Short Repor i-PERCEPTION

i-Perception
Edge-Enhanced Disruptive © The Author() 2019
DOI: 10.1177/2041669519877435

C a m 0 u ﬂ age I m p ai I"S S h a. p e journals.sagepub.com/home/ipe
Discrimination ®SAGE

Rebecca J. Sharman © and P. George Lovell
Division of Psychology, Abertay University, Dundee, UK

Abstract

Disruptive colouration (DC) is a form of camouflage comprised of areas of pigmentation across a
target’s surface that form false edges, which are said to impede detection by disguising the outline
of the target. In nature, many species with DC also exhibit edge enhancement (EE); light
areas have lighter edges and dark areas have darker edges. EE DC has been shown to undermine
not only localisation but also identification of targets, even when they are not hidden (Sharman,
Moncrieff, & Lovell, 2018). We use a novel task, where participants judge which “snake” is more
“wiggly,” to measure shape discrimination performance for three colourations (uniform, DC,
and EE DC) and two backgrounds (leafy and uniform). We show that EE DC impairs shape
discrimination even when targets are not hidden in a textured background. We suggest that
this mechanism may contribute to misidentification of EE DC targets.
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Introduction

External disruptive colouration (DC) is a pattern comprised of contrasting coloured patches
that create false edges that break up the outline of a target impeding localisation and iden-
tification (Cott, 1940; Cuthill et al., 2005; Egan, Sharman, Scott-Brown, & Lovell, 2016;
Merilaita, Scott-Samuel, & Cuthill, 2017; Sharman et al., 2018; Thayer, 1909), whereas
internal DC is concerned with perceptually breaking up the surface of the target using
false correspondences and texture gradients (Merilaita et al., 2017). In this correspondence,
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the camouflage patterns investigated have features of both internal and external DC, thus
“DC” is used as an inclusive term for both types of pattern. DC is often accompanied by
edge enhancement (EE), where light patches have lighter edges and dark patches have darker
edges (Egan et al., 2016; Osorio & Srinivasan, 1991; Sharman et al., 2018).

DC is particularly effective when combined with background matching, such that the
coloured patches appear to belong to different background objects. This pattern results in
differential blending of the contrasting patches (Cott, 1940), disrupting grouping and percep-
tual organisation mechanisms (Espinosa & Cuthill, 2014). In order for this to work, coloured
patches must appear more different from each other than from adjacent background colours,
causing them to be grouped with the background rather than with each other (Espinosa &
Cuthill, 2014). In this fashion, DC disrupts higher level feature integration, specifically figure-
ground segregation. However, edge-enhanced DC hinders identification of targets even when
they are presented on a contrasting background (Sharman et al., 2018). This suggests that this
form of camouflage may also disrupt lower level visual processes.

Some of the earliest research into edge-enhanced disruptive camouflage suggests that it
works by super-exciting edge detectors, causing false edges to become more salient than real
edges (Osorio & Srinivasan, 1991). This is supported by computational models that show DC
disrupts detection of target outlines (Stevens & Cuthill, 2006). There are several suggestions
as to how exactly this disruption may take place. It may be as simple as the false edges
creating perceptual noise, decreasing the signal-to-noise ratio (Merilaita et al., 2017).
However, it seems likely that it also involves some form of neuronal inhibition. Lateral
inhibition or surround suppression would suggest that the high-contrast false edges reduce
sensitivity to nearby lower contrast real edges, particularly those which are perpendicular to
the false edges (Merilaita et al., 2017; Troscianko, Benton, Lovell, Tolhurst, & Pizlo, 2009).

If DC interferes with contour integration how might that work: What mechanisms might
be involved? High-contrast contours, such as the false edges in DC, invoke strong end-
inhibition, which may suppress perception of the actual outline of the animals (Field,
Hayes, & Hess, 1993; Kapadia, Westheimer, & Gilbert, 1999). Embedding contours in a
textured surround reduces neuronal firing, compared to the same length contour on a uni-
form background. However, embedding a high-contrast contour within a texture also
changes the spatial summation properties of receptive fields, such that longer contours
increase neuronal firing (Kapadia et al., 1999). This could mean that the long high-
contrast contours of DC are enhanced, relative to the low-contrast contours of the true
outline, when they are embedded in a cluttered (textured) natural environment. The neural
representation of the false edges may be enhanced relative to the true edges of the animal.

Currently, the idea that DC disrupts contour integration and shape perception is largely
theoretical. There is a lack of behavioural evidence that DC actually affects our ability to
accurately perceive the outline of a target. We use a novel approach, spatial perturbation
detection or “wiggle” detection, to address this question. “Snake” shapes are perturbed in
space and subjects are asked to detect which of two shapes is more “wiggly,” that is, which
has greater curvature. The paradigm aims to measure the point at which curvature differ-
ences are just noticeable; the detection threshold for “wiggle.” This technique investigates
whether DC interferes with contour-shape perception. For example, if wiggle is harder to
discriminate when stimuli have EE DC, compared to DC alone, this would suggest that EE
directly affects shape perception.

Method

All research materials are available on the Open Science Framework (Lovell & Sharman, 2019).
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Figure I. Example stimulus, showing two edge-enhanced target stimuli on the leaf background. In this
instance, the snake shape on the right has a larger wiggle amplitude.

Participants

A total of 26 observers (including author PGL) participated in the experiment. All partic-
ipants had normal or corrected-to-normal vision. Observers gave their informed consent and
were treated in accordance with the Declaration of Helsinki (2008, Version 6). Ethical
approval for the study was granted by the Abertay University Social and Health Sciences
Ethics Panel.

Stimulus Generation

Stimuli were presented on a gamma-corrected 21-in. Sony Trinitron cathode ray tube (CRT)
monitor (GDM-F520) with a spatial resolution of 1,280 x 1,024 pixels and a refresh rate of
60 Hz. All stimuli were presented in the centre of the monitor on a mid-grey background with
average luminance of 65.3 cd/m? and with colour 0.28, 0.30 in CIE xy coordinates, measured
with a colourimeter (ColourCal Mk II, Cambridge Research Systems, Cambridge, UK).
We used a chin-rest, which ensured a constant viewing distance of 60 cm. All stimuli were
generated in Matlab (Version 8.4, The MathWorks Inc., Natick, MS, 2014), and all data
were collected using PsychoPy (Peirce, 2007).

Stimuli featured two snake-shaped regions on either a mean-grey background or a back-
ground of leaf-shaped blocks of colour (Figure 1). The leaf backgrounds were generated in
the same manner as described in Egan et al. (2016). Ten different random leaf backgrounds
were generated, and each had 4,096 leaves (mean left height=0.68°). A “shadow” was
created leftwards of each leaf area by reducing the “L” channel by 30% in LAB luminance
space (McLaren, 1976). The overall size of the stimulus was 1,024 x 1,024 pixels (correspond-
ing to 29.86° visual angle).

The snake shapes were presented side-by-side, 15.9° from the centre (Figure 1). However,
each had a random y-offset of between —1.49° and 1.49° in order to prevent participants
from basing their judgements upon phase alignments between the snake images.

The “wiggle” in each stimulus was created by taking a bitmap image of a snake
(the same clipart image used in Egan et al., 2016). The baseline amount of wiggle
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Figure 2. lllustration of the three stimulus conditions: uniform, flat disruptive, and edge-enhanced disruptive
on both uniform and leaf backgrounds. The lower row shows the luminance profile of the colouration. The
offset is the change in luminance (CIE L) added to light patches or subtracted from dark patches. The width is
the spatial range over which this luminance range occurs. (Top) Target stimuli against a mean grey back-
ground, (middle) the same target stimuli against a “leaf” background, and (bottom) an illustration of the
luminance profile across camouflage patch edges. EE = edge enhancement.

was based upon the distance between the leftmost and rightmost pixels within the
snake image (82 pixels; corresponding to a visual angle of 2.44°). All snakes were 9.73°
from top to bottom. Manipulations of the amount of wiggle were achieved by resizing the
width of the bitmap image. An amplitude of 0.5 would halve baseline width, while an ampli-
tude of 2 would double the baseline width. The baseline and width-manipulated snakes
were randomly assigned to left and right sides of the stimulus on each trial. Camouflage
textures of the same dimensions as the leaf background were created and then sampled using
the snake-shaped masks. The variability of the y-offset, randomisation of position
(left/right), and variations in the wiggle amplitude mean that no two samples would be
precisely the same.

There were two types of camouflage (flat disruptive and edge-enhanced disruptive)
and a uniform coloured control (Figure 2). The camouflage patterns were generated in the
manner described in Egan et al. (2016) and Sharman et al. (2018). The patterns were created
by first generating a white noise image. This was then filtered in the Fourier domain
(Equation (1)), where d is the distance from the centre of the image (in Fourier space),
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Figure 3. Experimental results. The thresholds for the conditions on the leaf background are shown on the
left and those for the uniform background are on the right. The thresholds for the uniform condition are
shown in white, DC in mid-grey, and EE DC in dark grey. Amplitude is shown as multiples of baseline stimulus
width. Error bars represent the bootstrapped 95% confidence intervals; dots are jittered raw data.
Comparisons show a summary of the Bayesian t test results: 0% = anecdotal, |* = moderate, 2* = strong,

3* = very strong, and 4* = extreme evidence for HO or H1 (the null and experimental hypotheses, respectively).
DC =disruptive colouration; EE = edge enhancement.

w was 0.07, and ¢ was 120.

—(d-p)?

Filter = e 2o’ (1)

The filtered texture was then posterised by assigning different colour values to the values
above and below the 50th percentile. These colours were chosen from the same sample
as that used for the leaves. Within that population, one colour was chosen from those
pixels with a brightness level within the 35th to 45th percentiles and the other from
the 55th to 65th percentiles.

The EE was created in the manner described in Egan et al. (2016) and was defined by two
parameters: the total width, the spatial extent of the EE including both sides of the pattern
element boundaries, was 0.63°, and the offset, difference in brightness from the pattern
element towards the enhanced edge was 60 (in CIE L units).

Ten textures were generated for each camouflage type, and one was randomly selected for
each trial; in each trial, one of the leaf backgrounds was randomly selected along with one of
the available random camouflage patterns.

Procedure

A two-alternative forced choice (2AFC) design was employed to measure the point at which
the difference in wiggle amplitude was just noticeable: the wiggle discrimination threshold.
We used a pedestal technique, where in each trial one of the snakes (the foil) had a fixed
wiggle amplitude of 1.0 and the other (the target) had a wiggle amplitude varied in
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accordance with a staircase procedure. On each experimental trial, we added an offset to the
degree of wiggle to both stimuli, this was randomly selected value between —.2 and +.2
in steps of 0.05. This prevented participants from basing their responses on the baseline
stimulus without examining the manipulated shape. Each stimulus was presented until par-
ticipants made a response, with a minimum presentation time of 1,000 ms. There was an
interstimulus interval of 2,000 ms. The observers’ task was to indicate, by key press, which
snake had the highest wiggle amplitude; which was the most “wiggly.”

Two staircases were used for each experimental condition (camouflage type and back-
ground type): one starting with an amplitude of 1.2x baseline width and the other starting
with 0.8 x baseline width. The staircases were designed to converge at the 79.37% threshold
and were terminated after 30 trials (360 trials total across conditions for each participant).
All conditions were run within the same block, with each trial being randomly selected from
the available staircases.

Results

All data (raw and summarised) and analysis scripts are available on the Open Science
Framework (Lovell & Sharman, 2019).

Each set of 60 trials per participant, per condition, was fit with a logistic function (¥ =0.5,
A=0, o and f§ were determined using a least squares fit). The wiggle discrimination threshold
was determined as the point at which the logistic value passed through 75% correct
(Figure 3).

We use a Bayesian approach to data analysis because it offers robust and transparent
inferences. Bayesian analyses compare the probabilities for both the null and experimental
hypotheses, thereby reducing the likelihood of a Type-I error (Dienes, 2011). We classify the
magnitude of Bayes factors into different evidential strengths (extreme, very strong, strong,
moderate, and anectodal) based on Jeffreys (1961) and Lee and Wagenmakers (2013).

We conducted a two-way Bayesian analysis of variance, using JASP (Love et al., 2015),
with factors background (uniform vs. leaf) and colouration (uniform vs. flat disruptive vs.
edge-enhanced disruptive) and wiggle threshold as the dependent variable. The preferred
model, with the largest Bayes factor (BF10=4.476 x 10%, extreme evidence, BF >100)
included all main effects and interactions. We then conducted within subjects Bayesian
t tests (JASP, Love et al., 2015) to explore which wiggle thresholds were different from
one another (for details of nonsignificant differences, see Lovell & Sharman, 2019). When
presented upon a leaf background, the EE DC threshold was different from flat DC thresh-
old (BF =21.375, strong evidence, BF >10) and from uniform colouration (BF =86.509,
extreme evidence). Against the uniform grey background, there was extreme evidence for a
difference in wiggle thresholds between EE DC and uniform colouration (BF=181.107,
extreme evidence).

Finally, we conducted Bayesian one-sample ¢ tests comparing wiggle thresholds to the
baseline level of wiggle (1.0). We find extreme evidence for all thresholds being greater than
baseline. This confirms that participants were able to complete the task under all conditions.

Discussion

Edge-enhanced disruptive colouration (EE DC) increases wiggle discrimination thresholds;
participants were worse at judging the shape of targets with EE DC compared to DC and
uniform targets on a leaf background. Thresholds are also increased for EE DC compared to
uniform targets even when clearly visible on a simple uniform grey background.



Sharman and Lovell 7

These findings present the intriguing possibility that EE DC is not only making target
outlines harder to see via differential blending (Espinosa & Cuthill, 2014), but it is also
causing a misperception of the amount of curvature and therefore also of the location of
the contours. Potentially, causing nonveridical perception of an object’s objects and, there-
fore, increasing the difficulty of identifying objects.

Previous research has shown, via a computational model of edge detection, that DC
disrupts the detection of body outline. Our results suggest that identification is also affected;
therefore, DC may not only disrupt figure-ground segregation but also shape perception.
This adds to an increasing body of work looking at perceptual effects of camouflage beyond
concealment. For example, dazzle camouflage (highly conspicuous and often repetitive pat-
terns) has been shown to affect speed perception (Scott-Samuel, Baddeley, Palmer, & Cuthill,
2011) and target tracking (Hogan, Cuthill, & Scott-Samuel, 2016).

We propose that the disruption of target recognition occurs via a mechanism, whereby
edge signals are minimised and false-edge noise is increased; changing the signal-to-noise
ratio (Merilaita et al., 2017). Our stimuli may show this effect particularly clearly, due to the
properties of curved stimuli. Curved segments are more important than straight segments for
identifying simple outlines (Panis & Wagemans, 2009). Global shapes can be represented
by their maximum convex, maximum concave, and inflection points (Bell, Hancock,
Kingdom, & Peirce, 2010). Thus, our stimuli create a strong neural representation. This is
also appropriate to camouflage research, in particular, as animals have generally more
curved configurations than man-made structures (Perrinet & Bednar, 2015).

However, there is also evidence that curvature reduces salience. Snake-like paths are
harder to detect even when local curvature is identical (Loffler, 2008). It has been suggested
that this is because the sudden changes in curvature weaken the association fields
(Field et al., 1993) in that area (Pettet, McKee, & Grzywacz, 1998). Therefore, the shape
of the stimulus may be further enhancing the effect of DC, by disrupting the association
fields between the neurons representing the target outline.

The current results support existing evidence that EE DC affects not only target detection
but also identification mechanisms (Sharman et al., 2018). We have shown that this form
of colouration undermines object recognition mechanisms, potentially by undermining
curvature discrimination and subsequently shape discrimination. This effect occurs even
when the target is readily visible, again underlining the utility of EE DC not only in con-
cealing targets but also in disguising their identity. This complements existing evidence that
shape is a principal discriminative cue in animal detection in natural scenes (Elder &
Velisavljevic, 2009).
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