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Abstract: Comprehensive basic biological knowledge of the Eph/ephrin system in the physiologic
setting is needed to facilitate an understanding of its role and the effects of pathological processes on
its activity, thereby paving the way for development of prospective therapeutic targets. To this end,
this review briefly addresses what is currently known and being investigated in order to highlight
the gaps and possible avenues for further investigation to capitalize on their diverse potential.
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1. Introduction

Detection, transduction and appropriate response behavior of neighboring cells are essential
components of optimal communication and the coordinated and integrated function necessary for
survival. In a complex system, this is determined by the summative and timely intracellular processing
of a myriad of intersecting signals from various distances and directions. The Eph receptors and
ephrin ligands are the largest tyrosine kinase (RTK) superfamily, comprised of 22 known members,
subdivided into A- and B-subclasses, and are heterogeneously expressed in almost every tissue [1].
These membrane-anchored proteins exhibit unique cell-to-cell communication via bidirectional
signaling, which modulates cytoskeletal dynamics and thus cell–cell recognition and motility, making
them integral mediators in developmental processes and the maintenance of homeostasis [2,3]. Given
the importance of these biomolecules, it stands to reason that derangements in expression and signaling
sequelae would contribute to and/or cause disease [4–10]. The disparate influences of aging, ethnicity,
and gender on expression and signaling variations, however, which may exacerbate pre-existing
imbalances, remain largely unexplored. Their complicated expression profiles, often with multiple
ligands and/or receptors on one cell adjacent to or near other(s) with a different expression profile,
compounded by their various affinities for receptor binding, oligomerization, cis- and trans-activation
or inhibition, all contribute to the complicated delineation of their roles in normal physiology and
disease progression, as well as development of customized, targeted therapeutics [11–17].

2. Eph/ephrin is a Ubiquitous Therapeutic Target

The Eph receptors (Eph = erythropoietin-producing hepatocellular) and their congeneric ligands,
the ephrins (contraction of “Eph receptor interacting proteins” and after the Greek word “ephoros”
meaning overseer or controller), are the largest family of receptor tyrosine kinases, comprised of
14 receptors and 8 ligands. Since their discovery and cloning by Hirai et al., published in Science
in 1987 [18], more than 5000 articles have reported on the structure of these proteins, cellular
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and tissue expression profiles, downstream signaling mechanisms, and their contribution to the
differentiation, proliferation and migration of various cell types. Ligands A1–A5 and B1–B3 are
typically membrane-anchored, and cell-to-cell contact is usually but not always required, resulting in
binding with varying affinity and promiscuity to the receptors A1–A8, A10, B1–B4, and B6. Subsequent
dimerization, tetramerization and/or clustering of ligands and receptors (Figure 1A) can cause activation
or silencing of bi-directional signaling and consequent activation (or inhibition) of intracellular cascades
in each cell [19–24]. Ojosnegros et al. (2017) recently adapted enhanced fluorescence fluctuation imaging
analysis to resolve the spatial relationships of polymerization and formation of larger aggregates,
generating a model of polymerization-condensation dynamics which suggests that these associations
result not only in amplification of the signal, but also in termination [25]. To complicate matters, domain
mutation analyses have revealed that the nature of the contact interfaces in the ligand-binding domains
confer binding specificity, but it is the domains contained within ectodomains (e.g., SAM—sterile alpha
motif) that are indispensable for localization and subsequent forward intracellular signaling [26–28].
Lastly, the importance of the lipid bilayer composition [29], as well as its interface as a regulator of their
orientation and configuration with respect to the membrane, as demonstrated by charge-swapping
simulations [30], illustrates their effectual plasticity.
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Figure 1. (A) Many configurations and post-translational modifications of Eph/ephrin RTKs have been
observed (Me—methylation, P—phosphorylation, Ac—acetylation). (B) Eph/ephrin RTKs are widely
expressed in various cell types in most healthy tissues with the following exceptions: EphA8 is detected
only in spleen, brain and testes, EphA10 is in testes only, and ephrinA2 is absent in lung, spleen, testes,
and bone marrow (Created with BioRender.com).

The multifaceted and ubiquitous expression of Eph/ephrin RTKs in nearly all cells of the
body, although most extensively studied in cancer and development, implicates them in the
majority of vital physiologic processes (Figure 1B) [3]. The knowledge we have acquired from
these studies has generated valuable information about the role of Eph/ephrin RTKs in cellular
communication and behavior, providing a wealth of therapeutic targeting opportunities that may
be exploited for a range of pathologies, including but not limited to atherosclerosis [5,31,32],
neurodegenerative/cognitive and endocrine disorders [33–38], gastrointestinal and genito-urinary
maladies [39–41], immune disorders [4,5,9], musculoskeletal growth and metabolism diseases [42–45],
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ischemic tissue injury [46–56] and malignancies [7,57,58], reproductive/fertility illnesses [59–62] and
organ fibrosis [10,63]. A recently observed connection between viral infections and tumorigenesis
mediated through Eph/ephrins is also being characterized, raising the possibility of alternative anti-viral
strategies [64]. This review aims to illustrate the potential for developing targeted vehicles, targeting
methods, and therapeutic cargo to modulate Eph/ephrin signaling (Figure 2).
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3. Eph/ephrin Signaling Dynamics

Eph receptors and ephrin ligands are expressed in a variety of combinations and permutations
in several cell types. These multi-domain proteins each contain several regions: the extracellular
ligand-binding domain, a cysteine-rich domain, two fibronectin domains, FN1 and FN2, the cytoplasmic
kinase domain, and the SAM domain [11,12,17,65]. These, in conjunction with aforementioned
structural features, downstream effectors, termination by ADAMs (a disintegrin and metalloprotease),
and recently discovered non-catalytic and reciprocal cross-regulatory activities, represent a treasure
trove of targeting possibilities [13,15]. The following paragraphs discuss some of what is known about
the role of Eph/ephrin signaling merely as an introduction to some common aspects of cellular function.
Specifically, cell repulsion/adhesion, migration and proliferation, as drivers of inflammation as well as
vascular and lymphatic function, are features of cells in nearly all organs (Figure 1B; [6,66]), and have
broad applications in most disease processes.

Attenuation of inflammation and/or vascular permeability via Eph/ephrin signaling modulation
significantly reduces tissue injury [5,9,41,67]. In the vascular endothelium and leukocytes, Eph/ephrin
expression can be enhanced by pro-inflammatory cytokines, and can regulate local as well as systemic
immune cell trafficking [4,9,68,69]. Ephrin-B2 and EphB4 are known to be expressed on the vascular
endothelium and play a role in hematopoiesis and cell mobilization [70]. Luminal ephrinB1 and B2
expression are upregulated in endothelial cells, and interact with EphB2 on macrophages to promote
transmigration [71]. Endothelial EphA2 is upregulated in response to TNF-α [72], and its activation
enhances proinflammatory NF-κB and promotes disruption of the endothelial/epithelial barrier [5].
There is mounting evidence that both Eph receptors and ephrin ligands may also influence toll-like
receptor function to propagate immune and/or tumorigenic signaling pathways, but more information
about their prevalence and changes as an effect of disease on innate immune cells is needed [73]. EphA2,
ephrin-A1 and ephrin-A2 are upregulated during monocyte differentiation [74] and, as inflammation
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progresses, leukocytic EphA1, EphA3 and EphA4 promote clustering of adhesion molecules and
permit selective infiltration, resulting in adherence to endothelial cells and contributing to disruption
of vascular integrity [5,68]. Cytoskeletal reorganization required for migration of T lymphocytes,
widely recognized for their role in immune surveillance and initiation of the immune response, may be
influenced by EphA/ephrin-A1 signaling, since T cells express Eph A1, A2, A3, A4, A7 and A8 [75,76].
Ephrin-A1 stimulation of T cells prevents chemotaxis, and thus ephrin-A1 may be a negative regulator
of inflammation [77]. Sharfe et al. (2008) propose that ephrin-A1 enhances integrin-mediated adhesive
interactions between T cells and endothelial cells, while EphA receptor activation on T cells inhibits it,
so this would restrict T cell transmigration. Members of the EphB/ephrin-B family, integral mediators
of vascular, lymphatic and neuronal development [78–80], also play a role in many of these disease
processes, as observed by the involvement of EphB1 in microglial cells in models of nociceptive
pain and inflammation [81], as well as splenic mononuclear EphB4-mediated inflammatory bowel
disease [41]. Of course, expression of A and B receptors and ligands in any given cell within a tissue
are not mutually exclusive, nor does their presence preclude the possibility for changes, in expression
level and/or isoform, when that type of cell is detected in other tissue beds and/or exposed to various
stimuli. For example, B cells in normal human peripheral blood express ephrinA4, EphA1-A4, EphA8,
EphB2 and EphB4 while lymph node samples contain different amounts of ephrin-A4 and EphA1-A4
as well, but also ephrin-A1, ephrin-A3, ephrin-A5, EphA5, EphA10, ephrin-B2, EphB1 and EphB6;
expression profiles that change significantly with disease progression [82]. T cells have also been
shown to express EphB1, EphB2, EphB3, EphB6 and ephrinB1-B3, but whether there is co-expression
on the same T cell and how they contribute to activation and/or differentiation are currently under
investigation [9]. Adaptor proteins, a large group of accessory proteins containing protein-bind
motifs, often have multiple binding units that enable them to join other proteins together to create a
larger signaling complex. In particular, Src-like adaptor proteins (SLAPs), expressed primarily in the
immune system, are involved in Eph RTK-mediated signal transduction by virtue of their interaction
with several other adaptor/effector proteins, and the resultant activation or inhibition differentially
influences tumorigenesis in a variety of tissues [83].

The role of Eph/ephrin signaling in the development of the lymphatic system has long been
established. In contrast to the exclusive expression of ephrin-B2 and EphB4 in arteries and veins,
respectively, an essential feature that drives boundary formation of these closely opposed systems [84],
both ligand and receptor are expressed on lymphatic vessels [85]. Importantly, the PDZ domain (an
initialism representing a common structural domain in signaling proteins that serves as an interface
between the membrane and the cytoskeleton), but not the kinase domain, of the ephrin-B2 ligand
is required for reverse signaling to promote normal lymphangiogenesis during development [86].
It is known that the lymphatic system, normally quiescent in an adult, is the biological vehicle for
malignant metastasis [58] and, given the prominent role of Eph/ephrin RTKs in tumorigenesis and
metastasis, their suitability as molecular targets is an active area of investigation that holds great
promise [87]. Indeed, the potential utilization of Eph/ephrin signaling as prognostic indicators of
disease progression or therapeutic targets, as in the correlation of EphB4/ephrin-B2 levels with the
incidence of metastasis in breast cancer survivors [88], and the efficacy of targeting ephrin-B2 to limit
tumor growth via attenuating adverse lymphangiogenesis and angiogenesis [89], are increasingly
being recognized.

The importance of Eph/ephrin signaling during development underscores their relevance to stem
cell plasticity, and they have been reported as determinants of cell fate in embryonic, mesenchymal and
cord blood stem cells. As previously discussed, Eph/ephrin signaling participates in hematopoiesis
and related malignancies. Mesenchymal stems from bone marrow and adipose tissue express several
members of both the A and B families, which regulate survival and renewal, differentiation, morphology,
mobilization, homing and engraftment [90–92]. In embryonic stem cells, a phosphoproteomic study
revealed that the EphA2 receptor was reported to be a critical target of FGF4, leading to disabling of the
EphA2 receptor via ERK1/2 and ser/thr phosphorylation and concomitant transcription of ephrin ligands,



Pharmaceuticals 2020, 13, 112 5 of 17

resulting in exit from the pluripotent compartment to initiate differentiation [93]. Reprogramming
of adult somatic stem cells is effected by secreted, truncated EphA7-induced attenuation of ERK1/2
signaling [94]. Oleic acid, a naturally occurring mono-unsaturated fatty acid, increased EphB2
expression in cord blood-derived mesenchymal stem cells, thereby enhancing their migratory capacity
by increasing F-actin formation which alters the cytoskeleton [95]. Several members of the Eph/ephrin
RTK family contribute to blastocyst implantation and invasion, as well as modulation of immunity
during placentation [96]. The complex nature of Eph/ephrin signaling in these stem cell populations,
as a function of space and time, warrants systematic characterization in order to fully appreciate their
role in development and disease.

The Eph/ephrin RTKs clearly exert a prominent influence on cytoskeletal reorganization, which
regulates cellular adhesion/repulsion/tensity, key elements of morphologic changes in metastasis
and pathologic angiogenesis, [97,98] as well as modulation of inflammatory cell motility [99,100].
Reverse signaling through ephrinB1, resulting in tyrosine phosphorylation, recruits SH2/SH3 domain
adaptor protein Grb4 binds and subsequently activates FAK, Cbl, Abl, paxillin and others to
modulate cytoskeletal dynamics [101,102]. Forward signaling via autophosphorylated EphB2 and
concomitant recruitment of myosin 1b regulates cytoskeletal remodeling [102,103]. EphA1/Ephrin-A1
activation attenuates RhoA/ROCK (Rho-associated coiled-coil containing protein kinase) to modify
the cytoskeleton, and thus influences morphology and motility in HEK293 cells [104]. Shp2 regulates
dephosphorylation of ROCKII, and adds an additional level of control to RhoA-dependent activation
and mediation of contractile forces [105], and Shp2 is recruited by ephrin-A1-EphA2 leading to
suppression of integrin function and FAK inactivation, which has strong implications for inflammation
and wound-healing processes [106]. Other aspects of wound-healing, such as Ca2+ handling [107],
mitochondrial fission [108], ATP generation [109], apoptosis [8,110], autophagy and fibrosis [111],
are also influenced by this system, and there may well be others as yet undiscovered. Intracellular
post-translational signaling cascades and transcriptional modifications can also be affected, but
the mediators involved in transmitting these signals are, as yet, unclear. To complicate matters,
cancer progression associated with an Eph receptor can be paradoxically up- or down-regulated
in a tissue-specific manner [7]. Moreover, post-translational modifications can govern subcellular
localization, conformation and clustering, which will directly influence activity, a feature which may be
manipulated for therapeutic advantage. For example, the pharmacodynamics of EphA4-Fc (a chimeric
protein fused with the Fc constant region of immunoglobulin heavy-chain) were substantially enhanced
by glycosylation [112]. Scheideler et al. (2020) have developed a novel high-throughput DNA-based
patterning platform, using multilayer lithography to recreate the complex spatial signaling systems
between cells and tissues, that will accelerate our understanding of how these signals cumulatively
govern cell behavior [113]. Much more research is needed to delineate the diverse roles of this
system in a cell- and tissue-specific manner, as well as its systemic interplay under normal as well as
pathological conditions.

4. Small Molecule, Peptide, Protein and RNA Targeting of Ephrins

Advancements in the automated manufacturing and screening of small molecules with increased
potency and specificity are anticipated to accelerate the identification of viable targets and yield
promising therapeutic candidates. While screening of small molecule libraries remains a productive
strategy for the identification of novel Eph agonists and antagonists, design strategies that link
therapeutic small molecules together, or link them with Eph-targeting peptides, proteins, and antibodies,
have emerged as viable strategies for the creation of multi-modal therapeutics. While these next
generation therapeutics hold great promise, eventually they must be adequately vetted to ensure safety
and efficacy before heading to the clinic. As a result, significant delays can be anticipated before the
promise of many of these exciting strategies is fully realized.

The past decade of small molecule-based Eph targeting has been fruitful, with the identification of
numerous small molecules and peptides that enable specific targeting of Eph receptors (see summary,
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Table 1) [17,114]. In addition, Ephrin-targeting peptide sequences have been identified and further
modified to improve specificity and bioavailability. In a recent report, the crystal structures of engineered
variants of the EphA2-targeting peptide YSA with the EphA2 ligand binding domain were reported,
providing an experimental framework for improving the affinity of EphA2-targeting peptides from
the micromolar domain to the nanomolar domain and beyond [115]. Moreover, a new pH-dependent
membrane peptide (TYPE7) was created based on the transmembrane domain sequence of EphA2 [116].
This peptide undergoes pH-dependent membrane insertion, and has an EphA2-targeting profile
like that of ephrin-A1. Novel peptides with an affinity for the EphA2 receptor (peptide 135
H11, an optimized variant of YSA-derived peptide 123B9 [117]) and the EphA4 receptor (peptide
123C4, [118]) have also been investigated as potential pancreatic cancer treatments and therapeutics
for amylotrophic lateral sclerosis (ALS). Small molecules have been extensively investigated for
Eph receptor-mediated therapeutic potential, via screens of libraries of kinase inhibitors [119] and
ATP-competitive inhibitors [120]. Structure–activity relationships and bioavailability studies for novel
antagonists of EphA1 and EphB1 have also been reported [121]. The small molecule UniPR500,
an EphA5 inhibitor, has undergone evaluation for its ability to improve glucose homeostasis in diabetic
mice [122]. A novel EphB2-targeting molecule, HMQ-T-B10, was investigated as a potential anti-tumor
therapeutic in hepatocellular carcinoma [123]. The EphB2-targeting properties of berberine have also
been explored for anti-cancer activity, both alone [124] and in combination with the novel small molecule
TPD7 [125]. Of further note, numerous peptide/protein/antibody–small molecule conjugates have
been investigated for their ability to simultaneously target (peptide/protein/antibody) and treat (small
molecule) conditions mediated by Eph receptors [126]. For example, the fusion of EphA2-targeting
peptides and paclitaxel has been an active area of investigation [127–130], in addition to a fusion of
gemcitabine and an EphA2 peptide targeted to pancreatic cancer [131]. EphA2-targeted antibody–drug
conjugates have also been evaluated for their ability to target and treat tumors [132], and anti-EphA4
antibodies conjugated to the DNA-damaging reagent calicheamicin have been used in vivo to target
tumor-initiating cells in triple-negative breast cancer and ovarian cancer [133]. Recently, Eph-targeted
therapeutic strategies have also embraced therapeutic proteins, as radiosensitizers in cancer treatment
(sEphB4-HAS, [134]) and as Eph-targeted cytotoxins (eA5-PE38QQR, [135]). A bispecific antibody,
targeting both EphA2 and EphA3, has been explored as a potential therapy for glioblastoma [136], while
antibodies targeted to EphB4 have been investigated for anti-cancer activity [137]. Finally, numerous
RNA-based strategies have been explored for targeting Eph receptors [138]. Recent efforts include the
synergistic knockdown of EphB2 with siRNA coupled with radiotherapy [139], and the targeting of
EphA2 with microRNAs [140,141].

Table 1. Peptides, proteins, and small molecules developed to target Eph Receptors.

Target Receptor Agent Type Agent Name Sequence/Description Reference
EphA2 Peptide YSA YSAYPDSVPMMS [115]

Peptide YSA-GSGSK-bio YSAYPDSVPMMSGSGSK-bio [115]
Peptide SWL SWLAYPGAVSYR [115]
Peptide WLAam WLAYPDSVPMam [115]
Peptide βA-WLA-YRPK-bio βAWLAYPDSVPYRPK-bio [115]
Peptide βA-WLA-YSK-bio βAWLAYPDSVPYSK-bio [115]
Peptide TYPE7 EFQTLSPEGSGNLAVIGGVAVGVVLELVLAGVEFFIEEEEE [116]
Peptide 123B9 (4-F,3-ClPhOCH2CO)SAYPDSVP(Nle) (hS)S-CONH2 [117]

Peptide 135H11 XLA(4MeTyr)PDA V(Hyp)(4ClPhe)RP-CONH2 X =
3-methyl-6,7-dimethoxy-benzofuranoic acid [117]

Peptide-small
molecule (123B9)2–L2–PTX Dimeric 123B9 conjugated to paclitaxel [127–130]

Peptide-small
molecule

123B9-L2-Gem
YNH/YDH-L2-Gem

123B9 peptide conjugated to gemcitabine
YNH or YDH peptide conjugated to gemcitabine [131]

Antibody-drug 3B10-ADC
1C1-ADC

anti-EphA2 monoclonal antibodies fused to tubulysin
variant AZ13599185 [132]

Small molecule UniPR139,
UniPR502 [121]

microRNA miRNA-302B;
miRNA-26B [140,141]
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Table 1. Cont.

Target Receptor Agent Type Agent Name Sequence/Description Reference
EphA4 Peptide 123C4 [118]

Antibody-drug PF-06647263 hE22 monoclonal antibody fused to calicheamicin [133]
EphA5 Small molecule UniPR500 [122]
EphB2 Small molecule HMQ-T-B10 [123]

Small molecule berberine [124]
Small molecule TPD7 [125]

siRNA EphB2 knockdown + radiation [139]
EphB4 Protein sEphB4-HAS EphB4 receptor fragment fused to human serum albumin [134]

Antibody H200 pAb Polyclonal antibody raised against 200 aa extracellular
region of EphB4 [137]

Multiple
targets Protein fusion eA5-PE38QQR EphR ligand eA5 fused to truncated form of

Pseudomonas aeruginosa exotoxin A [135]

Antibody EPHA2/A3 BsAb Novel bispecific antibody targeting EphA2 and EphA3 [136]

5. Targeted Delivery Strategies for Ephrins

Targeted smart drug delivery strategies to provide specific, rapid, non-invasive, biocompatible
and robust Eph/ephrin RTK signaling benefits to the cell/tissue or region of interest, while avoiding
off-target and/or toxic effects, are actively being pursued. For example, liposomes, microspheres, gels
and biodegradable polymer nanoparticles are being engineered to replace conventional formulations
and administration methods, and have demonstrated early success, particularly in cancer therapy (see
summary Table 2) [142–145].

Table 2. Engineered delivery systems designed to improve target specificity.

Target Receptor Agent Type Description Reference
EphA2 Liposome YSA-liposomes for co-delivery of doxorubicin and JIP1 siRNA [146]

EphA10 Liposome EphA10 antibody lipoplex for co-delivery of doxorubicin and
MDR1-siRNA [147]

EphA2 Liposome YSA-liposomes for delivery of doxorubicin [148]
EphA2 Liposome Eph1A-liposomes for delivery of let-7a miRNA [149]
EphA2 Liposome Delivery of paclitaxel and docetaxel prodrugs [150]
EphA2 Lipsome scFv-liposome for delivery of cytotoxin [151,152]
EphA2 Polymer scFV 4B3-pegylated hyperbranched polymer [153]

Multiple
targets Polymer CHVLWSTRC-peptide labeled cationic polymer delivers

therapeutic sRAE-1γ plasmid via EphA2 and EphA4 receptors [154]

EphB4 Polymer Biopolymer functionalized with ectodomain of ephrinB2 [155]
EphA2 DNA Ephrin-A1 decorated DNA nanostructure [156]
EphA2 Nanoparticle Pegylated EphA2 peptide coated nanoparticles [157]
EphA2 Nanoparticle YSA-nanoparticle for co-delivery of ILsi RNA and paclitaxel [158]
EphA2 Nanorod YSA-gold nanorods [159]

EphB1 Nanoparticle EphB1 ligand binding domain-erythrocyte nanoparticles for
delivery of phototherapy [160]

EphA3 Nanoparticle EphA3 antibody-nanoparticles for delivery of temozolomide [161]
EphA2 Nanoparticle YSA-polymeric nanoparticles [162]
EphA2 Nanoparticle Chitosan-coated Ephrin-A1-PE38/GM-CSF nanoparticles [163]

Eph-targeted liposomes have been formulated for the delivery of multiple therapeutic cargoes,
including small molecule therapeutics, miRNAs, siRNAs and gene therapies. Efforts to target
liposomes to Eph receptors include the EphA2-targeted delivery of doxorubicin and siRNA from
nanoliposomes [146], EphA10-targeted delivery of doxorubicin and siRNA from lipoplexes [147],
and EphA2-targeted delivery of doxorubicin from liposomes [148]. Nanoliposome formulations
targeted to EphA2 have also been used to deliver a therapeutic microRNA (let-7a) to lung cancer
cells, significantly increasing the delivery over treatment with miRNA alone [149]. Recently,
an EphA2-targeting liposome encapsulating a taxane-prodrug was developed and tested for efficacy
in lung and breast cancer models [150], with the targeted liposome formulation possessing higher
efficacy than delivery of the drug alone. Nanoliposomes have also been linked to Eph-targeted single
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chain variable fragment (scFv) antibodies as a potential mode of therapeutic delivery. For example,
targeted delivery of a liposomal cytotoxic nanoparticle was enabled by coupling with an engineered
anti-EphA2 scFv [151,152]. In recent years, polymeric scaffolds have also been exploited for numerous
Eph-targeting applications. These include the use of antibody-labeled PEG-ylated polymers for
targeting the EphA2 receptor [153], and peptide-labeled cationic polymers targeted to EphA2 and
EphA4 for therapeutic gene delivery [154]. EphB4-targeting biopolymer scaffolds have also been
developed for the induction of the differentiation of neural stem cells [155]. Interestingly, DNA has
been functionalized with the EphA2-targeting peptide SWL to create DNA-SWL nanostructures [156].
These nanostructures were shown to target EphA2-expressing prostate cancer cells.

Numerous nanoparticle-based formulations have been designed for the targeting of ephrins and
Eph signaling pathways. For example, peptide-coated nanoparticles have also been targeted to EphA2
for the delivery of anti-cancer compounds [157]. Recently, a multi-faceted, EphA2-targeted, black
phosphorous-based nanosystem was reported [158]. This nanoformulation uses the YSA peptide
for EphA2-targeting and carries two therapeutic moieties: siRNA (interleukin-1alpha silencing)
and the small molecule paclitaxel. In another report, the YSA peptide was used to functionalize
gold nanorods, resulting in anti-proliferative activity on prostate cancer cells [159]. Eph-targeted
nanoparticle formulations can also be the basis for advanced theranostic applications. For example,
erythrocyte-derived nanoparticles were targeted to ephrin-B2 ligands via functionalization with
the ligand binding domain of EphB1 [160]. Inclusion of a NIR-active dye (near infrared) in the
nanoformulation makes them a promising platform for long wavelength phototherapies targeted to
diseased cell populations. Ephrin-targeted nanoparticles have been developed to target glioblastoma.
In one recent study, antibody-labelled polylactide-co-glycolide (PLGA) nanoparticles, targeting
EphA3, were used for delivery of temozolomide via a nose-to-brain delivery route [161]. PLGA
nanoparticles have also been targeted to the EphA2 receptor by functionalization with the YSA
peptide, and their uptake in bleomycin-damaged lungs and cells investigated as a potential route for
therapeutic delivery [162]. Nanoparticles have also been used to deliver novel recombinant proteins.
For example, chitosan-coated nanoparticles bearing the recombinant protein Ephrin-A1-PE38/GM-CF
were demonstrated to have anti-tumor activity in rats [163].

Finally, exosomes have been identified as a potentially powerful strategy for using Eph/ephrins
to target select populations of cells and neurons [164]. Exosomes displaying membrane-bound Eph
receptors were recently demonstrated to facilitate cell-contact-independent communication between
cells [165,166]. As exosomes also have the capability of transporting therapeutic genes, proteins,
and small molecules, they comprise another important class of Ephrin-targeted drug delivery that
warrants further investigation. Exosomes have also been shown to promote angiogenesis through
transport of Eph receptors [167]. Targeting or harnessing the intrinsic properties of EphR-laden
exosomes may present a novel therapeutic route for inhibiting angiogenesis in cancer [168]. Exosomes
may also transmit chemoresistance via delivery of EphA2 [169]. In this regard, targeting exosomal
EphR could be a novel route for inhibiting chemoresistance. Finally, exosomes from cancer cells are
known to transfer miRNAs to other cells within tumors [170]. This suggests that exosomes could
perhaps be hijacked to deliver therapeutic small RNAs as well [171]. For example, exosomes from
human cardiac progenitor cells have been shown to improve cardiac function and reduce apoptosis
after myocardial infarction, through the transfer of microRNAs in infarcted hearts [172].

6. Conclusions

The intricate, multifaceted, and pervasive nature of the Eph/ephrin RTK system is being
meticulously studied using an assortment of sophisticated molecular, cellular and in vivo techniques.
These highly conserved proteins are a new and rapidly growing area of research as they influence a
range of cellular behaviors and biological processes, thus possessing enormous translational potential
for the treatment of human diseases. Currently, there are several clinical trials at different stages of
recruitment/completion in a broad range of cancers. Many unanswered questions remain concerning
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the relative influence of these signaling pathways, not only on each other but on other mediators within
the cell, as well as their interactions with neighboring cells, and the timing and cumulative/synergistic
consequences of these events present a daunting challenge for discovering solutions. However, this
versatility also holds great promise for the future of personalized medicine.
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