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Abstract: The gut microbiome has emerged as a novel determinant of type 1 diabetes (T1D), but the
underlying mechanisms are unknown. In this context, major gut microbial metabolites, short-chain
fatty acids (SCFAs), are considered to be an important link between the host and gut microbiome.
We, along with other laboratories, have explored how SCFAs and their cognate receptors affect
various metabolic conditions, including obesity, type 2 diabetes, and metabolic syndrome. Though
gut microbiome and SCFA-level changes have been reported in T1D and in mouse models of the
disease, the role of SCFA receptors in T1D remains under explored. In this review article, we will
highlight the existing and possible roles of these receptors in T1D pathology. We conclude with a
discussion of SCFA receptors as therapeutic targets for T1D, exploring an exciting new potential for
novel treatments of glucometabolic disorders.

Keywords: free fatty acid receptor (FFA) 2; FFA3; gut microbiome; incretin; insulin secretion; short-
chain fatty acids; type 1 diabetes

1. Introduction

T1D is an organ-specific autoimmune disease characterized by the destruction of
the β cells. While the etiology of T1D is not fully understood, the prevailing paradigm
hypothesizes that an individual’s genetic background plays a central role in the risk of
disease development, and more than 50 T1D-associated genes have been identified through
extensive genetic studies [1]. However, genetic predisposition alone cannot explain recent
rises in the rates of T1D worldwide. Environmental factors, including mode of delivery
during birth [2], breast versus formula feeding [2], use of antibiotics in early life [3,4],
toxicant exposure [5], etc., have lately emerged as factors potentially affecting T1D onset
and progression. Of note, most of these factors converge upon the gut microbiome (GM),
making this a novel critical factor, the modulation of which can accelerate or offset T1D
progression [6,7].

Comprising over 10 trillion cells and outnumbering host cells approximately 10:1,
the GM refers to the totality of microorganisms, including bacteria, fungi, archaea, and
viruses, that inhabit the intestinal tract [8]. The vast majority of gut microbes play either
commensal or mutualistic roles, including nutrient absorption and digestion, the regulation
of endocrine functions and signaling to the brain, eliminating toxins, and producing crucial
metabolites for the body. Importantly, the GM is the major generator of short-chain fatty
acids (SCFAs) through the intestinal fermentation of dietary complex carbohydrates that
cannot be metabolized by the host. SCFAs, along with their role as a nutrient, have an
expansive repertoire of functional roles, including the regulation of glucose, lipid, and
energy metabolism, modulation of gene expression, cell proliferation, and inflammation,
and have localized effects on intestinal function [9]. Additionally, SCFAs act as major
mediators of crosstalk between the GM and human host, as fluctuating levels of SCFAs are
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influenced by changes in gut microbial composition and are largely impacted by factors
such as diet and physiological state. Bridging the environment–gut microbiome–host
axis, it is not surprising that SCFAs have emerged as major factors in the development of
metabolic disorders [10]. Their role in T1D has been recognized recently and is discussed
elsewhere [11].

The numerous actions of SCFAs are carried out, in part, through interaction with their
membrane receptors, which act both as sensors and mediators of their effects [12]. Two of
the important SCFA receptors are free fatty acid receptors (FFAR), FFA2 and FFA3, which
belong to the G-protein-coupled receptor family. With widespread tissue expression, the
roles of FFA2 and FFA3 as major regulators of metabolism and immunity, as well as in the
mediation of microbiome–host crosstalk, are emerging [12]. As discussed in subsequent
sections, this is accomplished through a variety of mechanisms, including the modulation
of insulin secretion in the pancreas, incretin secretion in the intestine, and the modulation
of inflammatory responses. Furthermore, there is a growing body of data supporting the
involvement of SCFA receptors in the pathogenesis of T1D [13]. In this review, we also
explore their involvement in the pathogenesis of T1D by summarizing the current body
of data derived from experimental mouse models and identify areas of interest for future
research in this direction.

2. Gut Microbiome in T1D

Our understanding of the role of GM in T1D is based on rodent and human studies
(summarized in [7,14]). In general, the intestinal microbiota of T1D and healthy subjects
are distinctly different in mouse and human studies, with the former showing reduced
microbial diversity and a reduced presence of butyrate producers along with proinflam-
matory dysbiosis [7,15]. For example, in Non-obese Diabetic (NOD) mice (susceptible
to developing diabetes in an autoimmune fashion similar to humans) and Non-obese
Diabetes Resistant (NOR) mice, the NOD microbiota contained more pathobionts com-
pared to beneficial bacteria present in the NOR. The ileal NOD microbiota was reduced in
segmented filamentous bacteria (SFB) and Lactobacillusspp., while the ileal NOR microbiota
were reduced in Anaeroplasmaspp. and Desulfovibriospp. The colonic NOD microbiota was
reduced in members of the Alphaproteobacteria class, Ruminococcus gnavus, and absent
in Bacteroides acidfaciens when compared to NOR mice. The colonic NOR microbiota were
absent in Prevotellaspp. but detected in NOD mice. Importantly, SFB and Lactobacillus
are associated with protection against the development of autoimmune diabetes [16,17],
while expansion of strains such as Prevotella correlates with detrimental changes in the
gut mucosal immune system [18]. The transfer of NOD gut microbes promoted pancreatic
inflammation in NOR mice [19]. Blocking the interaction between GM and NOD host by
genetic knockout of MYD88, an adapter protein responsible for activating receptors for gut
microbial signals and lodging appropriate innate immune response, protected against T1D
development. Interestingly, this protective effect was lost in absence of the gut microbiome
and could be gained back through recolonization with NOD MYD88 knockout gut micro-
biota [20]. These results suggested that while the interaction of the GM with the innate
immune system is a predisposing factor for T1D [20], it is the balance in gut microbial
features affecting tolerance versus T1D development that affects the disease pathogenesis.

Gut microbial changes occurring in T1D have also been analyzed in human cohorts.
Two studies utilizing the Environmental Determinants of Diabetes in the Young (TEDDY)
cohort have yielded a functional profile of the developing gut metagenome, identifying
the relationship between the microbiome and islet immunity and T1D, as well as other
major childhood events [21,22]. Similar to observations in NOD mice, control children had
higher beneficial bacteria such as Bifidobacterium and Lactobacillus [21,22], while in children
with islet autoimmunity and T1D, there was a high prevalence of Erythisopelotrichaecae
and fewer Lactococcus, Streptococcus, and Akkermansia [22]. Additionally, the GM of control
children had more genes associated with fermentation and biosynthesis of SCFAs [21].
An earlier study comparing children prior to T1D onset (defined as presence of at least
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two β-cell-specific autoantibodies) with autoantibody-negative children also demonstrated
that individuals with a greater number of autoantibodies to β cell antigens had a lower
abundance of lactate and butyrate-producing gut bacteria [23].

Despite some key differences in rodent and human T1D forms [24], a pattern of GM
modulation in the disease has emerged [7]. Crucial in this pattern are the observations that
(a) deviation from optimal microbial homeostasis may lead to loss of self-tolerance and rise
in proinflammatory signals [19,21,22,25], and (b) functional net effects of these deviations
depend on co-occurring microbial communities and have often been manifested as changes
in levels of plasma and fecal SCFAs [19,21,26,27]. In the animal form of T1D, the restoration
of optimal GM community (either nutritionally or through fecal microbial transfer, FMT)
alleviates and/or delays features of severe forms of the disease [15,28,29]. Similarly, GM
restoration in human T1D has shown the benefits of an optimal GM community [14,30].
However, the interrelationship between GM changes and T1D, though apparent, has not
been proven causal.

3. SCFAs, FFA2, and FFA3

SCFAs, mainly acetate, butyrate, and propionate, are gut microbiota fermentation
byproducts of indigestible fiber. The majority of SCFAs are readily absorbed and utilized
by the colonocytes as an energy source. Remaining SCFAs are drained into the hepatic and
portal venous systems before emerging into the systemic circulation [31]. SCFAs affect host
physiology in numerous ways, acting both as metabolic substrates and signaling molecules.
Distinct GM and SCFA profiles in T1D versus controls provide compelling evidence for
the roles of SCFA receptors in disease pathology. For a better understanding of this role, a
review of known functions of FFA2 and FFA3 centering on the endocrine pancreas, immune
cells, and gut is presented. Discussion of the roles of these receptors in other tissues has
been covered elsewhere [32–34].

3.1. SCFAs as Signaling Molecules

SCFAs act as extracellular signaling molecules by binding to their cognate G-protein-
coupled receptors (GPCRs), FFA2 and FFA3, which can bind all the three SCFAs but with
discrete efficacies (Table 1) and G-protein coupling profiles. Due to their coexpression
in tissues, shared endogenous ligands, and lack of selective synthetic ligands, defining
their physiological roles has been challenging. However, recent studies using novel rodent
models have provided an increased appreciation of the roles of these receptors in various
metabolic and immune states [12].

Table 1. Affinity (EC50 in µM) of SCFAs at their cognate receptors.

SCFA FFA2 FFA3

Acetate 35–431 >1000

Propionate 14–290 6–127

Butyrate 28–371 42–158

Pentanoate >1000 42–152

Hexanoate - 102–134
All values are for human receptors [35–37].

3.2. FFA2 and FFA3 Regulate β Cell Physiology

Both FFA2 and FFA3 are expressed in islets, predominantly in the β cells in both
rodents and humans [34]. Pioneering work from the Layden Laboratory along with
others has established the role of these receptors in the regulation of β cell function and
mass [38–44]. Most of these effects are based upon distinct G-protein coupling preferences
of FFA2 and FFA3. Upon SCFA binding, FFA2 can couple with either Gαq/11 and Gαi/o,
thus exerting stimulatory or inhibitory effects on cellular function, respectively. FFA3,
on the other hand, couples almost exclusively with Gαi/o, with an inhibitory tone in
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its signaling [36]. Accordingly, in the islet, these receptors have opposing effects on
insulin secretion: in both human and mouse islets, FFA3 inhibits insulin secretion in a
Gαi/o-dependent manner [38,42,45], whereas FFA2 activation may increase [39,44,46,47]
or decrease insulin secretion [45], depending upon whether it couples to Gαq/11 or Gαi/o.
Variance observed in FFA2 activity suggests that under any given condition, the effect of
FFA2 activation on insulin secretion depends upon its preferred G-protein coupling [39,44].
This calls for the development of G-protein-biased ligands for FFA2. In fact, orthosteric
FFA2 agonists SCA14, SCA15, and ZINC03832747 mediate the Gαq/11-dependent increase
in mouse islets or β cell insulin secretion in contrast to the allosteric agonists CMTB and
CPTB that decrease insulin secretion via Gαi/o [39,48].

Mediation of β cell function by these receptors projects a similar profile in vivo. Whole-
body deletion of FFA3 improves insulin secretion and glucose tolerance both under high fat
diet induced metabolic stress [42,43,45] and a regular diet [42,43]. Correspondingly, β-cell-
specific FFA3 overexpression deteriorates glucose responsiveness in mice [42]. These effects
appear to be a β cell secretory phenotype, as no changes in insulin sensitivity have been
observed [42,43,45]. Additionally, gene expression analysis of islets from FFA3 knockout
mice [39] or β-cell-specific FFA3 overexpression mice [42] revealed complementary changes
(i.e., downregulation in knockout and upregulation in overexpression model) in genes
related to inflammation and immune response (such as IL1β, IL1α, CD80), besides changes
in genes of calcium response and glucose utilization pathways.

Evaluation of the in vivo roles of FFA2, similar to the ex vivo data, has yielded
conflicting results. Mice globally lacking FFA2 exhibited fasting hyperglycemia, reduced
insulin secretion, and glucose intolerance under dietary metabolic stress [39,44]. In contrast,
another study has reported a phenotype of improved glucose tolerance and enhanced
insulin secretion in FFA2 knockout mice [45]. Additionally, in this same study, FFA2
and FFA3 double knockout or FFA3 knockout in combination with β-cell-specific FFA2
knockout improved glucose tolerance and insulin secretion under metabolic stress. These
conflicting data may arise from differences in the G-protein coupling of activated FFA2,
roles of FFA2 in other metabolically active tissues, impact of gut microbiome, and/or
duration of metabolic stress, besides receptor-independent effects of SCFAs [49–51].

SCFA receptors, specifically FFA2, also modulate β cell mass [40,41,44]. FFA2 is re-
quired for the prenatal establishment of β cell mass, as FFA2 knockout mouse neonates and
21-day-old weanlings exhibit impaired β cell mass at birth and throughout adulthood [41].
Under conditions of dietary metabolic stress [44] and pregnancy [40], when β cells are com-
pensating for insulin resistance, this deficiency in β cell mass is magnified. FFA2 activation,
as a matter of fact, increases β cell proliferation [41,44], enhances the expression of genes
involved in β cell differentiation [44], and reduces cytokine- and palmitate-induced β cell
apoptosis [46,47]. FFA3, on the other hand, as a Gαi/o-coupling receptor, may restrict β
cell mass [52]. However, FFA3 knockout mice islets have been reported to be smaller with
reduced proliferation and number of β cells [42], an effect not seen in a later study [43].
Similarly, β-cell-specific FFA3 overexpression in mice shows compensatory increased β

cell proliferation and area [42]. Collectively, these data highlight the role of SCFA receptors
FFA2 and FFA3 in modulating β cell function and mass. Importantly, defects in these two
features are fundamental to the pathology of T1D.

3.3. FFA2 and FFA3 Modulate Incretin Secretion

In addition to their role within pancreatic islets, SCFA and their receptors are sug-
gested to participate in the secretion of incretin hormones. In the upper intestine, SCFA
concentrations range from 0.1 to 1 mM and are largely produced by oral microbiota [53].
By contrast, luminal SCFAs in the colon can reach levels of up to 100 mM due to the
fermentation of dietary fibers via the gut microbiota. Within the intestine, SCFA receptors
FFA2 and FFA3 are thought to act as sensors of these metabolites, and many important
actions are carried out through this signaling.
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Secreted by enteroendocrine cells (EECs) embedded within the intestinal epithelium,
incretin hormones are peptide hormones that stimulate the release of insulin in response
to nutrient intake, thereby lowering the level of circulating blood glucose [54]. Addition-
ally, incretin hormones facilitate numerous postprandial metabolic functions, including
lowering food intake, gastric emptying, and increasing cardiac output [55]. There are
two primary incretin hormones: glucagon-like peptide-1 (GLP-1) and gastric inhibitory
polypeptide (GIP). While both hormones carry out their various functions through the
binding of their specific receptors (GLP-1R and GIPR, respectively) on the surface of vari-
ous tissues, they contribute to the regulation of glucose metabolism in distinct mechanisms.
Although both stimulate insulin release through Gα/cAMP at β cells, in islet α cells, GLP-1
suppresses glucagon, while GIP increases it [56]. Both hormones also protect β cell mass by
inhibiting apoptosis. GLP-1 and GIP play important roles in the control of glucose levels
after a meal via the physiological response known as the “incretin effect.” This occurs
when higher levels of glucose-stimulated insulin secretion are observed when glucose is
administered orally rather than intravenously, an effect that is lost in type 2 diabetes but
preserved in T1D [57].

FFA2 and FFA3 are broadly expressed within EECs throughout the gastrointestinal
tract. EECs are divided into subtypes based on the peptide hormone they express and
secrete [58]. Using immunohistochemical analysis and a Ffar2-red fluorescent protein
(RFP) reporter mouse, FFA2 has been found to colocalize with peptide YY (PYY)/GLP-1
containing L cells in rodents and humans [59–62]. Using in situ hybridization and a Ffar3-
RFP reporter mouse, FFA3 expression has been confirmed in several types of intestinal cells,
including PYY-positive cells [59,63,64]. However, due to the concentrated expression of
FFA3 in enteric ganglia and sympathetic ganglia, it is uncertain if its effects on EEC function
arise from its expression in enterocytes or are secondary to its mediation of enteric neuronal
function [59,65,66]. Further, transcriptomic analysis has found high coexpression of both
receptors with gip, indicating their possible involvement in mediating GIP secretion [67].

Several studies have shown that stimulation of FFA2 by SCFA results in an increased
secretion of GLP-1 from EECs in the intestine. Primary intestine cells harvested from global
FFA2 knockout mice showed reduced GLP-1 release in vitro, and another study by the
same group found that propionate was able to stimulate GLP-1 release in vivo only in the
wild-type mice [68,69]. Besides GLP-1, studies have also documented the role of FFA2 in
mediating GIP [44] and PYY secretion, with the latter in both humans and mice [44,70,71].
Controversy exists for this role of FFA2, however, with some studies reporting no difference
in basal- and glucose-stimulated GLP-1 levels in FFA2 knockout mice compared to control
mice [40,45].

For FFA3, while there is a paucity of data regarding its role in gut hormone secre-
tion, FFA3 knockout mice have reduced GLP-1 and PYY secretion, and primary colonic
cultures derived from these mice display impaired secretory response upon SCFA stim-
ulation [63,69]. Predictably, FFA3-specific agonist enhances GLP-1 release from primary
colonic cultures [59]. FFA3 is also implicated in the inhibition of GIP secretion, an effect
more likely with the predominant Gαi/o coupling of the receptor [72].

More research is needed to ascertain the respective roles of FFA2 and FFA3 in the
regulation of incretin hormones in the intestine. This includes the development of potent
selective ligands and tissue-specific knockout mouse models. Some progress has already
been made in this direction. Selective and potent human FFA2 inverse agonists have
been developed and shown to stimulate GLP-1 secretion in the human EEC line, NCI-
H716 [73]. Through a chemogenetic knock-in strategy, mice with designer receptors
exclusively activated by the designer drugs (DREADD) variant of human FFAR2 replacing
the mouse Ffar2 locus have been generated. DREADD activation in these mice has been
shown to augment GLP-1 secretion in colonic crypt cultures and in vivo [74].
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3.4. SCFAs, FFA2, and FFA3 Educate the Gut Immune Cells and Regulate Inflammation

SCFAs can regulate immune cell function via two major processes, either through their
cognate GPCRs such as FFA2 and FFA3 or by modulating histone deacetylase (HDAC)
activity [75]. Here, we emphasize the first role. With the highest SCFA concentration, a rich
and diverse population of immune cells with the majority expressing FFA2 and few, such
as dendritic cells expressing FFA3, the gut is an important site where SCFAs can impact the
immune cells through these receptors.

FFA2 has been reported to affect neutrophil chemotaxis in gut inflammation models,
where a deficiency in FFA2 increases neutrophil infiltration to sites of inflammation [76,77].
Accordingly, engagement of FFA2 with acetate mitigates such a response [76,77]. Similar
FFA2-dependent neutrophil-driven responses are seen in pulmonary and joint inflamma-
tion models [77]. Neutrophil FFA2 engagement by SCFAs in the presence of allosteric
modulators can also activate NADPH oxidase and enhance the production of reactive
oxygen species, which is deemed necessary for phagocytic activity [77,78]. FFA2-derived
neutrophil responses are required for the regulation of inflammatory responses. As recently
shown, FFA2 activity promotes coordination between neutrophils and colonic group 3
innate lymphoid cells (ILC3). In neutrophils, inflammasome activation helps in pathogen
clearance with the concomitant enhancement of IL1β production, where IL1β leads to
IL22 production from ILC3, driving gut repair mechanisms [79]. FFA2 can also promote
ILC3 expansion and function independent of neutrophils [80]. Immunomodulation by
neutrophil FFA2, thus, appears to strike a balance between pro- and anti-inflammatory
effects, potentially in a disease-centric manner.

SCFAs through their HDAC inhibitory activity are considered to be the main players
in maintaining the regulatory T cell (Treg) pools [75]. These effects are, in part, mediated
through FFA2. It is suggested that FFA2 exerts immune suppression by regulating the
number, function, and differentiation of Tregs [81,82]. FFA2 also modulates gut homeostasis
by modifying immunoglobulin A (IgA) production [83] and through direct effects on
inflammasome activation in intestinal epithelial cells [84].

The role of FFA3 in immune regulation is less explored, likely due to its limited
expression in immune cells. It has been suggested to be involved in the resolution of
lung inflammation through effects on macrophage and dendritic cell populations [85]
and in promoting thymic Treg differentiation in mouse offspring [86]. The function and
expansion of CD8+ T cells can also be regulated by FFA3, and this has been suggested to
aid the resolution of influenza infection [87]. Both FFA3 and FFA2 have been suggested to
enhance T cell memory [88], with the engagement of both receptors by butyrate appearing
to mediate this effect. However, as the mouse isoform of FFA2 shows a low affinity for
butyrate [31], the use of synthetic ligands is required to further delineate the role of the
two receptors in this process.

3.5. SCFAs, FFA2, and FFA3, and Gut Microbiome: It Takes Three to Tango

Obliterating the GM in mice wipes off some of the physiological effects discussed
above. For instance, in germ-free (GF) mice, antigen-activated T cells fail to transition to
memory cells [88]. As the GM does not directly interact with the host cells except at the gut
mucosal surfaces, these effects are likely indirect, being mediated via GM-derived factors
such as SCFAs. The GM-derived SCFAs acting through their receptors FFA2 and FFA3
project the link, GM→SCFAs→FFA2 and FFA3.

Highlighting this relationship, whole-body FFA2 and FFA3 knockout mice have differ-
ent gut microbiota profiles as compared to wild-type mice [44,63,82,84,89]. As expected,
differences in fecal SCFA profiles accompany these differences in GM profiles due to
adaptation to receptor deficiency. More direct evidence for roles of FFA2 and FFA3 in the
GM→SCFAs→Receptor link is provided by immune function and GM studies. Both GF
and FFA2 knockout mice exhibit a dysregulated immune response to induced colitis, gout,
and arthritis [77,90]. While this response is mitigated by acetate supplemented drinking
water in GF mice [77], FFA2 knockout mice remain refractory to acetate treatment [81].
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Likewise, high-fiber diets that tend to increase GM function and SCFA levels in wild-
type mice fail to promote gut homeostasis, alleviate food allergy, and prevent respiratory
viral infection in FFA2 knockout mice [82,84,91]. Similar findings have been reported for
FFA3. High fiber diet mediated protection against allergic airway disease and influenza
virus is not observed in FFA3 knockout mice [85,87].

Metabolic studies have also highlighted the importance of the GM→SCFAs→FFA2
and FFA3 relationship. Reduced adiposity and PYY levels in FFA3 knockout mice are
GM dependent, with the effect being lost in GF FFA3 knockout mice [63]. Similarly, GM-
derived SCFAs mediate suppression of GIP secretion in FFA3 dependent manner, an effect
lost in GF, antibiotic-treated mice (pseudo-GF), and FFA3 knockout mice [72]. In mice, a
low-fiber diet or GF status during pregnancy increases the vulnerability of the offspring to
obesity and insulin resistance later in life [92]. This effect could be rescued by propionate
treatment or high-fiber feeding but not in absence of FFA3 or FFA2. Furthermore, FFA3
and FFA2 SCFA signaling was found to be responsible for normal embryonic development
of neural, pancreatic β cell and intestine tissues. Collectively, these data suggest that
the GM modulates metabolic and immune features affecting health via SCFA-FFA2 and
SCFA-FFA3 axes.

4. FFA2 and FFA3 Mediating GM–Host Crosstalk in T1D

The identification of a role for FFA2 and FFA3 signaling in T1D is a budding area of
research. Although there is still only sparse and indirect evidence, there is clinical interest
in pursuing this area in the fight against T1D (discussed under “FFA2, FFA3, and T1D:
Clinical Interests” (Section 5)). The main mechanisms linking GM to T1D include the GM-
mediated influence on the development and homeostasis of the immune system and the
effects of the GM upon influence on gut barrier integrity. As noted from GF and gnotobiotic
mice studies, GM composition affects the development of gut-associated lymphoid tissue
(GALT), the expansion and differentiation of specific T cell subsets (Foxp3+ Tregs and
Th17 cells), and IgA-secreting B cells [93–96]. The gut barrier guards against the entry of
pathogenic microbes and their components into the host circulation and tissues. Disruption
of the gut barrier has been noted in both human T1D and T1D animal models [97–99].
This is manifested in humans by increased gut permeability [100] and serum levels of the
gut barrier marker, zonulin [101]. In mice, it has been reported that there is activation of
islet-specific diabetogenic T cells in the gut and their translocation along with gut bacteria
to pancreatic lymph nodes [99,102].

Considering (1) the role FFA2 and FFA3 play in immune homeostasis and gut epithelial
integrity, (2) dysbiotic gut microbiome of T1D, and (3) altered serum and fecal SCFAs in T1D,
it can be argued that these receptors are likely to be important regulators of T1D immune
responses (Figure 1). Along these lines, peripheral blood monocytes in T1D subjects show
high FFA2 expression [103], and FFA3 expression has been correlated with inflammation
and metabolic markers [104]. The first indication of the involvement of these receptors in
T1D pathogenesis came from the work of Marino et al., [15], where the feeding of acetate
yielding diets to NOD mice promoted immune tolerance and delayed progression to T1D
by reducing autoreactive T cells, increasing Tregs, and improving gut barrier integrity.
These effects were FFA2 dependent, as the anti-T1D potency of these diets was lost in NOD
mice deficient in FFA2. Feeding a butyrate yielding diet, on the other hand, could confer
partial protection from T1D to NOD FFA2-deficient mice. This indirectly suggested the
involvement of butyrate-favoring receptor FFA3 and/or the butyrate-activated GPR109a
or receptor-independent effects of butyrate. This study thus suggests that engagement of
FFA2 and/or FFA3 by dietary SCFAs plays an important role in modulating inflammatory
responses in T1D. A similar protective role of FFA2 was also observed in a streptozotocin-
induced mouse model of T1D [103]. In diseased mice, treatment with specific FFA2
agonists attenuated islet inflammation by inducing apoptosis of infiltrating macrophages.
Furthermore, these receptors, possibly through the Gαi/o-dependent pathway, were shown
to promote a tolerogenic pancreatic immune environment by regulating islet production



Metabolites 2021, 11, 302 8 of 15

of immunoregulatory cathelicidin-related antimicrobial peptide (CRAMP) [105]. These
effects, however, have not been replicated in humans. The use of FFA2 agonists in human
studies is hampered due to differences in the signaling of mouse and human isoforms of the
receptor. The more attractive option, oral administration of SCFAs, for example butyrate, in
long-standing T1D subjects, unfortunately, has also not shown any benefits [106]. Whether
or not oral SCFA administration prior to T1D onset can delay or lessen T1D pathology
needs exploration. Moreover, FFA2 can also augment β cell function and protection, and
both FFA2 and FFA3 can affect incretin secretion. However, it has not yet been explored
whether these effects are pertinent to T1D.
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Figure 1. Role of FFA2 and FFA3 in gut immune homeostasis and β cell physiology in the context of T1D. The engagement
of FFA2 and FFA3 on gut epithelial and enteroendocrine (EEC) cells by gut microbial metabolites, short-chain fatty acids
(SCFAs), regulates epithelial barrier integrity and the secretion of various incretin hormones. FFA2 signaling on various
gut immune cells promotes an anti-inflammatory and tolerogenic environment. Neutrophil FFA2 affects chemotaxis, the
production of reactive oxygen species (ROS), and IL1β. FFA2 activation on innate lymphoid cell 3 (ILC3) directly and
in conjugation with neutrophil-released IL1β promotes IL22 production. FFA2 also promotes ILC3 and regulatory T cell
(Treg) expansion. Receptor activation on dendritic cells contributes to B cell (plasma cell) differentiation and IgA release.
Altogether, SCFA receptor activity promotes an anti-inflammatory state that, in turn, suppresses the immune destruction
of β cells. Factors produced in the gut, such as incretin hormones and SCFAs, and possibly immunosuppressive immune
cells such as Tregs, travel to pancreatic β cells, influencing their physiology. In β cells, FFA2 stimulates insulin secretion
and proliferation and is essential for the establishment and preservation of β cell mass. FFA3 activation reduces insulin
secretion. Both receptors possibly stimulate the production of immunomodulatory cathelicidin-related antimicrobial peptide
(CRAMP). FFA2 activation on infiltrating proinflammatory macrophages causes immune cell apoptosis.

5. FFA2, FFA3, and T1D: Clinical Interests

From the above discussion, a GM→SCFAs→FFA2 and FFA3→T1D link is apparent.
This link has opened exciting avenues of research for identifying novel targets to treat and
prevent T1D. The first question raised is if the modification of GM, which is achievable
through the use of probiotics and prebiotics [107], impacts aspects of T1D disease. Pro-
biotics are live microorganisms that, when administered in adequate amounts, confer a
health benefit on the host, while prebiotics are substrates utilized by host microorganisms
conferring a health benefit [108]. Several studies on spontaneous and pharmacologic rodent
models of T1D have revealed that pro- and prebiotics favor a tolerogenic gut immune envi-
ronment by promoting gut barrier integrity, stimulating the secretion of anti-inflammatory
cytokines, and restricting the number of inflammatory T cell subsets besides increasing the
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abundance of beneficial gut bacteria [107]. Similar effects have been observed in human
T1D trials [14,107]. Notably, early probiotic exposure in children genetically predisposed to
T1D reduced the risk of the disease [109]. Interestingly, some probiotics such as L. kefiranofa-
ciens M and L. kefiri K promoted GLP-1 secretion in a streptozotocin-induced T1D mouse
model [110]. Presumably, FFA2 and FFA3 in EECs and gut immune cells are involved in
some of these effects. This presumption may especially hold true for FFA2. For example,
Bifidobacterium animalis subsp. lactis GCL2505 (GCL2505), a probiotic, increases acetate levels
and engages FFA2 to exert beneficial metabolic effects in a diet-induced obesity mouse
model [111]. Similarly, prebiotic fructo-oligosaccharide supplementation in rats increased
the density of GLP-1 producing L cells coexpressing FFA2 [60]. Additionally, dietary
supplementation with the microbially derived SCFAs, acetate and butyrate, ameliorated
T1D β cell damage and immune dysfunction in an FFA2- and possibly FFA3-dependent
manner [15]. Finally, FMT has appeared on the landscape of numerous anti-T1D inter-
ventions as another method to re-engineer the GM to positively impact T1D [30]. These
different methods of modifying the GM for modulating the course of T1D seem potentially
promising. However, we are still far from their actual clinical use. Human trials and animal
studies have yielded variable outcomes ranging from no to even adverse effects [106,112].
Furthermore, the durability of these effects is unclear, while our understanding of gut
microbial metabolite mediated cellular effects is incomplete.

Another new area of research in T1D therapeutics is the specific targeting of the
receptors FFA2 and FFA3. Although this is seemingly straightforward compared to T1D
GM modification, it comes with added complexities, as enumerated before [12]. Briefly,
these are, biased G-protein coupling (FFA2) [113], species differences in GPCR signaling
(FFA2) [37,114], multiple downstream effectors of the activated receptors yielding discrete
physiological responses (FFA2 and FFA3) [36,37,44,66,115–117], lack of species-specific and
G-protein-specific ligands (FFA2), lack of understanding of tissue-specific roles of these
receptors, dependence of receptor expression on various factors such as diet [118], multiple
factors such as diet, and multiple genetic polymorphisms in FFA2 and FFA3 without
known associations with clinical/disease phenotypes [119]. Furthermore, how genetic
predisposition to T1D affects SCFA receptor expression and activity in various tissues and
conversely if polymorphisms in SCFA receptors confer risk to develop autoimmunity is not
known. Despite these complexities, owing to the multiple ways these receptors can affect
T1D, it is worthwhile to try closing these gaps in our knowledge and develop receptor-
based T1D interventions. One step forward in this direction is to develop preclinical mouse
models, such as NOD with double receptor knockout and the tissue-specific knockout of
FFA2 and FFA3, for the precise delineation of receptor-mediated effects. Another approach
is to generate humanized mouse models expressing human isoforms of the receptors
globally and in tissue-specific manners through knock-in and chemogenetic approaches
that will provide excellent ways to monitor effects of human receptor signaling in in vivo
settings and identify unique signaling responses to new ligands. The generation of such
models can be used to demonstrate the functional implications of GM changes occurring
in T1D.

6. Conclusions

Mounting evidence indicates an effect of the GM upon T1D pathology mediated
through the modulation of gut and pancreatic immune environments. With possible roles
of the SCFA-activated GPCRs, FFA2 and FFA3, in mediating these effects, a highly relevant
GM→SCFAs→FFA2/FFA3→T1D link is apparent. Although a mechanistic understand-
ing of the interrelationships of different entities in this link is still not complete, novel
therapeutic interventions against T1D based on this link are likely to emerge.
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