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Chromosomal translocations linking various oncogenes to transcriptional enhancers of

the immunoglobulin heavy chain (IgH) locus are often implicated as the cause of B-cell

malignancies. Two major IgH transcriptional enhancers have been reported so far. The

Eµ enhancer located upstream of the Cµ gene controls early events in B-cell maturation

such as VDJ recombination. The 3’ regulatory region (3’RR) located downstream from

the Cα gene controls late events in B-cell maturation such as IgH transcription, somatic

hypermutation, and class switch recombination. Convincing demonstrations of the

essential contributions of both Eµ and 3’RR in B-cell lymphomagenesis have been

provided by transgenic and knock-in animal models which bring the oncogene c-myc

under Eµ/3’RR transcriptional control. This short review summarizes the different mouse

models so far available and their interests/limitations for progress in our understanding

of human c-myc-induced B-cell lymphomagenesis.
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INTRODUCTION

RAG-induced recombination, AID-induced DNA breaks and mutations throughout B-cell
development make the IgH locus a hotspot for translocations (1) (Figures 1A,B). Bcl-2
translocation, the typical hallmark of follicular lymphomas (FL), occurs during RAG-induced
VDJ recombination. Cyclin D1 translocation, associated with mantle cell lymphomas (MCL),
occurs either during AID-induced somatic hypermutation (SHM) or AID-induced class switch
recombination (CSR). C-myc translocation, the typical hallmark of Burkitt lymphoma (BL), takes
place during AID-induced SHM and CSR. Finally, several translocations (such as c-myc, c-maf,
cyclin D1/D3) found in myelomas are also related to AID-induced CSR. During CSR, AID-induced
DNA double strand breaks (DSB) appear in the switch (S) donor region (usually Sµ) and in the S
acceptor region (for example Sγ1 and Sα for CSR toward IgG1 and IgA, respectively). S regions are
of various lengths (for example 3.5 and 10 kb long for Sµ and Sγ1, respectively) and are unusually
G-rich. AID deaminates C into U at preferential AID hotspot motifs located throughout S regions.
The AID-introduced U in S region DNA is removed by UNG to generate an abasic site that is
recognized by the endonuclease APE1 generating a nick. A closely spaced, similarly created nick on
the opposite strand induces a staggered DSB. Translocation of the DNA fragment encompassing
c-myc is due to an off target AID effect on the chromosome bearing c-myc. Since AID transforms C
to U all along S donor/acceptor regions, there is no common breakpoint identified in S regions for
mature B-cell lymphomas. It is the same AID effect for SHMwhere AID targets the VDJ rearranged
segments (and up to several kB in 3’) and can induce DNA DSB for c-myc translocation. Similarly
to CSR, there is no common breakpoint established in VDJ regions for mature B-cell lymphomas.
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During VDJ recombination RAG binds to recombination signal
sequences adjacent to V, D, and J coding segments and induces
DNA DSB. C-myc translocation could take place during this
process. Similarly to CSR/SHM, there is no common breakpoint
singled out in VDJ regions for B-cell lymphomas. The common
point for all these c-myc translocations is the occurrence of
DSB in the IgH locus during its remodeling required for B-
cell repertoire formation and B-cell maturation. All remodeling
events of the IgH locus (VDJ recombination, SHM, and CSR)
require transcription to occur (2). Transcriptional control
and remodeling of the IgH locus are under the control of
several cis-regulatory elements located throughout the IgH locus.
In the murine IgH locus seven regions of interest can be
defined including cis-regulatory elements, matrix attachment
regions (MARs), and hypersensitivity (hs) sites with potential
transcriptional enhancer or insulator activity: 4 hs sites located 5’
of the first V segments, 6 hs sites in the V–D intergenic region, the
DQ52 promoter–enhancer, the Eµ enhancer (between JH andCµ)
and its flankingMARs, the γ1 enhancer element, the 3’ regulatory
region (3’RR) downstream from Cα with its four enhancers
(hs3a, hs1,2, hs3b, and 4) and the 3’CBE insulator region (hs5,
6, 7, 8) as the 3’ boundary of the locus (Figure 1A). Two
potent transcriptional enhancers act during B-cell maturation:
Eµ (during early B-cell maturation stages) and 3’RR (during late
B-cell maturation stages) (Figure 1A). These elements obviously
intervene in oncogene-induced B-cell lymphomagenesis as
reported by several transgenic mouse models (using both
transgene and knock-in (KI) strategies) developed in order to
mimic human mature B-cell lymphomagenesis. Since c-myc
is a key regulator of cell growth through its action on cell
cycle progression, metabolism, differentiation, death receptor
signaling, and DNA damage recovery, the vast majority of
available models use c-myc as a deregulated oncogene (3). This
short review describes how Eµ and 3’RR enhancers might play a
critical role in c-myc deregulation during c-myc-induced mature
B-cell lymphomas, why these models are not silver bullets to
totally mimic human B-cell lymphomagenesis and why it is
possible that targeting the 3’RR would be an interesting strategy
in human B-cell lymphomagenesis.

THE Eµ cis-TRANSCRIPTIONAL IGH
ENHANCER AND c-myc DEREGULATION

Forty years ago, Eµ was the first discovered IgH cis-
transcriptional enhancer (4–6). It is located upstream of the
Cµ gene (Figure 1A). Eµ-deficient mice revealed its role in
controlling IgH locus access at immature B-cell stages and thus
its key role for efficient VDJ recombination (7, 8). In contrast,
Eµ is dispensable for late B-cell maturation events such as IgH
locus transcription for Ig synthesis and CSR (9, 10). In 1985,
transgenic mice bearing c-myc coupled to the Eµ enhancer
were reported to consistently develop immature (pre-B) and
sometimes mature B-cell lymphomas (11). Our entire knowledge
of Eµ involvement in c-myc oncogenic deregulation for B-cell
lymphoma development was built from this model. Since 1985,
183 papers with “Eµ-Myc mice” in their abstract have been

referenced. Of note, 153 have been published in the last 15 years
showing the great interest of the scientific community for this
transgenicmousemodel of B-cell lymphoma. It is thus impossible
in this short review to reference them all. Therefore, the authors
apologize in advance for the numerous interesting manuscripts
which have not been cited in the present review. Lymphomas
from Eµ-Myc mice range from the pre-B to the mature B-cell
stages (Figure 1C). They are usually all positive for the CD45R
(B220), CD19 and CD93 (AA4.1) B-cell specific markers and
negative for the CD3 T-cell marker. Tumors of pre-B-cell type
are characterized by the lack of membrane IgM and no Ig light
chain (IgL) rearrangements. Tumors of immature B-cell types
are more mature and express membrane IgM after efficient IgL
rearrangements. Tumors of mature B-cell types are even more
mature and express both membrane IgM and IgD. The majority
of lymphomas in Eµ-Myc mice are at the pre-B and immature B-
cell stages. In their original study, Adams et al. (11) stated that
“these myc mice should aid study of lymphoma development,
B-cell ontogeny and Ig regulation.” Clearly 35 years later this
is the case. Creation of these mice resulted in the dissection
of many mechanisms implicated in B-cell lymphomagenesis
(Figure 1D). They have highlighted the importance of several
signaling pathways (such as Ras/Mapk, mTOR, and Akt) (12–
14), several cell cycle check-points (such as Mdm2/p53/p73)
(15, 16) and processes that affect c-myc stability and action
(17, 18). Using these mice clearly demonstrated the importance
of numerous (new and well-known) tumor suppressor genes
(such as FoxO3, CDK4, Mtap, and Smchd1) (19–22). This model
reinforced our knowledge concerning the signaling/regulation
of the B-cell apoptotic program (members of the Bcl-2 family
of apoptosis regulator) and deficiencies in apoptotic pathways
leading to B-cell lymphomagenesis (23–28). To our knowledge
the influence of genetic background in the development of B-
cell lymphomas in Eµ-Myc mice has not been documented.
The Eµ-Myc model has also opened a new area of research
concerning the role of tumor microenvironment via release
of angiocrine/chemokine factors (29–31) and the importance
of cells from the vascular niche for NK cell surveillance,
senescence, and homing of B-cell lymphomas (32–34). Perhaps
most importantly, this model is at the origin of a wide number
of publications investigating new therapeutic treatments or
combinations of drugs in order to affect (among various targets)
DNA synthesis (cytarabine, doxyrubicin, cyclophosphamide),
mTOR signaling (rapamycin analogs), microtubule formation
(vincristine), c-myc (decursin), apoptosis (venetoclax and BET
inhibitors), protein synthesis (silvestrol), or B-cell receptor
(BCR)-induced, or chemokine-mediated signaling (ibrutinib)
(35–42). The rapid occurrence of lymphoma in Eµ-Myc mice
and its high penetrance make this mouse model an accurate,
reliable, easy, and fast experimental model not only to test
new therapeutic approaches but also combinatory associations.
This model is also unique by providing the possibility to
monitor the assay of new NK therapeutic vaccination strategies
(43, 44), to stimulate immune defenses for tumor rejection
(45) and to test protocols for monoclonal antibody therapies
(46). Eµ-Myc mice have thus proven their great potential as
a model to study human B-cell lymphomagenesis during the
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FIGURE 1 | Eµ-Myc mice as a model of B-cell lymphomagenesis. (A) Schematic diagrams of the mouse IgH locus. Locations of the various IgH cis-regulatory

elements with enhancer or insulator activity are reported: four hs sites located 5’ of the first V segments, six hs sites in the V–D intergenic region, the DQ52

(Continued)
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FIGURE 1 | promoter-enhancer, the Eµ enhancer (the core region (cEµ) and its flanking MARs), the γ1 enhancer, the 3’ regulatory region (3’RR) [four enhancers

(namely hs3a, hs1,2, hs3b, and 4) with flanking inverted repeats] and the 3’CBE insulator region (hs5, 6, 7, and 8) as the 3’ boundary of the locus. (B) Schematic

representation of oncogene translocation affecting the IgH locus during VDJ recombination, CSR and SHM. Arrows indicate the site of oncogene translocation found

during follicular lymphomas, mantle cell lymphomas, myelomas, and Burkitt lymphomas. (C) Schematic representation of B-cell development from pro-B to mature

B-cells. Lymphomas from Eµ-Myc mice are from the pre-B to the mature B-cell stages. The immature B-cell stage is characterized by the expression of membrane

IgM whereas membrane IgD occurs at the mature B-cell stage. (D) Schematic representation of the various field of research developed with Eµ-Myc mice.

Bibliographic references are reported (number in parenthesis).

past decade. Moreover, arising lymphomas are heterogeneous
(47, 48) mirroring genomic differences observed between human
BL, germinal center B-cell lymphomas (GCBCL), activated B-
cell lymphomas (ABCL), and diffuse large B-cell lymphomas
(DLBCL). The different genomic signatures (toward specific
proliferative and/or apoptotic pathways) of B-cell lymphomas
in Eµ-Myc mice might be used as biomarkers of response
against specific therapeutic strategies. Thus, and especially with
the development of transcriptomic tools, Eµ-Myc mice can
serve as relevant model for human B-cell lymphoma subtype
experimental or associated treatments. The only but nevertheless
major drawback of Eµ-Mycmice relates to the window of activity
for Eµ which has been clearly demonstrated to occur at the
immature pro-B/pre-B B-cell stages (49, 50). Eµ is not implicated
in IgH hypertranscription occurring at the mature/plasma cell
stages. Eµ is also not implicated in DNA breaks occurring
during SHM/CSR and thus clearly not implicated in oncogenic
translocation induced by off target AID action occurring during
CSR or SHM in the majority of human mature B-cell lymphoma
subtypes. As confirmation of this fact, the great majority of
lymphomas from Eµ-Myc mice have a pre-B/immature B-
cell stage.

THE 3’RR cis-TRANSCRIPTIONAL IgH
ENHANCER AND c-myc DEREGULATION

The second transcriptional enhancer located in the IgH locus
is the 3’RR (Figure 1). The 3’RR is a complex element with
four transcriptional enhancers (namely hs3a, hs1,2, hs3b, and
hs4) encompassed in a unique and functional 3D palindromic
architecture (51). The 3’RR controls µ transcription (7), CSR
(52, 53), and SHM (54) in mature B-cells. The transcriptional
activity of the 3’RR occurs from pre-B to mature B-cell
stages (55) and thus has a much larger window of activity
than the Eµ enhancer. In 1994, Madisen and Groudine
reported (in stable transfection assays in plasmacytomas and
BL cells) that the 3’RR was efficient and sufficient to deregulate
c-myc transcription (56). Convincing demonstration of 3’RR
involvement in lymphomagenesis has been produced by a
transgenic 3’RR-deficient model of B-cell lymphomas with IgH-
c-myc translocations (57). The integrity of the 3’RR (deletion of
hs3b to hs4) has been shown to be dispensable for development
of pro-B-cell lymphomas with V(D)J recombination-initiated
translocations suggesting the key role of Eµ. In contrast, 3’RR
integrity (for its optimal transcriptional activity) is required for
B-cell lymphomas with CSR-associated translocations (57). In
another study modeling murine plasmacytomas with T (12, 15)

translocations, the same hs3b-hs4 deletion of the 3’RR in Bcl-
xL transgenic mice was without effect for Myc deregulation
and mouse plasmacytoma generation (58). However, total 3’RR
deletion in these plasmacytomas lowered Myc expression and
cell growth confirming 3’RR involvement for myc deregulation
by T (12, 15). Nevertheless, these models are not sufficient to
monitor in detail and to modulate signaling pathways for B-
cell lymphoma development. The same comments can be made
for the transgenic mouse model of Wang and Boxer (59) which
develops mature B-cell lymphomas (CD19+B220+IgM+IgDlow)
after the KI of a 3’RR cassette upstream of the endogenous c-myc
gene (this model is the reverse of natural c-myc translocation
into the human IgH locus) (Figure 2). More than 15 years
after the development of transgenic Eµ-Myc mice, transgenic
Myc-3’RR mice were generated and were shown to develop
BL-like proliferations and diffuse anaplastic B-cell lymphomas
(60). All these lymphomas exhibited a mature B-cell phenotype
(CD19+B220+IgM+IgD+) but differed by their Ki67 status
(low and high for diffuse anaplastic B-cell lymphomas and BL
lymphomas, respectively). This model was used to study the role
of second hits such as p53 deficiency, Cdk4 mutation, and change
of class-specific B cell receptor (BCR) tonic signals. Results clearly
demonstrated that a second hit affects the phenotype of B-cell
lymphomas, their aggressiveness and transcriptomic signatures
differently (61–64). This model was, however, progressively
abandoned due to its medium B-cell lymphoma penetrance
(compared to Eµ-Myc mice), long delay for B-cell lymphoma
development (compared to Eµ-Myc mice), key differences with
human B-cell lymphomas (such as mutations lacking for the
p53-ARF-Mdm2 apoptotic pathways in numerous cases) and the
description that the occurrence of B-cell lymphomas was much
too sensitive to genetic background [C57Bl/6 mice developed BL-
like lymphomas while none occurred in a Balb/c background
(65)]. All these points argued against the use of Myc-3’RR mice
as an accurate experimental model to test new pharmacologic or
vaccination strategies.

THE COMBINATION OF Eµ AND 3’RR
cis-TRANSCRIPTIONAL ENHANCERS AND
c-myc DEREGULATION

As reported above, a transgenic model with IgH-c-myc
translocations in response to pristine demonstrated the
involvement of IgH cis-transcriptional enhancers in B-cell
lymphomagenesis (57). In another manner, this study confirmed
results obtained with three transgenic mouse models with a
c-myc KI in various locations in the IgH locus (i.e., under the
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FIGURE 2 | The 3’RR and B-cell lymphomagenesis. (A) Schematic representation of several transgenic mouse models reporting c-myc 3’RR-driven deregulation

leading to B-cell lymphomagenesis. B-cell lymphoma phenotypes are reported. Bibliographic references are reported (number in parenthesis). The “Mini-3’RR”

contains the four transcriptional enhancers hs3a, hs1,2, hs3b, and hs4 but not the 3’RR palindromic sequences flanking hs1,2 and the DNA sequence between hs3a

and hs4. (B) Long-range loop interactions between chromatin segments of the IgH locus comprise the mechanism of normal gene transcription regulation by the Eµ

and 3’RR transcriptional enhancers. The example of the IgG3 CSR process is schematized. Putative long-range interactions leading to c-myc oncogene deregulation

in iMycEµ mice are schematized.

dependence of both Eµ and 3’RR elements) (Figure 2). These
models provided the most convincing data for the essential
roles of both Eµ and 3’RR in c-myc B-cell lymphomagenesis.

The KI of c-myc in the mouse IgH locus just 5
′

to Eµ (namely
iMycEµ mice), thus modeling human endemic BL, induced,
as expected, B-cell lymphoma development with alterations
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in the p19Arf-Mdm2-p53 tumor suppressor axis (66) and
NF?B/STAT3/PI3K signaling (67). In this model, c-myc is
under the control of both Eµ and 3’RR at immature and
mature B-cell stages, respectively. iMycEµ mice also mimic
T (12, 15) mouse plasmacytoma translocation and thus also
lead to plasmacytomas (68). KI of c-myc directly into Cα just
5’ to the 3’RR (iMycCα mice) produced B-cell lymphomas
with low kinetics which were increased after overexpression
of the anti-apoptotic Bcl-XL gene (69). In this model, c-myc
is located in a site where Eµ has no transcriptional influence,
c-myc transcription being only under the dependence of 3’RR
at mature B-cell stages. c-myc KI in the mouse IgH locus

just 5
′

to Cµ with Eµ deletion (namely iMycCµ mice), thus
modeling human sporadic BL, confirmed that 3’RR alone
is sufficient to deregulate c-myc in the B-cell lineage and to
induce B-cell lymphoma development (70). Taken altogether,
these KI models carrying c-myc at the IgH locus are prone
to B-cell lymphomas of various penetrance, kinetics, and fate
as recently reported in a study comparing the three mouse
models (71). The lymphoma signatures are also heterogeneous
even comparing lymphomas from a specific KI, mirroring the
genomic differences observed between the various subtypes of
human mature B-cell lymphomas and those previously reported
with the model of transgenic Eµ-Mycmice. In our opinion, these
transgenic mouse models represent the “most physiological”
experimental mouse models by mimicking the direct effect of
c-myc in the context of the endogenous IgH locus. However,
the main drawbacks of these various KI mice (and similarly to
Myc-3’RR mice) remain their low lymphoma penetrance and
their low kinetics of B-cell lymphoma development arguing
against their use as efficient and easy experimental models to
test new experimental therapeutic approaches. The low kinetics
of B-cell lymphoma development compared with 3’RR-Myc
mice would be related to the 3’CBE insulator region at the 3’
boundary of the endogenous IgH locus (72, 73). This region
is not present in the transgenic mouse model of 3’RR-induced
c-myc deregulation. The 3’CBE insulator region contains a high
density of binding sites for CCCTC-binding factor (CTCF), a
protein associated with mammalian insulator activity. Deletion
of the 3’CBE insulator region resulted in significant effects
on VDJ rearrangement, IgH locus compaction, and IgH locus
insulation. Furthermore, physical interactions occur in B-cells
between 3’CBE and 3’RR enhancers suggesting that the entire
3’ region (3’RR enhancers + 3’CBE insulators) works as a
physical unit. The lack of 3’CBE in 3’RR-Myc mice could
induced stronger and longer c-myc deregulation (and thus faster
lymphoma emergence) than that obtained when c-myc is inserted

into the IgH locus under the control of the entire (enhancer +
insulator) region.

CONCLUSION

Knock-out mice models have clarified the functions of Eµ

and 3’RR enhancers as essential for DNA remodeling and IgH
locus transcription at specific stages of B-cell development
and maturation. Thus, these enhancers have a major potential
to be oncogene deregulators for IgH-translocated oncogenes,
even when the breakpoints lie several 100 kb away from them.
All these models contribute different but interesting data to
our understanding of human B-cell lymphoma development
and treatments especially with regards to the great functional
and structural similarities found between human and mouse
IgH loci (74). However, we must keep in mind that these
mice are experimental models that do not reflect 100% of
what happens in humans. For example, if the vast majority
of human mature B-cell lymphomas are mutated in their
VDJ region (highlighting their post-germinal center status) it
is not the case in mice where mature B-cell lymphomas are
unmutated (highlighting their pre-germinal center status) (75).
Long-range loop interactions between chromatin segments of
the IgH locus comprise the mechanism of normal and abnormal
gene transcription regulation by the 3’RR (2, 76) (Figure 2B).
Therefore, it is possible to suggest that targeted inhibition of
the 3’RR would be a therapeutic approach for the treatment of
some mature B-cell lymphomas. Finally, it is also of importance
to mention that the c-myc oncogene driven by Ig light chain
enhancers also induces B-cell lymphoid malignancy in transgenic
mice (11, 77). These models highlight not only the importance
of all Ig enhancers for B-cell lymphoma development but also
that a 3’RR targeting strategy (if any) would not be a silver
bullet to treat all B-cell lymphomas but at best some mature
B-cell subtypes.
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