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Abstract

Bioreactors have become indispensable tools in the cell-based therapy
industry. Various forms of bioreactors are used to maintain well-controlled
microenvironments to regulate cell growth, differentiation, and tissue
development. They are essential for providing standardized, reproducible
cell-based products for regenerative medicine applications or to establish
physiologically relevant in vifro models for testing of pharmacologic agents. In
this review, we discuss three main classes of bioreactors: cell expansion
bioreactors, tissue engineering bioreactors, and lab-on-a-chip systems. We
briefly examine the factors driving concerted research endeavors in each of
these areas and describe the major advancements that have been reported in
the last three years. Emerging issues that impact the commercialization and
clinical use of bioreactors include (i) the need to scale up to greater cell
quantities and larger graft sizes, (ii) simplification of in vivo systems to function
without exogenous stem cells or growth factors or both, and (iii) increased
control in the manufacture and monitoring of miniaturized systems to better
capture complex tissue and organ physiology.
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Introduction

Bioreactors provide controlled delivery of nutrients and biomi-
metic stimuli in order to influence cell growth, differentiation,
and tissue formation. They have been extensively used to
promote the expansion of red blood cells, chimeric antigen
receptor (CAR) T cells, induced pluripotent stem cells, and
mesenchymal stem cells. Additionally, the ability to control
the spatiotemporal delivery of the biological, biochemical, and
biophysical signals that regulate tissue development confers
a number of advantages for engineering 3D tissues relative to
standard cell culture techniques by providing well-defined
conditions to regulate cell behaviors. These advantages include
(i) improved standardization and reproducibility, (ii) scale-up to
larger, clinically relevant tissue grafts or cell expansion scales,
(iii) superior functionality compared with 3D grafts cultured in
tissue culture flasks, and (iv) improved systems for testing cell
responses to a range of experimental parameters. As the field of
regenerative medicine has matured, the number of applications
has increased and the roles that bioreactors play in enabling the
commercialization and clinical translation of stem cell-based
technologies have become more defined. In this review, we
will provide a critical overview of biomedical applications of
bioreactors and discuss current trends and recent advances that
promote the application of bioreactor technologies for single-cell
manufacture, production of engineered tissue grafts, and drug
screening.

Bioreactors for cell proliferation and differentiation
The therapeutic promise of stem cell-based technologies
for the treatment of pathologies ranging from hair loss' to
blindness’ has precipitated the need for a cell-manufacturing
sector to provide therapeutic allogeneic cells. Owing to the exten-
sive infrastructure requirements and rigorous standards defined
by regulatory agencies, the cost will likely be too burdensome
for traditional hospitals and treatment centers and will manifest
as centralized facilities that specialize in providing high-quality
cells with verifiable characteristics. However, cell-based thera-
pies often require the application of vast quantities of cells
(10%~10") in order to be effective. A practical limitation arises
as the amount of space required to grow these large quantities
of cells using standard cell culture apparatus is prohibitive. This
has spawned a demand for bioreactors capable of supporting
industrial-scale, ultra-high-density cell suspension cultures with
controlled microenvironments, standardization, and uniformity
of culture conditions in order to generate homogenous popula-
tions of stem or lineage-specific cells. A few types of bioreactors
have been employed to generate large populations of pheno-
typically defined cells. Variable designs have been employed for
adherent versus non-adherent cells and to account for differ-
ences in cellular responses to microenvironmental cues. Table 1
summarizes several bioreactor types that have been used for cell
expansion.

Adhesion-dependent cell types

Since many therapeutically relevant cells are adhesion depend-
ent and thus cannot be readily grown in suspension cultures, the
scale-up of cell manufacture presents a unique challenge. To
overcome this obstacle, biomaterial technologies have been
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combined with bioreactors to support the development of high-
density bioreactor conditions. For adherent cells, suspension
culture can be achieved by the use of hollow fibers in per-
fusion systems, encapsulation, or microspheres (also known as
microcarriers), which increase the surface area of a suspension
bioreactor’. Packed bed bioreactors have also been used to
enable both isolation and expansion of mesenchymal stem cells*”.
Specifically, studies have shown that adherent cells such as bone
marrow-derived mesenchymal stem cells can be cultured on pro-
tein-coated microspheres. Cells grown in this manner can retain
their functional markers and viability’. With this strategy, it is
possible to scale the volumes of cell cultures up to the order of
10>-10°* L and stand-alone systems such as the Mobius (EMD
Millipore) stirred-tank bioreactor series are commercially
available in sizes ranging from 50 to 2,000 L. At this scale, the
impeller speeds required to maintain homogenous distribution
of metabolites generate turbulent flows and large shear forces,
which induce spontaneous differentiation of stem cells. In order
to mitigate this effect, studies have focused on either optimizing
agitation schemes®’ or encapsulating cells in microspheres®™’.
Although these strategies are promising for providing commer-
cially available therapeutic cells, the high cost of reagents and
growth factors restricts the use of industrial-scale systems in
scientific exploration'’.

Published studies of bioreactor cultures of mesenchymal- and
adipose-derived stem cells typically report data for bioreactors
with maximum volumes of 3 L'"'"?, although Lawson et al. dem-
onstrated the ability of these systems to safely and effectively
enable a 43-fold cell expansion over 11 days using a 50 L vol-
ume bioreactor with a graduated agitation and feeding scheme''.
The cells retained their tri-lineage pluripotency, T-cell modu-
lation behavior, and phenotypic markers, including CD44 and
CD90, when compared with cells cultured under traditional
conditions''. However, these studies used growth factors and
animal serum in their media. The development of defined media
without supraphysiological concentrations of growth factors in
cell culture would promote economically feasible industrial-
scale culture. Another key shortcoming is the dearth of in vivo
efficacy data from cells produced in these large-scale bioreactors.

Another strategy for enhancing the therapeutic effectiveness of
mesenchymal- and adipose-derived stem cells has been to deliver
them as self-assembled aggregates. These cellular spheroids
exhibit enhanced survival and tissue-forming properties'*".
The impact of bioreactors on mesenchymal stem cell aggrega-
tion kinetics and spheroid size has recently been studied by
using commercially available WAVE Bioreactors™, which
provide gentle stirring and single-use bags for scale-up'®. The
authors used a combination of experimentation and modeling
to demonstrate that a tightly controlled size distribution of
cellular aggregates with enhanced therapeutic characteristics
could be obtained.

Induced pluripotent stem cell expansion

Suspension aggregate cultures in rotating flasks, rotating wall
bioreactors, stirred-tank bioreactors, and WAVE Bioreactors™
have become the primary means for the expansion of embryonic
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stem cells or induced pluripotent stem cells (reviewed in 23,24).
Aggregate cultures are thought to more closely mimic the
native microenvironment (inner cell mass) of pluripotent cells.
Owing to their high differentiation capacity, the microenviron-
mental conditions for pluripotent cells—including aggregate
size—must be tightly regulated in order to maintain an undif-
ferentiated phenotype. The aggregate sizes are regulated by
chemical (Rho-kinase [ROCK] inhibitors) and mechanical
(shear forces or physical disruption) techniques. In addition, the
dissolved oxygen concentrations and dilution rate impact the
differentiated state of the cells”. Using this continuous expan-
sion method in a stirred-tank bioreactor, Abecasis et al. dem-
onstrated 1,100-fold expansion in 11 days using 4% dissolved
oxygen”. The resulting cells were characterized by using
proteomic and gene stability analysis as well as proliferation and
gene expression assays to validate their naive state”.

CAR T-cell expansion

The use of CAR T cells and other immune cells such as natural
killer cells is an important emerging therapy for treating diseases
of the immune system and is being applied to patient-specific
treatment of cancer®. CAR T-cell therapy uses autologous
T cells expanded to therapeutic volumes (liter scale) in rocking
bed, disposable bag bioreactors such as WAVE™ or CultiBag
bioreactors. Technologies for the automated or semi-automated
processing of CAR T cells are commercially available and
include the CliniMACS Prodigy, DynaMag, and G-Rex systems”’.

Recent published studies demonstrate the ability of isolation and
transduction protocols to be scaled up to clinical production in
ways that comply with good manufacturing practices and
clinical regulatory standards. These studies focused on
optimizing production processes and verifying and character-
izing the products using the automated CliniMACS Prodigy

21,22

system*"-*.

Quality criteria for cell-based products

Finally, cell products from bioreactors must be evaluated in a
standardized manner to ensure quality control. The International
Society for Cell Therapy and the European Society for Blood
and Marrow Transplantation publish joint quality guidelines for
identifying cell products’”. These may include key release
criteria such as surface marker analysis, proteomics, functional
assays, and sterility testing.

Advances in tissue engineering bioreactors

In contrast to bioreactors that produce single cells, tissue
engineering bioreactors have supported the development of large
3D tissue grafts. To produce large (centimeter-sized) viable
grafts, these systems often use convective flow to provide
crucial mass transport regimes, overcome the diffusional limi-
tations of nutrients and oxygen, and prevent the accumulation
of metabolic waste products that otherwise induce starvation
and death of the cells in the inner regions of the construct.
Tissue engineering bioreactors can also enhance the functional-
ity of grafts through the application of biomimetic physiological
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stimuli as well as the incorporation of sensors that give
real-time feedback of culture conditions. After incubation, the
mature, functional cellular constructs can be transplanted in vivo
to regenerate damaged tissues. Tissue engineering bioreactors will
likely play a significant role in translating engineered grafts to
the clinic as the potential automation renders them economically
efficient and amenable to mass production for larger populations
of patients.

Cutting-edge research in this field continues to focus on
the improved application of biophysical stimuli to optimize
functional tissue assembly’ and computational modeling
to improve predictability of the outcomes'”*~*. Addition-
ally, notable efforts to enhance the clinical applicability of these
grafts have focused on engineering grafts that are similar in size
to critical-sized bone defects in humans and are tailored to the
patient’*>. Nguyen et al. recently demonstrated the ability
to culture a 200 cm® cell-based construct in vitro without the
development of necrotic centers™*’. In this approach, bone
marrow-derived mesenchymal stem cells were encapsulated in
hydrogel beads and placed in a tubular perfusion bioreac-
tor. Three-dimensional-printed molds that could be anatomi-
cally shaped were used to direct the flow through the hydrogel
beads. The space between the hydrogel beads enhanced mass
transport to the cells throughout the entire construct, allowing the
stem cells to remain viable and undergo osteogenic differentia-
tion. Although this approach represents a critical advancement in
the culture of clinically sized constructs, it remains limited by
the use of hydrogel beads that minimize cell-cell interactions
and inhibit paracrine signaling between cells, which are impor-
tant factors in bone formation. In contrast, Bhumiratana et al.
directly seeded adipose-derived stem cells into the pore spaces
of anatomically shaped, porcine temporomandibular joint
scaffolds*'. They cultured the adipose-derived stem cell-seeded
scaffolds in perfusion bioreactors for 3 weeks in vitro before
using the bioreactors to maintain their viability during transport
to an on-site animal facility. The grafts—customized for each
pig—were implanted and cultured for up to 6 months in vivo.
This was a foundational, proof-of-concept study and clearly
demonstrated the feasibility of using this strategy as a treatment
for humans. However, in general, there remains a huge gap
in the growth of 3D engineered tissues in bioreactors and
demonstration of in vivo functional integration and potency.

In vivo bioreactors

In spite of the inherent advantages of using tissue engineering
bioreactors to grow entire grafts that are primed for implanta-
tion into defect sites, there are a number of practical barriers to
clinical translation associated with extended ex vivo culture.
One major limitation is that the large, volumetric grafts often
lack an intact vasculature, which consequently hampers their
post-transplantation viability. To overcome these limitations,
an alternative approach known as “in vivo bioreactors” has
been employed. Unlike the systems described above, the in vivo
bioreactor, despite the use of the “bioreactor” terminology, does
not incorporate robust design principles or the development of
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new equipment. There is no hardware, and the success of the
strategy is highly dependent on surgical expertise and manipula-
tion. Rather, it primarily refers to a pocket within the body into
which biomaterials or immature tissue engineered constructs are
surgically implanted and incubated for an extended period of time.
Within these pockets (for example, omentum or muscle flap), the
grafts harness the regenerative capacity of the body to become
fully vascularized. Key advantages of this method include the
presence of naturally occurring cytokines and other factors,
the establishment of neovasculature and nervous tissue within
the implant, and immune compatibility*’. The primary applica-
tion of the in vivo bioreactor principle has been for the develop-
ment of critical-sized bone grafts. Several recent studies have
demonstrated the use of prefabricated bone grafts which are either
incubated in situ or vascularized by extended implantation in
muscle or omentum or anastomosed with large arteries*~* and
may be feasible even without the use of transplanted stem cells
or growth factors.

Organ-on-a-chip bioreactors

As the previous examples illustrate, bioreactors typically have
been employed to address challenges of scale-up. However,
miniaturized tissues created by using microfluidic bioreactors
facilitate efficient, inexpensive, high-throughput drug screening
or disease modeling. Microfluidic bioreactors—often referred to
as lab-on-a-chip systems—use minute quantities of cells grown
together in micrometer-scaled wells. Microliter volumes of fluid
are pumped to the cells through channels that allow the effects
of multiple concentrations of growth factors or pharmacologi-
cal agents to be rapidly tested. Often, modified cells are used to
permit easily monitored parameters (such as fluorescence™)
to be used as read-outs of cellular responses. Early modifications
to these systems enabled the use of high-density 3D cell culture
using multi-cell aggregates, microspheres, and cell encapsulation
to better recapitulate the cell-cell interactions of native tissues
in ways not possible in 2D culture. Even so, it is challenging to
replicate the impact of pharmacological agents on the complex
functions of tissues, such as the lung or heart, in these simpli-
fied systems. Hence, more recent versions of lab-on-a-chip
bioreactors have incorporated physiological factors such as
airflow and mechanical stimulation that mimic breathing™ or
have integrated vasculature and direct blood flow with contractile
cardiac cells”’. These two technologies, which are currently
being commercialized, more accurately capture physiological
responses to specific stimuli while retaining the benefits of
simplicity and low cost.
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The most recent developments in the field of lab-on-a-chip tech-
nology have focused on increasing the ease of use. For exam-
ple, researchers are investigating methods to 3D print and seed
an entire chip in a single pass™’*. Other teams have developed
smartphone-based systems to monitor the internal environment™
and hybrid materials which allow point-by-point manipula-
tion of the cells within the bioreactor®. Perhaps one of the most
significant advantages of lab-on-a-chip systems is their ability
to capture complex physiology of multiple organ systems.
Lee et al® and Shirure and George® reported on the develop-
ment of pumpless, dual-organ bioreactor systems. Current trends
portend the advent of more advanced human-on-a-chip systems,
which will test on- and off-target effects of drugs on multiple organ
systems.

Conclusions

Bioreactors fill a critical niche in the commercialization and
clinical translation of cell-based therapies and drug-testing
platforms. Current trends suggest an increased emphasis on
manufacturing needs. This includes scaling up of suspension
culture bioreactors to industrial sizes and modifications of tissue
engineering bioreactors to enable the formation of patient-
specific grafts that are of therapeutically relevant sizes. In spite
of the many scientific and technical advantages of these systems,
regulatory requirements may prove to be significant barriers
to their clinical application. For lab-on-a-chip systems, major
advancements in monitoring, control, and fabrication tech-
niques are resulting in progressively more complex systems
that more closely mimic human physiology and capture the
interactions of multiple organs. The establishment of low-cost
platforms will have a significant beneficial impact on the future
of disease modeling and drug testing.
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