO terms. TF-PPI networks
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that recapitulated the greatest number of biological processes
obtained from the DETs were selected as being the best putative
TFs-regulated networks.

Isolation of Cardiac Resident Cells
Zero minutes and 24 h post-surgery, mice (4 per time point)
were injected intra-peritoneally with 50 UI/kg heparin sodium
for 10 min. Mice were euthanized and heart was harvested
and cannulated through the aorta. Afterward, a small clip was
attached to the aorta’s end and a thread beneath it was tied to
prevent the heart from falling (O’Connell et al., 2007). The heart
was firstly perfused for 3 min with the perfusion buffer [NaCl
120.4 mM, KCl 14.7 mM, KH2PO4 0.6 mM, Na2HPO4 0.6 mM,
MgSO4-7H2O 1.5 mL, Na-HEPES 10 mM, NaHCO3 4.6 mM,
Taurine 30 mM, 2,3-butanedione monoxime (BDM) 10 mM, and
Glucose 5.5 mM, pH 7.0]. The latter was replaced by digestion
buffer (50 mL of perfusion buffer and Collagenase II 2.4 mg/mL)
for 2 min 30 s. 100 mM CaCl2 (final concentration 40 µM) were
then added. Perfusion was continued for 6 min and 30 s. During
the entire procedure, the heart was perfused at 4 mL/min rate and
the solutions were maintained at 37◦C to mimic physiological
conditions. After 12 min, the heart was removed and placed in
a 100-mm dish. It was then cut into small pieces that were placed
in a tube containing myocyte digestion buffer. Small pieces were
gently pipetted several times to ensure the complete myocardium
digestion. Digestion stop buffer [45 mL of perfusion buffer, 5 mL
of fetal bovine serum (10%), and 6.25 µM of 100 mM CaCl2
(12.5 µM)] was then added up to a final volume of 10 mL. The
tube was then centrifuged for 3 min at 20 g at room temperature
(Eppendorf 5810R). Supernatant was collected and centrifuged
for 5 min at 500 g. Cells pellet was used for labeling protocol.

Flow Cytometry Analysis
Labeling Protocol
Cell pellets were re-suspended in phosphate buffer saline (PBS)
and divided in two tubes: Labeling and isotypic control. PBS was
added in each tube and tubes were centrifuged 5 min at 500 g and
the supernatant was discarded. FCR blocking solution (diluted
FCR: 1:10 in PBS; 100 µl/tube of dilute FCR solution; FCR
blocking mouse reagent, Miltenyi biotec, 130-092-575) was then
added for 10 min at 4◦C. Following incubation, PBS 0.5% BSA
(Bovine Serum Albumin) was added and tubes were centrifuged
5 min at 500 g. The two tubes were incubated for 30 min at 4◦C
in dark with the isotopic or the labeling solution. Incubation was
stopped with the addition of PBS 5% BSA followed by a 5 min
centrifugation at 500 g. Supernatants were discarded and pellets
re suspended in PBS before flow cytometry analysis.

Samples’ Processing and Data Analysis
Flow cytometry experiments were conducted using Fortessa
X-20 equipped with four lasers and 16 fluorescent detectors.
Markers of macrophages (CD11B, F4/80, CD206, and CD86)
and neutrophils (Ly6g) were analyzed after immunostaining
(antibodies are listed in Supplementary Table S1) in order
to estimate the proportion of each population. 100,000 of
total events were acquired for each condition. Data were
analyzed by DIVA Software (BD Biosciences). The percentage

of each cell subtype was calculated after the multiple gating of
the different fluorescent markers. The sorting of macrophage
subtypes was performed as followed: CD11b+ and/or F4/80+
positive cells were gated and represented the total macrophage
population. Within this cell population, the percentages of type
1 macrophages (M1) (CD206−/CD86+), type 2 macrophages
(M2) (CD206+/CD86−), M1 + M2 (CD206+/CD86+) and
negative M1 + M2 (CD206−/CD86−) macrophages population
were figured out. Percentage of M1, M2, and double M1 + M2
phenotypes were normalized by the sum of these three population
to assess the shift in differentiation.

Plasma Preparation and IL-6 Assay by
ELISA
After anesthesia and prior to euthanasia, blood samples were
collected from the inferior vena cava. Blood was centrifuged at
500 g for 5 min at room temperature to isolate plasma. The latter
samples were stored at −80◦C for later use. Interleukin 6 (IL-6)
concentrations were measured in plasma samples by the enzyme
like immunofluorescent assay (ELISA) using the Mice IL-6 ELISA
Kit (R&D Systems, Minneapolis, MN, United States) based on the
manufacturer instructions. The sensitivity test was 1.8 pg/mL.

Statistics
In order to determine the number of mice per group, a power
analysis was performed with G∗Power (version 3.1.9.2) (Faul
et al., 2007) with the following conditions: One-way ANOVA
parameters with alpha = 0.05, beta = 0.2, and effect size = 0.7 with
three groups (0 min, 45 min, 24 h).

Statistical analysis were performed with One-way Anova
(Tukey’s multicomparison test and Kruskal–Wallis non-
parametric test), student t-test, two-way anova tests and
spearman correlation analysis were performed with Graphpad
Prism (version 7.0a) (GraphPad Software, La Jolla, CA,
United States)2.

Data Availability
All sequencing datasets used in this study are submitted in
international public repository, Gene Expression Omnibus,
under accession identification as GSE127244.

RESULTS AND DISCUSSION

Experimental Design
A methodical issue to assess the sham effect relies on the
complexity of the analysis of OMICs dataset. These latter are very
sensitive to the statistical power of the study, the experimental
design and the accuracy of the analytical pipeline of OMIC
studies. The experimental design of dynamic transcriptomic
studies is largely affected by factors as the precision of measures,
ethical rules, expenses’ constraints and statistical power. The
precision of measures is, however, highly dependent on the
biological variability of the studied system and the experimental

2www.graphpad.com
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error introduced by the surgery effect or the RNA-seq protocol
(Conesa et al., 2016). Another type of errors originates from
static comparisons between “pretreatment” and “post-treatment”
samples which can neither correctly recapitulate the dynamic
of a pathology nor enable the characterization of the molecular
cascade ruling the modification of gene/transcripts expression
(Kim et al., 2012; Chang et al., 2015). Unlike static analysis,
kinetical analysis permits the identification and clustering of
gene/transcripts based on their expression profile. This list of
DETs must be thought as temporal signature which can be used
to predict the future evolution of the cellular systems or to infer
the molecular mechanisms which controlled and induced these
modifications in DETs expression level.

We profiled the associated effects of anesthesia, thoracotomy,
removal of the epicardium and suture passed under the left
anterior descending artery on the change of gene expression
profiles in mouse myocardium. Dynamics of transcripts
expression were quantified by mRNA sequencing at three
different time points post-surgery (0 min, 45 min, and 24 h).
This procedure is similar to the “Sham” procedure used in
mouse model of myocardial infarction explained by Harisseh
et al. (2017). Unlike blood, temporal analysis in organs
requires sacrificing different animals to cover all time points.
Consequently, the variance of gene/transcripts expression over
time is mixed with the inter-individual variance. Therefore, the
sensitivity of the analytical pipeline to detect DETs is highly
affected by the statistical power of the study. The experimental
design considered a total of 24 animals (eight mice per time
point) to meet the statistical parameters which are presented in
the section “Materials and Methods.” Surprisingly, in several
recent dynamic transcriptomic studies that are involved in
ischemia reperfusion (Roy et al., 2006; Kim et al., 2012, 2018;
Prat-Vidal et al., 2013; Andreeva et al., 2014; Khan et al., 2017),
no power test was carried out to optimize the number of samples,
which may have led to the underestimation of the number
of DETs. Analytical comparison studies have estimated that a
minimum of five and six replicates per condition is required
to obtain stable significant results in microarray and RNA
sequencing experiments, respectively (Pavlidis et al., 2003;
Schurch et al., 2016; Lamarre et al., 2018).

Considering the studies which compared analytic tools for
transcriptomic (Rapaport et al., 2013; Soneson and Delorenzi,
2013; Burden et al., 2014; Seyednasrollah et al., 2015) and seeking
a method with the highest sensitivity for controlling the false
discovery rate (FDR) (Love et al., 2014) and compatible for
the analysis of kinetics, we have decided to work with DESeq2
analysis method. The analytical pipeline followed in this study is
presented in Supplementary Figure S1.

RNA-Seq Data Processing and Analysis
DESeq2 uses a generalized linear model (GLM) with a Negative
Binomial distribution to model the counts associated with a given
gene. Compared to the classical Poisson count distribution the
Negative Binomial distribution can account for over dispersion in
the data (variance higher than the mean). To be able to estimate
both parameters of the distribution for each gene, the variance
distribution is computed from a mean variance function fitted

across all genes. DESeq2 takes raw reads as input but uses a
sequencing depth offset parameter (Love et al., 2014). Firstly,
we assessed the different possible sources of experimental error:
different surgeons and different cDNA libraries in the mRNA seq
process (defined as “Batch effect”). Data visualization by PCA
in Figures 1A–C clearly shows that our samples were clustered
neither by the surgeons nor by the batch. Samples were actually
clustered by their variation over time, where “24 h post-surgery”
condition was responsible for the highest variation in the data.
0 and 45 min samples were grouped together indicating no
major effect of the surgery after 45 min in comparison to 24 h.
Noteworthy, the three groups were scattered along PC1 and
PC2, what suggested at least two different sources of variance.
In addition, PCA plot did not show any outlier samples that
might affect the analysis, noting that samples are spread out along
PC1 and display a large within-group variability that might be
of biological and technical origin we cannot control. Among
the 27,661 non-zero transcripts, DESeq2 yielded 1209 DETs
over time with FDR <0.05 (List of transcripts is available in
Supplementary Table S2).

To identify the major biological processes affected in response
to surgical intervention, functional enrichment analysis was
performed using STRING software. We first proceeded with
the GO analysis of the complete DET list that had generated
a list of more than 700 significantly enriched GO terms. To
reduce their dimensionality, we arbitrarily selected a cut-off
for the FDR of GO terms below 10−4 and then kept 228 GO
terms for the rest of the analysis. We next classified them into
bigger biological processes in order to understand what were
the consequences of the surgery. As summarized in Figure 1D,
we identified the major biological processes as: cell signalization
(24% of GO terms), tissue regeneration (including mechanisms
of cell homeostasis, tissue organization, embryogenesis-related
processes, wound healing and representing 24% of GO terms),
inflammatory and immune response (11% of GO terms), cell
migration (9% of GO terms), metabolism (9% of GO terms), cell
death (5% of GO terms) and processes involved in vasculature
remodeling (6% of GO terms).

In summary, the 1209 identified DETs were associated with
biological processes among which some were expected like
inflammation and immune response. Although, this coarse-
grained strategy is broadly used to investigate gene network
response to stimuli, it is highly dependent on the quality of
GO annotation, the rationality of GO selection and clearly
lacks understanding of both the cell network (including gene
and protein) organization and its modification over time. We
therefore aimed to temporally and phenotypically organize
the DETs in order to isolate different regulation waves
of gene network.

Weighted Gene Co-expression Network
Analysis
First, we looked for co-varying transcript signatures and aimed
to predict their associated biological processes. Weighted gene
co-expression network analysis (WGCNA) is an unsupervised
analysis that aims to construct modules (clusters) of highly
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FIGURE 1 | Differential analysis and gene ontology analysis. (A–C) represent principal component analysis (PCA) plots of the data clustered by surgeon (S1 and S2),
batch (B1–B5), and time (0 min, 45 min, and 24 h), respectively. Batch corresponds to the different pools of library construction during sequencing. (D) Pie chart
showing the major biological processes expressed as the percentage of GO terms detected in the gene ontology analysis of the differentially expressed transcripts
list.

correlated transcripts according to the similarity in their
expression profiles (Langfelder and Horvath, 2008). WGCNA
was performed on the1209 DETs. Prior to analysis, we checked
for outliers’ samples to exclude, but none was detected as
displayed in Supplementary Figure S2A. The soft threshold
was set to 30 based on the scale free topology criterion
(Supplementary Figures S2B,C). Transcripts were hierarchically
clustered (Figure 2A) and nine clusters of transcripts with
similar profiles were formed. List of transcripts assigned to
each module is available in Supplementary Table S3. For
a better understanding, a color code was assigned for each
module of transcripts. The size of these modules ranged from
27 to 210 transcripts and 300 (24.8% of DETs) were not
assigned to any module, colored in gray. As examples of
the different profiles obtained in these modules, heatmaps
representing the expression profiles of the transcripts assigned to
the magenta (M[1]), red (M[4]) and blue (M[7]) modules were
displayed in Figure 2B, where remaining modules’ expression
profiles are displayed in Supplementary Figure S2D. WGCNA
summarizes the distribution of transcripts expression via PCA
and the first PC is called “eigengene.” Eigengene values of
transcripts modules were calculated for each sample and
eigengene means were plotted for each module over time
in order to summarize the average variation in transcript
expression (Figure 2C). Interestingly, we identified three major

time profiles: the magenta module (M[1]) was clustering
transcripts transiently induced at 45 min, modules 2–4 clustering
transcripts with a decrease at 24 h and modules 5–9 with
an increase at 24 h. We hypothesized that, since modules
have been clustered with positively co-varying transcripts,
they could unlikely predict non-linear biological processes
spanning a broader range of time. We thus tested whether the
different combinations of the three modules with the greater
number of GO terms: [M1], [M6], and [M7] could enhance
the predictions.

In order to predict the biological processes related to these
modules and assess the strength of this prediction, we first
studied the distribution of transcript counts as a function of
GO term counts for all groups of transcripts modules and for
all DETs as well (Supplementary Figure S3). Expectedly, the
high transcripts counts in the DETs were correlated with the
greatest number of GO terms. However, a strong discrepancy
was observed for the groups of modules. For instance, M[2]
including 210 transcripts (Supplementary Figure S3) had no
significant predicted GO terms whereas group M[1;6] including
83 transcripts had 240 predicted GO terms and group. This
firstly suggested that a greater number of transcripts did not
mandatorily mean a great count of GO terms and thus no
size artifact occurred in the comparison between modules and
combinations of modules. We next quantified to which extent
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FIGURE 2 | Weighted gene co-expression network analysis. (A) Gene dendrogram representing the hierarchical clustering of transcripts based on their similarity in
the expression profiles. Tree branches correspond to transcripts and colors underneath the tree corresponds to the modules assignment by Dynamic Tree Cut of the
WGCNA package. (B) Heatmaps of the level of expression of transcripts assigned to examples of the three main time profile of transcripts expression: the magenta
(M[1]), red (M[4]), and blue (M[7]) modules. Red color corresponds to higher expression and green color corresponds to lower expression. (C) Line graph
representing the variation of the expression profiles in the different modules over time. Values represent the mean eigengenes figured out by WGCNA. The color code
used is the same as in (A,B).
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modules or combinations of modules may be strong predictors
of the DETs-based GO terms. This feature, defined as GO term
enrichment (see the section “Materials and Methods”), reflects
the fact that modules might sort out transcripts related to similar
biological processes. All GO terms of all modules or combination
of modules were first filtered with FDR < 10−4 and then
selected if their enrichment factor was >2 (Figure 3A). List of
enriched GO terms and their FDR for the different modules
and combinations are available in Supplementary Table S4. The
count of the selected GO terms for each modules or combination
of modules is presented in Figure 3B. Next, we sorted out
the groups of modules having the highest enrichment factor
for each and every GO term (Figure 3C) in order to estimate
which module or combination of modules achieved the strongest
predictions of GO terms. Six groups of modules were sorted
out and were considered as the best predictors based on their
shared GO terms with the DET-derived ones, where among
them group M[1;6;7] had the highest count of the highest-
enriched GO terms.

Filtered GO terms were classified into bigger biological
processes (Figure 3D). M[1], which was transiently induced at
45 min (Figure 2C), was mainly involved in cell signalization
process what we interpreted as a transcriptional response
following the surgery to maintain cells’ homeostasis via
the shift in the state of different signalization pathways.
Combinations of modules M[1;6], and M[6;7] looked similar
and predicted the induction of signalization pathways,
cell migration and inflammatory/immune response, while
combinations M[1;7], and M[1;6;7] predicted the induction of
signalization pathways, cell migration, tissue regeneration and
inflammatory/immune response (Figure 3D). As anticipated
from the calculation of the highest-enriched GO terms, the
combination of modules M[1;6;7] was the one recapitulating
the highest predictions from the DETs: signalization pathways
(46 vs. 54 GO terms, respectively), cell migration (17 vs.
21 GO terms, respectively), cell death (5 vs. 12 GO terms,
respectively) and inflammatory/immune response (24 vs. 26 GO
terms, respectively). However, tissue regeneration was poorly
recapitulated (11 vs. 54 GO terms, respectively) while neither
metabolism nor vasculature were detected. This suggested that
this method was efficient for classified and enriched transcripts
associated with some of the DETs features but not all.

Eventually, looking at the transcripts of M[1;6;7], we
found many inflammatory markers including chemokines
(CCL6, CCL9, CCL12, CXCL1, CXCL3), chemokine receptors
(CXCR2 and CCR2), adhesion markers of endothelial cells
(ICAM-1 and Sele) in addition to markers of neutrophils and
macrophages (LCN2 and ARG-1, respectively) (Frangogiannis,
2002; Sadik et al., 2011; De Filippo et al., 2013; Arango
Duque and Descoteaux, 2014). We then checked the occurrence
of each of these transcripts in the GO terms associated
with inflammation/immune response, cell signalization and cell
migration biological processes of M[1;6;7], we found that most
of them were actively involved in these three main processes
(Figure 3E). In this regard, we hypothesized that transcripts
related to inflammatory/immune response, cell migration and
transcripts involved in cell signalization could have fingerprinted

the recruitment and/or the differentiation of immune cells
within the myocardium.

We assessed the quantification of macrophages and
neutrophils in mouse heart subjected to surgery by FACS
analysis. A significant 9.3-fold increase of the percentage of high
LY6g-positive cells was found in non-myocytes cell extract from
the myocardium 24 h post-surgery, this suggested an increase in
the population of neutrophils (Figure 3F and Supplementary
Figure S4A). We observed a shift in the phenotypes of F4/80+
and CD11b+ macrophages 24 h post-surgery. First, an increase
in CD206−/CD86− cells was observed (from 41.2 ± 2.9
to 59.3 ± 6.3% of F4/80+/CD11b+ macrophages; adjusted
p-value < 0.0001) as reported in Figure 3F. This suggested
the recruitment of monocytes to the myocardium. Second,
excluding the double negative population of macrophages
(CD206−/CD86−), a transition of double CD206+/CD86+
(from 70.6 ± 4.0 to 48.8 ± 9.5%; adjusted p-value: 0.0013) to
either type M1 (from 10.0± 1.8 to 17.4± 3.6%; adjusted p-value:
0.2778) or type M2 (from 19.4 ± 2.9 to 33.9 ± 7.0%; adjusted
p-value: 0.0181) was detected (Figure 3F and Supplementary
Figure S4B). This double CD206+/CD86+ phenotype was
previously reported in the heart (Walter et al., 2018); however,
it was not shown whether these cells could evolve to single
CD206+ or CD86+ phenotype over time.

Altogether, our results confirmed the recruitment
of neutrophils and F4/80+/CD11b+/CD206−/CD86−
macrophages/monocytes and showed a possible differentiation
of CD206+/CD86+ macrophages into type2 macrophages (M2)
to the mouse heart within the first 24 h post-surgery. Tissue
regeneration, metabolism, phosphorylation processes which
were major components of the DETs-based GO terms were
only found, and at low percentage, in the groups M[6;7] and
M[1;6;7] (Figure 3D). We thus looked for a complementary
strategy in order to predict the biological pathways involved in
the regulation of these biological processes.

Transcription Factor Enrichment
Analysis and Gene Network Inference
Transcriptomic signature could be considered as the outcome of
a response to a stimulus carried by molecular pathways. Retro-
analysis could thus be used to delve into the molecular history of
the biological system. We started assessing which transcription
factors could have likely regulated DETs and transcripts’ modules.
Over-represented transcription factor binding site (TFBS) in
the promoter sets of the DETs using oPUSSUM software was
calculated by the mean of z-scores and fisher exact test scores.
Z-score measures the change in the TF motifs of the target
set compared to the background set, whereas the fisher score
assesses whether the genes associated with the TF is greater
than what would be expected by chance (Kwon et al., 2012).
We first found that transcripts modules were mainly able to
predict the TF outliers predicted from all DETs like Klf4, SP1,
STAT3, and NFKB1 (Supplementary Figure S5). Noteworthy,
Klf4 and SP1 are two transcription factors which have been
reported to play an inflammatory role, more specifically a role
in macrophage activation and polarization (Feinberg et al., 2005;
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FIGURE 3 | Continued
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FIGURE 3 | Analysis of GO terms enrichment and characterization of immune cells. (A) Scatter plot of z-score and FDR of GO terms predicted from different
transcripts modules (reported as [module number]) and combination of modules (reported as [module number; module number]). Values were filtered for FDR < 10-4

and enrichment factor (z-score) > 2. (B) Bar graphs displaying the count of the filtered GO terms for different groups of transcripts modules and which are shared in
the list of GO terms from DETs. Blue and green colors represent the enrichment score of the terms present in the DET’s GO terms list and the red color represents
the unassigned terms (UA). (C) Bar graph showing which transcripts’ modules recapitulate the best GO terms observed in DETs. Each GO terms accounting in (B)
were counted only once in the module showing the highest z-score value for this GO term. (D) Histogram plot representing the count of GO terms classified into
bigger processes displayed by colors for all DETs and the different groups of modules. (E) Histogram plot representing the count of inflammation/immune response,
cell signalization, and cell migration processes’ GO terms constituting some inflammatory transcripts of M[1;6;7] group of modules displayed by colors. (F) Dot plots
showing the percentage of different cell populations: LY6g + neutrophils (top panel), CD206-/CD86-macrophages (middle panel) and M1, M2, and M1 + M2
macrophages (lower panel) at 0 min and 24 h post-surgery (∗P ≤ 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001).

Lee et al., 2005; Liao et al., 2011; Karpurapu et al., 2014).
This could mean that these two transcription factors reported
mainly modifications in cell subtype rather than changes in the
genotype of resident cells. Besides, we noticed that both F-score
and z-score values of TF enrichment dropped to low values for
transcripts’ modules as compared to those predicted from all
DETs (Supplementary Figure S5). In order to keep the strongest
TFs prediction possible, we thus chose to work only with TF
enrichment from all DETs. Since no objective threshold can be
applied to z-score and F-score, transcription factors were filtered
for F-score below 20 (p-value = 2.06× 10−9) and thus sorted out
by z-score in five groups cumulating more and more TFs with
lower z-score values (Figure 4A). The next step of our retro-
analysis considered that TFs activity was driven by a response
to stimuli via signalization pathways. We thus took advantage
of the protein-protein interaction (PPI) networks simulated with
STRING which used the different TFs groups as inputs. The first
TF-PPI network was defined as the initial network and it only
relied on the interplay between the TFs.

In the second step, STRING added a first layer of either 5
(+5N) or 10 (+10N) neighboring proteins being the most likely
interactors of the TFs and thus it built the first layer PPI network
(+5N), named first layer of growth. This operation was repeated
consecutively five times. An example of the initial, first layer
and second layer PPI networks performed for TFs group 3 are
displayed in Supplementary Figures S6A–C. TF-PPI networks
were built on an increasing number of proteins from the initial
layer to the fifth layer (+40N) (Supplementary Figure S7) which,
however, depending on the count of initial proteins represented
different growth of the network (Figure 4B). We considered
that a useful network added enough information (neighbors)
to predict the mechanism upstream TFs (receptor, signalization
pathways). In the third step, GO terms predicted for each TF-PPI
network (simulated GO) were retrieved, filtered (FDR < 10−4)
and compared with GO terms of DETs (experimentally derived
GO) to determine the shared GO terms between simulated
data and experimental data. First, we figured out the sensitivity
of the TF-PPI network built by measuring the proportion of
all DETs-predicted GO terms shared in the different TF-PPI
networks. The correlation matrix reported that TF-PPI network
set with a too great input (TFs group 5) saturated between
49 and 61% of all DETs-predicted GO terms regardless of the
addition of neighbor proteins (Figure 4C). This made this kind
of TF-PPI network unable to predict mechanisms upstream of
TFs activation. Conversely, TF-PPI networks set with a too low
input (TFs group 1 and 2) only found 16% all DETs-predicted

GO terms and were thus unable to simulate a network that
could be thought to predict the mechanisms leading to DETs.
However, TFs groups 3 and 4 were able to retrieve between 8
and 58% of all DETs-predicted GO terms. This highlighted that a
correct balance between input and growth of TF-PPI network was
required to gradually find simulated GO terms in DETs-derived
ones. We next figured out the specificity of TF-PPI-networks by
calculating the proportion of GO terms predicted in the TF-PPI
network which were shared with all DETs-predicted GO terms.
The correlation matrix shown in Figure 4D demonstrated that
the growth of TF-PPI networks decreased their specificity. An
optimal specificity was reached at the first growth for TFs group 1
and 2, was almost stable from initial network to the third growth
of the networks for TFs group 3 and 4 and was low for any growth
of the TFs group 5. Altogether, these results demonstrated that
the highest specific TF-PPI networks were TFs group 3 and 4
with growth from the initial to the third layer (Figure 4D). The
most dynamic sensitive networks having percentage of shared GO
terms above 40% were found for TFs group 3 and 4 with growth
from the third to the fifth layer (Figure 4C) and that the network
growth was above 150% for conditions below a diagonal starting
from first layer of growth TFs group first to fourth layer of growth
TFs group 4 (Figure 4B). From these parameters, we found that
third layer of growth TFs group 3 shown the balance between
specificity, sensitivity and network growth and was selected for
the further analysis.

A branched network representation of third layer of growth
TFs group 3 PPI network is displayed in Figure 5A. K-means
clustering was used to highlight three different portions in
this network (Figure 5A): core network in green which shares
maximum connections with the other part of the network,
secondary network in blue and peripheral network in red. GO
terms associated to this network were filtered (FDR < 10−4) and
then clustered in biological process expressed as percentage of the
total of GO terms (Figure 5B). Cell signalization (36%), tissue
regeneration (27%), metabolism (19%), inflammatory/immune
response (7%), and cell death (5%), and vasculature (2%)
were the main processes supported by the shared GO terms.
Interestingly, these functions could support wound healing and
tissue homeostasis in response to stress and thus could involve
the cardiac resident cells. This first revealed that both metabolism
and tissue regeneration were highly represented, conversely to
what was found with the co-variance analysis, and that the
overall pattern was similar to the pattern obtain from all DETs
(Figure 1D). Comparisons with less sensitive networks, first
layer of growth TFs group 2 PPI network and initial network
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FIGURE 4 | Transcription factor analysis and PPI networks simulation. (A) Scatter plot of z-score and F-score of the over-represented transcription factor binding
site (TFBS) detected in genes of the DET list and generated by oPOSSUM. Only TFs with F-score above 20 are considered. TFs were classified by their z-score as
depicted in the legend. (B) Heat map showing the growth of TF-PPI network size as calculated by the percentage of increase in the number of proteins at each step
of network growth: +5, +10, +20, +30, and +40 neighbors (+5 N; +10 N; +20 N; +30 N; +40 N). TF-PPI networks were simulated from each different TFs groups as
input. TFs group were: group 1 (z-score > | 35|), group 2 (z-score > | 25|), group 3 (z-score > | 15|), group 4 (z-score > | 10|), and group 5 (z-score > | 2|). (C) Heat
map displaying the sensitivity of the networks based on the growth (increase in number of neighbors) and the input (groups of TFs) of TF-PPI. Color gradient displays
the percentage of GO terms of all DETs shared with GO terms derived from TF-PPI network and values indicates the percentage. (D) Correlation matrix between the
growth (increase in number of neighbors) and the input (groups of TFs) of TF-PPI networks reporting the specificity of the networks. Color gradient displays the
percentage of GO terms of TF-PPI network shared with the DET-based GO terms and values indicates the percentage.

of TFs group 4, are depicted in Supplementary Figure S8. The
prediction of biological processes regulated by these networks
failed to recapitulate the ones derived from DETs. This showed
that a careful selection and control of the predicted networks
should be performed.

We concluded that this third layer of growth TFs group 3
PPI network could be a good model of changes induced in cell
networks after surgery and which led to the shift in expression
of DETs. A deeper analysis of this network showed that the
composition of the core network relied on STATs signalization
pathways and was suggested to be highly dependent on Il-6

stimulation. Indeed, the induction of several major TFs regulating
DETs such as STAT3, NFKB1, KLF4, SP1, SOCS3, STAT5a,
STAT5b, REL, REL were linked to the Il-6 axis. In addition, Il-
6 is known to stimulate immune cells recruitment to the injured
tissue via the activation of signalization pathways like the PI3K
and JAK/STAT pathways (Hartman et al., 2016; Tang et al., 2018).
We thus assessed whether and when Il-6 was induced in the
plasma of the same mice on which transcriptomic analysis was
performed. As shown in Figure 5C, a significant and transient
increase in blood Il-6 was detected 45 min post-surgery. These
results suggest that Il-6 is very likely a major and early stimulus
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FIGURE 5 | Transcription factor analysis and PPI networks simulation. (A) TF-PPI network simulated by STRING from TFs group 3 and expanded for three layers
(+20 neighbors). Line connections between proteins displaying the type of interaction. Red circle reports the central position of interleukin 6 in the network. (B) Pie
chart showing the major biological processes expressed as the percentage of GO terms. GO terms predicted from the TF-PPI network shown in (A) and shared in
the list of GO terms derived from were taken for this analysis. (C) Plot representing IL-6 concentration in the plasma of mice at 0 min, 45 min, and 24 h post-surgery
(n = 6 per time point) (∗∗P ≤ 0.05).

induced by the surgery stress at 45 min and which activates
signalization pathways leading to the gene responses.

In conclusion, we propose an analytical pipeline for dynamic
transcriptomic dataset which can be divided into two parts. First
is the use of co-variance analysis of transcript expression leading
to transcript clustering, combination of best transcripts modules
prior to performing GO predictions. This method was efficient

in discriminating modification of cell subtypes in the tissue like
the one caused by immune cell infiltration or differentiation.
Second, we used a retro-analysis strategy which starts with the
prediction of the most potent TFs response elements from the all
DETs and is followed by the simulation of TFs-based PPI network
to predict the major biological processes upstream the TFs
induction. We explained a way to test and select the most specific
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and sensitive predicted networks by comparing the GO terms
predicted from simulated data (TFs) with the experimentally
derived GO terms (from DETs).

By means of FACS analysis and ELISA assay measuring the
level of circulating cytokines, we validated the main hypothesis
raised from the predictions done from the transcriptomic dataset.
Altogether, our results suggest that (i) Il-6 was induced by the
surgery stress and likely initiated the tissue/cell responses and
(ii) the surgery stress induced the recruitment of neutrophils
and monocytes and the differentiation of hybrid M1/M2
macrophages as well. Since it was shown that Il-6 plays a
major role in the neutrophils’ trafficking to the inflammation
site (Kaplanski, 2003; Fielding et al., 2008), it is likely that
Il-6 is activating the immune response in the sham hearts.
Finally, this study demonstrates that the so-called “Sham”
condition must be performed with a similar timing than the
experimental conditions in order to be able to assess the surgery-
based effects and discriminate it from the specific experimental
effect. Indeed, both Il-6 involvement and inflammatory cells
(neutrophils, monocytes/macrophages) recruitment have been
reported in myocardial infarction, making the sham controls
crucial to be performed for each and every time point. Once not
considered, this could have led to an over-estimation of the effect
of ischemia-reperfusion.
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