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Quantitative detection of fecal 
contamination with domestic poultry feces 
in environments in China
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Abstract 

Poultry are an important source of fecal contamination in environments. However, tools for detecting and tracking 
this fecal contamination are in the early stages of development. In practice, we have found that source tracking meth‑
ods targeting the 16S rRNA genes of poultry-specific microbiota are not sufficiently sensitive. We therefore developed 
two quantitative PCR assays for detection of poultry fecal contamination, by targeting chicken and duck mitochon‑
drial genes: NADH dehydrogenase subunit 5 (ND5) and cytochrome b (cytb). The sensitivity of both assays was 100% 
when tested on 50 chicken and duck fecal samples from 10 provinces of China. These assays were also tested in field 
samples, including soil and water collected adjacent to duck farms, and soils fertilized with chicken manure. Poultry 
mitochondrial DNA was detected in most of these samples, indicating that the assays are a robust method for moni‑
toring environmental contamination with poultry feces. Complemented with existing indicators of fecal contamina‑
tion, these markers should improve the efficiency and accuracy of microbial source tracking.
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Introduction
Animal and human feces carry many enteric patho-
gens, and when these contaminate water bodies, they 
pose a risk to human health (WHO Scientific group 
2011; Harwood et  al. 2014). Contamination with feces 
is a global public health issue from the perspective of 
the microbiological safety of water (Simpson et al. 2002; 
Blanch et  al. 2006). However, detection and identifica-
tion of pathogens is time-consuming and costly, due 
to the diversity and low concentrations of pathogens in 
environments (Field and Samadpour 2007). Instead, the 
presence of pathogens is often assumed based on detec-
tion of fecal indicator bacteria (FIB) including fecal 
coliforms and enterococci. These microorganisms are 
found in many animals and can survive and reproduce 

in diverse environments (Harwood et al. 2014). Thus, the 
source, and extent of pollution with FIB can be difficult 
to identify.

Domestic chickens and ducks are common around the 
world, and especially so in China. Commercial and back-
yard poultry farming both result in discharge of poultry 
feces into the environment, particularly after storms and 
floods. In addition, poultry manure is frequently applied 
to agricultural fields as fertilizer (Ryu et al. 2014). Poultry 
feces are known to carry human pathogens (McMurry 
et al. 1998; Hofacre et al. 2000), and consequently, atten-
tion needs to be paid to pollution with poultry feces. In 
particular, robust assays are needed to monitor environ-
ments in the interest of public health.

Microbial source tracking (MST) methods (Wiggins 
1996; Parveen et al. 1997) use host-specific genetic mark-
ers as alternative indicators of fecal contamination from 
various sources (Scott et  al. 2002). MST markers have 
been developed for identifying the source of fecal pollu-
tion by targeting the 16S rRNA genes and other genes of 
host-associated microbiota, or by targeting host-specific 
mitochondrial DNA (mtDNA).
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MST methods for humans and other animals such as 
pigs, dogs, and cattle are well developed. In contrast, 
real-time PCR assays targeting domestic chickens and 
ducks are not well established. Poultry-specific source 
tracking markers have been developed, but these assays 
mostly target chicken (Schill and Mathes 2008; Gómez-
Doñate et  al. 2012; Kobayashi et  al. 2013; Dancer et  al. 
2014; Ryu et  al. 2014; Ohad et  al. 2016). Further, 16S 
rRNA markers for ‘host-specific’ microorganisms often 
cross-react with the microbiota of other animals (Layton 
et al. 2006; Kildare et al. 2007; Marti et al. 2011; Ryu et al. 
2012; Boehm et al. 2013; Green et al. 2014a). Functional 
genetic markers for host-specific microorganisms often 
have issues with sensitivity (Ebentier et al. 2013). In our 
hands, source tracking markers targeting enteric micro-
bial genes of chicken and poultry showed low sensitivity 
and were not effective for detecting fecal contamination 
from poultry. Methods based on species-specific eukary-
otic mtDNA markers might show more promise for fecal 
source tracking (Caldwell et al. 2011).

The objective of this study was to develop real-time 
PCR assays that targeted chicken and duck mtDNA with 
high sensitivity and specificity. Two novel assays were 
developed targeting poultry mitochondrial genes: NADH 
dehydrogenase subunit 5 (ND5) and cytochrome b (cytb). 
We test 173 fecal samples from 12 host species to test the 
performance of the two assays. Subsequently, the assays 
were applied to environmental soil and water samples.

Materials and methods
Sample collection
A total of 173 fecal samples were collected between 
August 2015 and July 2016 from 14 provinces of China, 
including Inner Mongolia, Beijing, Hebei, Tianjin, Shan-
dong, Shanxi, Jiangsu, Zhejiang, Jiangxi, Fujian, Guang-
dong, Tibet, Hong Kong, and Hainan Province. Fecal 
samples were from a variety of host animals, including 
chickens (n =  38), ducks (n =  9), poultry (chicken and 
duck composite fecal samples, n = 3), humans (n = 25), 
pigs (n  =  17), dogs (n  =  23), cattle (n  =  17), sheep 
(n = 16), cats (n = 5), horses (n = 8), deer (n = 1), geese 
(n = 2), and rabbits (n = 9). Fresh feces were frozen and 
transported on ice to the laboratory within 3  days. All 
samples were stored at −20 °C until use.

Soil and water samples from eight duck farms in Yizhou 
of Guangxi Province and one duck farm in Longyan of 
Fujian Province were collected in September 2016. Sam-
ples were immediately frozen at −20 °C and transported 
on ice to the laboratory within 24 h.

Soils fertilized with chicken manure (CM) were col-
lected from a long-term experiment station of the Chi-
nese Academy of Agricultural Sciences (CAAS) in 

Dezhou, Shandong Province. A total of 24 samples from 
eight treatments in triplicate were collected in August 
2015, about ten months after the application of chicken 
manure, urea or sewage sludge. One treatment was fer-
tilized with chicken manure, and the other seven treat-
ments were fertilized with urea or sewage sludge. The 
soils were immediately frozen on dry ice, transported 
to the laboratory within 24 h and stored at −80 °C until 
analysis. Details on the design of this field experiment are 
described by Chen et al. (2016).

Sample pretreatment and DNA extraction
Water samples (0.5  L) were filtered through 0.22-μm 
mixed cellulose ester membrane, which were cut into 
small pieces using aseptic scissors and placed into Lys-
ing Matrix tubes provided in the FastDNA® SPIN Kit 
for Soil (MP Biomedical, Santa Ana, California, USA). 
Total DNA of soil and water samples was extracted 
according to the manufacturer’s protocol. Total DNA of 
fecal samples was extracted from 0.5  g frozen samples 
using FastDNA® SPIN Kit for Feces (MP Biomedical, 
Santa Ana, California, USA), following the manufac-
turer’s instructions. The quality and quantity of DNA 
were analyzed by spectrophotometry using NanoDrop 
ND-1000 (Nanodrop, USA). The extracted DNA was 
stored at −20 °C.

Primer and probe design
Multiple alignments of the target host mtDNA (Fig.  1) 
were performed using the program Clustal X (Lar-
kin et  al. 2007). Nucleotide sequences were retrieved 
from NCBI GenBank™ under accession numbers: 
chicken (L08376 and EF493865), duck (KF156760), 
human (AP009462 and AY063385), cattle (D34635, 
and GQ129208), dog (KU253532 and JX088690), pig 
(AB015081 and AF034253), sheep (KP228916 and 
DQ320085), goat (KP273589), cat (AB004238 and 
NC_001700), horse (D82932 and HQ439469), goose 
(NC_011196). New primers and probes for mitochon-
drial genes NADH dehydrogenase subunit 5 (ND5) and 
cytochrome b (cytb) for chicken and duck (Table 1) were 
designed manually, and then confirmed with OligoAna-
lyzer software from IDT (Owczarzy et  al. 2008). Minor 
groove binder (MGB) probes were designed for chicken 
and duck ND5, and chicken and duck cytb markers. The 
6-carboxy-fluorescein (FAM) was conjugated at the 5′ 
ends of the MGB probes, and a non-fluorescent quencher 
(NFQ) was conjugated at the 3′ ends. Primers were syn-
thesized by Invitrogen (Carlsbad, CA, USA) and TaqMan 
probes were synthesized by Applied Biosystems (Foster 
City, CA, USA). All oligonucleotides were reconstituted 
in TE buffer (pH 7.5) and stored at −20 °C prior to use.
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Standard curve generation
To make standard plasmids, the purified chicken and 
duck ND5 and cytb gene products of traditional PCR 
were cloned using the pMD19-T vector (Takara, Bio 
Inc., Shiga, Japan), and were then sequenced. The 

plasmids with correct target genes were extracted using 
TIANprep MINI plasmid kit (Tiangen, Beijing, China). 
Standard curves of chicken and duck ND5 and cytb were 
generated using tenfold serial dilutions (9.70 × 107 − 100 
and 1.08  ×  108  −  101 copies per μL respectively) of 

Fig. 1  Alignments of mtDNA ND5 and cytb gene from cat, human, dog, pig, cattle, sheep, goat, horse, goose, chicken, and duck. Binding sites of 
primers and probes to the mtDNA ND5 and cytb gene sequences are indicated. a mtDNA ND5 assay and b mtDNA cytb assay
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standard plasmids containing chicken and duck ND5 or 
cytb genes.

Quantitative PCR
Chicken and duck ND5 and cytb gene abundances 
were determined by qPCR using the LightCycler 480 
real-time PCR detection system (Roche480, USA). A 
20 μL aliquot of qPCR mixture contained 10 μL of 2× 
TaqMan® Gene Expression Master Mix (Applied Bio-
systems, Foster City, CA, USA), 0.9  μM each of for-
ward and reverse primers, 0.25  μM of TaqMan probe, 
1  mg  mL−1 of bovine serum albumin (BSA, Sigma, 
Steinheim, Germany), 20–100  ng template DNA, and 
sterile ddH2O. The qPCR was conducted with the fol-
lowing conditions: 50  °C for 2  min (activation of the 
uracil-N-glycosylase) and 95  °C for 10  min (activation 
of the AmpliTaq Gold DNA polymerase), followed by 
40 cycles of denaturation at 95 °C for 15 s and anneal-
ing and extension at 60 °C for 1 min. No template con-
trols were used for all assays. All samples, standards, 
and controls were run in triplicate. A sample was clas-
sified as quantifiable if two or more replicates were 
above the limits of detection (LOD). Only amplification 
efficiencies between 85 and 115% were considered as 
acceptable for quantification.

Statistical analysis
Amplification efficiency (E) was determined using 
the slope of the standard curve, as follows: E =  10(−1/

slope) − 1. The LOD was defined as the lowest concentra-
tion of the marker within the linear range of a quantifi-
cation curve. Sensitivity was calculated as the fraction 
of actual positive [true positive (TP)] host samples 
divided by all expected positive hosts, including both 
false negative (FN) and TP, as follows: Sensitivity = TP/
(FN +  TP). Specificity was calculated as the fraction of 
actual negative [true negative (TN)] host samples divided 
by all expected negative hosts including both unex-
pected positive [false positive (FP)] and TN, as follows: 
Specificity = TN/(FP + TN).

Results
Design of chicken and duck‑specific mtDNA ND5 and cytb 
genetic markers
Multiple alignments of mtDNA ND5 and cytb gene from 
cat, human, dog, pig, cattle, sheep, goat, horse, goose, 
chicken, and duck were performed using Clustal X. We 
designed two assays targeting chicken and duck mtDNA 
ND5 and cytb gene, the expected amplicon sizes being 
172 and 263 bp, respectively (Table 1). Based on the mul-
tiple alignments, chicken and duck ND5 and cytb could 
be readily differentiated from the other selected hosts 
(Fig. 1).

qPCR assays
Standard curves were generated using tenfold serial dilu-
tions of chicken and duck ND5 and cytb gene standard 
plasmids to determine the linear range, amplification 
efficiencies, and LOD. Linear range amplification was 
between 9.70 × 100 − 107 copies per μL for the ND5 assay 
and 1.08 × 101 − 108 copies per μL for the cytb assay. The 
linear regression correlation coefficients (R2) were 0.9993 
for the ND5 assay and 0.9989 for the cytb assay. Amplifi-
cation efficiency was 0.997 for the ND5 assay and 0.964 
for the cytb assay, both of which were within the 0.9–1.1 
tolerance. The LOD was 0.97 and 1.08 gene copies per 
reaction for the ND5 and cytb assays, respectively. Sensi-
tivity and specificity of the assays were tested using total 
DNA extracted from 173 fecal samples of 12 common 
animals (Table 2).

The sensitivity of the ND5 assay was 100%, with 50/50 
samples generated strong positive results. The quanti-
fied values (average ± standard deviation) of these sam-
ples were 7.8 ± 0.8 log10 copies per g dry feces. Positive 
results were also obtained from some human, dog, cattle, 
horse, and goose feces samples, but the average quanti-
fied values for these samples were all one to two orders of 
magnitude lower than those for chicken and duck sam-
ples (Table  2). If these lower quantification values are 
included as genuine positives, the specificity of the ND5 
assay was 84.6%.

Table 1  Oligonucleotide sequences for quantitative PCR

Primer or probe Oligonucleotide sequence (5′–3′) Tm (°C) Amplicon size (bp)

Chicken and duck ND5-F ACCTCCCCCAACTAGC 53.6 172

Chicken and duck ND5-R TTGCCAATGGTTAGGCAGGAG 57.7

Chicken and duck ND5-P (FAM)TCAACCCATGCCTTCTT(NFQ-MGB) 61.1

Chicken and duck cytb-F AAATCCCACCCCCTACTAAAAATAAT 54.3 263

Chicken and duck cytb-R CAGATGAAGAAGAATGAGGCG 53.4

Chicken and duck cytb-P (FAM)ACAACTCCCTAATCGACCT(NFQ-MGB) 62.7
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The sensitivity of the cytb assay was also 100% (50/50 
positives). The quantified values for these samples were 
7.4  ±  0.8 log10 copies per g dry feces. Positive results 
were also obtained from some human, dog, cattle, horse, 
and goose feces, and these were the same samples as were 
found positive in the ND5 assay. This strongly suggests 
there was minor contamination with poultry DNA in 
at least some of the samples. Again, the average quanti-
fied values for these samples were all one to two orders 
of magnitude below that of the genuine poultry sam-
ples. The specificity of cytb assay was 89.8% if these low 
concentration positives are included in the calculation 
(Table 2).

Application of qPCR assays on field samples
We then applied the qPCR assays to environmental soil 
and water samples from nine duck farms and soils fer-
tilized with chicken manure. All water samples tested 
positive using the ND5 assay, with copy numbers rang-
ing from 2.8 log10 copies per 100 mL to 6.4 log10 copies 
per 100 mL water (Table 3). The cytb assay gave similar 
results, except for one Duck farm (YZ4), whose value was 
below the LOD. This sample had the lowest copy number 
using ND5 assay (Table 3).

One Yizhou soil sample from eight was positive with 
the ND5 and cytb assays, returning gene copy numbers 
of 5.1 and 4.6 log10 copies per g dry soil, respectively. The 
Longyan soil sample was positive at the high concentra-
tions of 8.1 log10 ND5 gene copies per g dry soil and 8.0 
log10 cytb gene copies per g dry soil.

Both ND5 and cytb assays target mtDNA, and because 
the number of mtDNA molecules remains constant, the 
two assays should ideally return identical values for copy 
number in any particular sample. The values returned 
from analysis of feces, water and soil samples are in 

general agreement between the assays (Pearson corre-
lation r =  0.9828, P < 0.001), with the ND5 assay being 
consistently more sensitive (Tables 2, 3).

Table 2  qPCR results of fecal samples from various host

a  Concentrations are expressed as log10 copies per g dry feces

Fecal samples Number of samples ND5 assay Cytb assay

Positive Concentrationa Positive Concentrationa

Chicken and duck 50 100% (50/50) 7.8 ± 0.8 100% (50/50) 7.4 ± 0.8

Human 25 40% (10/25) 5.6 ± 0.4 28% (7/25) 5.2 ± 0.3

Pig 17 0% 0%

Dog 23 17.3% (4/23) 5.2 ± 0.8 13.0% (3/23) 4.9 ± 0.6

Cattle 17 17.6% (3/17) 5.9 ± 1.4 11.8% (2/17) 6.1 ± 1.4

Sheep 16 0% 0%

Cat 5 0% 0%

Horse 8 12.5% (1/8) 5.5 12.5% (1/8) 5.2

Deer 1 0% 0%

Goose 2 50% (1/2) 6.1 50% (1/2) 5.8

Rabbit 9 0% 0%

Table 3  qPCR assays conducted on  field samples, includ-
ing  soils amended with  chicken manure (DZ-1CM—
Dezhou), soil and  water from  duck farms in  Longyan (LY) 
and Yizhou (YZ)

a  Concentrations are expressed in log10 copies per g dry soil or log10 copies per 
100 mL water for environmental water samples
b  qPCR results of the other seven treatments from Dezhou, including control 
and field soil amended with urea or sewage sludge, were below the LOD and not 
shown in the table

Sample ND5 assaya Cytb assaya

DZ-1CMb 4.3 4.0

Duck farm water-LY 6.4 5.9

Duck farm water-YZ1 3.6 3.1

Duck farm water-YZ2 4.0 3.2

Duck farm water-YZ3 4.4 3.8

Duck farm water-YZ4 2.8 Not detected

Duck farm water-YZ5 4.6 4.3

Duck farm water-YZ6 3.8 3.3

Duck farm water-YZ7 4.2 4.0

Duck farm water-YZ8 3.5 3.0

Duck farm soil-LY 8.1 8.0

Duck farm soil-YZ1 5.1 4.6

Duck farm soil-YZ2 Not detected Not detected

Duck farm soil-YZ3 Not detected Not detected

Duck farm soil-YZ4 Not detected Not detected

Duck farm soil-YZ5 Not detected Not detected

Duck farm soil-YZ6 Not detected Not detected

Duck farm soil-YZ7 Not detected Not detected

Duck farm soil-YZ8 Not detected Not detected
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Soil samples amended with chicken manure tested 
positive using both ND5 and cytb assays, returning 
concentrations of 4.3 and 4.0 log10 copies per g dry soil 
respectively. This is despite sampling being undertaken 
10 months after the application of manure. Seven other 
treatments taken from different plots in the same long 
term field experiment were below the LOD (data not 
shown). These plots had been amended with other ferti-
lizers such as urea and sewage sludge.

Discussion
In this study, qPCR assays were developed to targeting 
chicken and duck mitochondrial ND5 and cytb, with the 
aim of applying these for source tracking of poultry fecal 
contamination. Both assays were host-sensitive and host-
specific when tested with fecal samples, and were robust 
enough to be used for analyzing field samples of soil and 
water.

Using both assays in tandem allowed us to compare 
their efficiency, since they both target the same molecule, 
mtDNA. In general, these copy number estimates agreed 
between the assays, although the ND5 assay consistently 
returned slightly higher copy estimates (Tables 2, 3). The 
amplification efficiency of the ND5 assay may have been 
higher. Because the size of ND5 amplicon (172  bp) was 
shorter than that of cytb amplicon (263 bp).

We tested 173 fecal samples from 12 hosts (Table  2) 
from a large geographical range in China. Both ND5 and 
cytb assays exhibited cross-reactions to some human, 
dog, cattle, horse and goose fecal samples. In general, 
the same samples were responsible for unexpected posi-
tives in both assays, suggesting that minor contamina-
tion might be responsible. In the case of human and dog 
fecal samples, this contamination might have arisen from 
recent consumption of poultry products. Positive signals 
for beef mtDNA ND5 were obtained from two out of four 
human volunteers who consumed beef within 24  h of 
sampling (Caldwell et al. 2007). In the same study, there 
was no carry-over signal from consumption of pork. Fur-
ther studies are needed to confirm whether human con-
sumption of poultry products results in poultry mtDNA 
being present in feces. We also detected a small number 
of unexpected positive signals from cattle, horse, and 
goose fecal samples, which might simply be from envi-
ronmental cross-contamination of samples. In any case, 
these unexpected positives could be easily distinguished 
from genuine positive samples because copy number 
estimates were generally one to two orders of magnitude 
lower (Table 2).

In preliminary experiments, we tested five reported 
chicken and poultry markers, including CL-TaqMan 
(Ryu et  al. 2014), PLprobe (Gómez-Doñate et  al. 2012), 
Chicken/Duck-Bac (Kobayashi et  al. 2013), Duck-Bac 

(Kobayashi et  al. 2013), and Av43 (Ohad et  al. 2016), 
which target host-associated Brevibacterium sp., Bifido-
bacterium, Bacteroides spp., Bacteroides spp., and Firmi-
cutes 16S rRNA gene, respectively. It has been reported 
that CL-TaqMan, Chicken/Duck-Bac, and Duck-Bac 
assays showed relatively low sensitivity and specific-
ity (Kobayashi et  al. 2013; Ryu et  al. 2014). Our results 
agreed with this conclusion. The sensitivity of CL-
TaqMan, PLprobe, Chicken/Duck-Bac, and Duck-Bac 
assays were all less than 50%. PLprobe, Chicken/Duck-
Bac, and Av43 assays exhibited cross-reactions with dog, 
cat, sheep, cow or pig feces (data not shown). The low 
sensitivity of markers might be caused by the low abun-
dance of targeted microorganisms in the host feces, and 
microbiota might vary significantly with diet (Turnbaugh 
et  al. 2009; Muegge et  al. 2011; Wu et  al. 2011; David 
et al. 2014).

Currently, most MST methods rely on fecal indicator 
microorganisms or use molecular methods that require 
extensive data collection before hosts can be reliably 
differentiated (Green et  al. 2014b; McLellan and Eren 
2014; Ohad et  al. 2016). Our real-time PCR assays tar-
geting poultry mtDNA genes can overcome the above 
disadvantages. Firstly, mtDNA is remarkable for its spe-
cies-specificity and low intra-species variability (Moritz 
et  al. 1987). It can thus be used to identify animal spe-
cies directly rather than rely on microbial species which 
may, or may not occur in the animal host (Caldwell 
et al. 2007). Crucially, there are large numbers of epithe-
lial cells shed in feces (Iyengar et  al. 1991) and mtDNA 
has many gene copies per cell (Andreasson et  al. 2002). 
Therefore, mtDNA genes are likely to generate robust 
signals, simply because of their abundance (Martellini 
et al. 2005). Thirdly, high abundance means a long half-
life, and potential for persistence in environmental com-
partments. Several groups have reported mtDNA from 
human and dog feces can persist in water for 15–29 days 
(Martellini et al. 2005; Tambalo et al. 2012), and mtDNA 
markers can survive for relatively long time in water bod-
ies (He et al. 2015). Finally, the mtDNA of most common 
species have been fully sequenced and are freely available.

Fecal contamination of water bodies is a common envi-
ronmental problem (WHO Scientific group 2000; McLel-
lan and Eren 2014). The qPCR assays we developed here 
were sensitive, having a detection limit of 0.97 and 1.08 
gene copies per reaction for the ND5 and cytb assays, 
respectively (Table  2). This made it possible to readily 
identify poultry fecal contamination in environmental 
samples. We applied the ND5 and cytb assays to environ-
mental soil and water samples from nine duck farms. All 
water samples were positive with the exception of one 
cytb assay. Two soil samples collected near duck farms 
detected poultry fecal pollution. For most soil samples, 
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although the concentration of total DNA was high (data 
not shown), no poultry fecal contamination was detected. 
Density of farm is likely one of the factors for low detec-
tion rate. Another reason may due to the random dis-
tribution of duck feces in farm soil. Detection of fecal 
contamination in soil is more difficult to achieve due to 
the heterogeneity of soil, limitation in sample collection, 
and DNA extraction, since only a small fraction (0.5 g in 
this study) of soil was subjected to DNA extraction and 
PCR amplification. In addition, contaminants in water 
are more mobilized than that in soil, leading to rapid 
spread in water bodies.

To test if this was because the mtDNA degraded more 
rapidly in soil, we tested soil where chicken manure had 
been applied. Samples taken ten months after the appli-
cation of chicken manure were still positive in both 
assays, suggesting that the ND5 and cytb assays are robust 
enough to be used on field samples.

In conclusion, we developed qPCR assays target-
ing the chicken and duck mitochondrial ND5 and cytb 
genes. Both assays were sensitive and specific, as tested 
against 173 fecal samples from diverse animals. We also 
tested the assays on field samples, detecting poultry 
mtDNA soil and water samples adjacent to duck farms, 
and soil amended with chicken manure. Further studies 
are needed to investigate the low levels of unexpected 
positive reactions to some other fecal samples, in par-
ticular to test whether consumption of poultry results 
in mtDNA being present in human feces. Overall, the 
assays should be a useful addition to existing meth-
ods for detecting domestic chicken and duck fecal 
pollution.
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