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Phenylketonuria (PKU) is a genetic disorder with amino acid metabolic defect,

which does great harms to the development of newborns and children. Early

diagnosis and treatment can effectively prevent the disease progression. Here

we developed a PKU screening model using random forest classifier (RFC) to

improve PKU screening performance with excellent sensitivity, false positive

rate (FPR) and positive predictive value (PPV) in all the validation dataset and two

testing Chinese populations. RFC represented outstanding advantages

comparing several different classification models based on machine learning

and the traditional logistic regression model. RFC is promising to be applied to

neonatal PKU screening.
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Introduction

Phenylketonuria (PKU [MIM: 261600]) is an autosomal recessive genetic disease,

which is one of the common disorders of amino acid metabolism (Yan et al., 2019). It is

also one of the diseases for newborn screening (NBS) in China. The incidence of PKU in

China is 1/10,701, with a higher incidence in the north than in the south (Wang et al.,

2015). The incidence of PKU in Hainan province of China is approximately 1/81,967

(Huang et al., 2021) but 1/3,420 in Gansu province (Wang et al., 2015). Due to the high

cost of gene detection, some methods for PKU screening were used such as the Guthrie

test (Guthrie and Susi, 1963) and high performance liquid chromatography (HPLC)

(Moretti et al., 1990) in the early days after birth. Tandem mass spectrometry (MS/MS) is

currently used in many countries to screen inborn errors of metabolism (American

College of Medical Genetics Newborn Screening Expert Group, 2006; Lindner et al.,

2011). In most countries around the world, PKU screening is performed by evaluating

phenylalanine (PHE) and tyrosine (TYR) levels in neonatal dry blood spots (DBSs) by LC-
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MS/MS (Blau et al., 2014). In clinical, newborns with PHE

concentration more than 120 μmol/L will be recalled, and

then genetic testing will be carried out to confirm. This

screening method brings a high false positive rate, which can

waste a lot of medical resources and even bring panic to the

involved families. Therefore, there is great clinical value to

improve the accuracy for PKU screening.

Machine learning is the science of artificial intelligence and

has been widely used inmedicine (Deo, 2015). For example, there

are many important applications in the establishment of cancer

mutation spectrum, cancer research and nursing care, and the

diagnosis and prognosis of cardiovascular and cerebrovascular

diseases (Muiños et al., 2021; Meropol et al., 2021; Savarraj et al.,

2021). It also plays an important role in the screening of neonatal

genetic metabolic diseases (Baumgartner et al., 2004). For

example, a random forest machine learning classifier was used

to establish NBS models for glutaric acidemia type 1 (GA-1),

methylmalonic acidemia (MMA), ornithine transcarboxylase

deficiency (OTCD) and very long-chain acyl-CoA

dehydrogenase deficiency (VLCADD) (Peng et al., 2020).

Further, several studies in PKU screening have attracted more

attention. A logistic regression model was constructed for PKU

screening, in which sensitivity reached 95%–100% and PPV

increased from 19.14% to 32.16% (Zhu et al., 2020). In

addition, feature selection strategy was used to obtain the

optimal biomarkers and reduce the false positive proportion

of PKU (Chen et al., 2013).

However, PKU screening based on the model constructed by

machine learning methods has not been widely used in practice.

Most hospitals still follow traditional methods for PKU

screening. As a result, it is particularly urgent to develop and

fine-tune classification models for rare but treatable metabolic

diseases such as PKU. It aims at both reducing false positive cases

and eliminating false negatives, in order to detect the infants and

children with PKU quickly and accurately. In this study, we

applied RFC method to improve PKU screening performance

with excellent sensitivity, FPR and PPV in two Chinese large

populations.

Materials and methods

Metabolic data

The population level newborn screening data of small

molecule metabolites were from Gansu Provincial Maternity

and Child-care Hospital (GPMCH) in the northwestern China

and Ningbo Women and Children’s Hospital (NWCH) in the

southeastern China. Small molecule metabolites including

10 amino acids and 31 acylcarnitines of each newborn were

obtained from blood by MS/MS. All newborns consist of

43 features, including 41 small molecule metabolites and two

ratios which are the traditional biomarkers PHE/TYR and the

new potential biomarker MET/PHE [16]. Newborn samples will

be divided into two categories, that PKU patients and normal

samples without PKU (Non-PKU). All PKU newborns and

children have a clear causative pathogenic variant verified by

Sanger sequencing or Next-generation sequencing. To protect

personal privacy, personal information of all samples was

deleted.

Data processing and description

All the samples with other metabolic disorders were excluded

for all the datasets to avoid misleading the prediction results.

Then, all features were normalized with a multiple of the median

(MOM) to avoid systematic errors. The median of every feature is

first calculated. Then, the original value is divided by the median

to obtain the normalized value, which called MOM value (Yang

et al., 2021).

During data preprocessing, 163 PKU patients with treatment

information and 565 samples with other metabolic disorders

were excluded. The total datasets described in model were all

preprocessed. In GPMCH population, 22,867 records from

2015 to 2020 were randomly split into the training and

validation datasets at a 7/3 ratio after processing.

Consequently, the training dataset contains 132 PKU patients

and 15,874 Non-PKU samples for fitting the model, the

validation dataset contains 69 PKU patients and 6,792 Non-

PKU samples for optimizing the model. Two testing datasets

were used to evaluate the performance of the model. One testing

dataset (GPMCH_2021) included 9 PKU patients and

1,398 Non-PKU samples from January to May 2021. The

other testing dataset (NWCH) included 16 PKU patients and

392,177 Non-PKU samples from 2014 to 2020. The processing

steps of these datasets are shown in Figure 1 and descriptive

statistics of 43 biomarkers used in the research are depicted in

Supplementary Table S1.

Machine learning models

PKU screening models were built using six machine learning

methods, including Multilayer Perceptron (MLP), Decision Tree

(DT), Stochastic Gradient Descent (SGD), Logistic Regression

(LR), K-Nearest Neighbor (KNN) and RFC. All models were

built with Scikit-learn-0.23.2 in python and optimized by

adjusting parameters.

Logistic regression analysis 3 (LRA3) is a classification model

developed by Zhixing zhu et al. with good sensitivity, specificity

and PPV for PKU screening [16]. The formula of this model is as

follows:

Logit ofmodel z � 0.7722–13.2300 ·Met/Phe + 0.0010

· Phe–0.0090 · Tyr (1)
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Random forest classifier

RFC is a highly flexible supervised classification tool. The

classification model trains and predicts samples with multiple

decision trees (Breiman, 2001). It can avoid the phenomenon

that a single decision tree is prone to over-fitting and improve

prediction accuracy. The process of RFC is summarized as follows:

1) Among the n samples of the original training dataset, i samples

are randomly sampled with replacement. All training samples

of each classification tree form a new training dataset.

2) For each training dataset, a classification and regression tree

algorithm is used to construct the classification tree without

pruning leaves is generated separately. At each internal node of

the tree, m features (m≤M)are randomly selected from m

features as the candidate attributes of the splitting node, and the

optimal splitting genus is selected from M candidate attributes

to split the node. This classification tree is fully grown to

generate the largest tree, so that the impurity of each leaf node

is minimized and pruning operation is not carried out.

3) There are n classification trees in the RFCmodel and each tree

has a category determination result, the category with the

most votes is designated as the final output.

The RFC model was built by fine-tuning its parameters in the

training dataset, including the number of trees in the forest, the

maximum depth of the tree, the minimum number of samples

required to split the internal nodes, the minimum number of

samples required for the leaf nodes and measuring the

performance of the trained model in the validation dataset. Due

to the imbalance of the data, we set category weights with low

weights for large sample sizes and high weights for small sample

sizes. To obtain the optimalmodel, “Grid Search” of Python library

is used to fine-tune parameters. The ideal requirement in clinical is

to detect all PKU patients with excellent PPV at the same time.

When the new sample enters the RFCmodel, each decision tree of

RFC gives its own disease status of PKU. By integrating the disease

status of each decision tree and adopting a simple votingmethod of

minority obeying the majority, the RFC model determine whether

the sample has PKU.

Feature importance

Gini impurity is used to rank the relative importance of each

feature. It is the probability of misclassification of randomly selected

elements after randomly marking according to the class distribution

in the dataset. In RFC, feature importance represents the sumofGini

impurity reduction of all nodes split on features. The smaller the

Gini impurity, the smaller the probability that the selected samples

in the dataset are misclassified, and the better the feature.

Performance evaluation

This study is a binary classification problem with random

forest. The confusion matrix is used to view the correct and

wrong recognition of each kind of samples (Table 1).

Pearson chi-square test is a hypothesis testing method based

on the chi-square distribution, inferring whether two categorical

variables are correlated or independent of each other according to

the sample data. In this study, it is applied to test the independence

of true value and predict value in the confusion matrix.

Then the performance evaluation indices calculated from the

confusion matrix are as follows:

Accuracy � TP + TN

TP + FP + TN + FN

Sensitivity � Recall � TP

TP + FN

Specificity � TN

FP + TN

PPV � Precision � TP

TP + FP

FPR � FP

FP + TN

(2)

FIGURE 1
The flow chart of dataset processing and distribution.
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We also plotted precision recall (PR) curve and receiver

operating characteristic (ROC) curve to evaluate our model,

meanwhile calculated the average precision (AP) and the area

under curve (AUC).

Results

Model selection

Two models including RF and LR can get the sensitivity of

100% in training, validation and two testing datasets, while other

models including MLP, DT, SGD and KNN cannot. What’s

more, all other evaluations including accuracy, specificity,

PPV and AUC of RFC are all better in both models (Table 2).

Overall, RFC is the optimal model for PKU screening.

Training and evaluation of the model

We constructed a RFC model to classify PKU patients and

Non-PKU newborns. The final optimal RFC model used 72 trees

in the forest, max depth 18, andmin samples leaf 14. AP of the PR

curve by RFC reaches 0.911 (Figure 2A), and AUC of the ROC

TABLE 1 Confusion matrix.

Confusion matrix True value

PKU Non-PKU

Predict value PKU True positives (TP) False positives (FP)

Non-PKU False negatives (FN) True negatives (TN)

TABLE 2 Results of multi-classification models of PKU. And, the bold values represent better results than other models.

Models Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) AUC (%)

Training RF 99.39 100.00 99.38 57.39 99.94

MLP 99.88 100.00 99.88 87.42 99.96

DT 99.59 100.00 99.59 67.00 99.97

SGD 98.28 96.97 98.29 32.08 99.24

LR 99.13 100.00 99.12 48.71 99.85

KNN 100.00 100.00 100.00 100.00 100.00

Validation RF 99.29 100.00 99.28 58.48 99.92

MLP 99.71 89.86 99.81 82.67 99.87

DT 99.46 98.55 99.47 65.39 99.14

SGD 97.83 100.00 97.81 31.65 99.02

LR 98.94 100.00 98.93 48.59 99.87

KNN 99.58 86.96 99.71 75.00 99.14

GPMCH_2021 RF 99.44 100.00 99.43 52.94 99.91

MLP 99.44 88.89 99.50 53.33 99.91

DT 99.36 100.00 99.36 50.00 99.75

SGD 98.52 100.00 98.51 30.00 99.40

LR 98.94 100.00 98.93 37.50 99.95

KNN 99.65 88.89 99.72 66.67 99.92

NWCH RF 99.99 100.00 99.99 24.62 100.00

MLP 99.64 100.00 99.64 1.12 99.98

DT 99.99 93.75 99.99 33.30 96.87

SGD 99.97 93.75 99.97 10.87 99.96

LR 97.06 100.00 97.06 0.14 100.00

KNN 99.94 100.00 99.94 6.38 100.00
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curve reaches 0.999 (Figure 2B) in the validation dataset. These

results show that the RFC is a reliable diagnostic tool for PKU

screening.

Three of the top-ranked features including PHE/TYR, MET/

PHE and PHE play the most important roles for RFC model. All

the 43 features importance for the model construction of PKU

screening can be seen in Figure 3.

Validation of the model

In the validation dataset, PPV obtained for PKU screening by

the traditional medical method (PHE>120 μmol/L) is 17.7%.

Using our model, PPV is significantly improved with a 3.3-fold

increase to 58.48% (Pearson’s Chi-squared test, p < 2.2e-16).

According to the traditional medical method for PKU screening,

PPV of GPMCH_2021 dataset is 17.7% and that of NWCH

dataset is 7.4%. PPV increase from 17.7% to 52.94% (Pearson’s

Chi-squared test, p = 0.011) in the GPMCH_2021 dataset and

from 7.4% to 24.62% (Pearson’s Chi-squared test, p = 0.0003) in

the NWCH dataset (Table 3). It can be seen that RFC does

significantly enhance the ability of PKU screening.

Comparison with the logistic regression
model

In both of the testing datasets, we compared RFC with LRA3.

RFC detected all patients, while LRA3 missed one PKU patient in

the GPMCH_2021 (Table 4) and three in the NWCH dataset

(Table 5). At the same time, Specificity and PPV also achieve

good performance.

Discussion

Our model can both reduce the number of false positive cases

and detect all the PKU patients during PKU screening. Sensitivity

is 100% in two testing datasets, which means that none of PKU

cases will be missed. In machine learning, there are many

common classification models, such as MLP, DT, SGD, LR,

KNN and RFC. Various indicators of the classification models

are calculated, including accuracy, sensitivity, specificity, PPV

and AUC. Comparing with these classification models, RFC

showed clear advantages. In two testing datasets, PPV

increased significantly compared with the traditional medical

method. In the clinical setting, it is necessary to ensure that all

PKU patients can be detected which means the sensitivity should

FIGURE 2
Two curves for PKU screening using RFC in the validation dataset: (A) PR curve; (B) ROC curve.

FIGURE 3
The ranking of 43 small molecule metabolites importance in
our model.
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be 100%. According to this rule, MLP and KNN methods show

good results in the training dataset, but perform poorly in the

validation and two testing datasets, where there is severe over-

fitting. The DT method also shows excellent performance in the

training dataset, but suffers from false negatives in the testing

dataset and NWCH (Alexander, 2022). Some false negatives are

also existed by LRA3, resulting in some PKU cases being

predicted as negative. It is just an acceptable result in

machine learning, but not to clinically acceptable.

In addition, Breiman (Breiman, 2001) pointed out that in the

extremely imbalanced data, trees in random forest may contain

few or none minority classes after bootstrapping, resulting in

poor prediction performance for the minority classes. In our

model, we set class weights for the extremely imbalanced data

due to the large difference in the amount of data between positive

and negative samples. In the tree induction procedure, class

weights are used to weight the Gini impurity for finding the split

(Chen et al., 2004), which is very important to the accuracy of the

model.

Our study also has some shortcomings. Firstly, the number of

positive samples in the testing dataset is not large enough for the

very low incidence in southern China. For further development,

it is necessary to increase negative and positive samples in the

testing dataset to validate the model. Secondly, we found that the

PPV of the NWCH dataset was lower than that of the

GPMCH_2021 dataset, which may be related to the difference

in the incidence rate between the north and the south. Since the

incidence rate in the south is lower than that in the north and the

penalty weight is calculated according to the proportion of

positive and negative samples, the penalty weight of negative

samples in the NWCH dataset is much greater than that of

negative samples in the GPMCH_2021 dataset. We used the data

of Gansu Province to train the model, there were more false

positives and lower PPV when the NWCH dataset was the testing

dataset. Finally, in low birth weight and premature newborns, the

meaning of the measured value is often unclear, and there is no

definite reference value so far, which is bound to have an impact

on the prediction results.

In conclusion, machine learning-based random forest

classifier can improve PKU screening performance with

excellent sensitivity, FPR and PPV in two Chinese large

populations. RFC is promising to be applied to neonatal PKU

screening.
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TABLE 3 Validation of our model.

Datasets TP FP TN FN Sensitivity (%) Specificity (%) PPV (%)

Validation 69 49 6,743 0 100 99.28 58.48

GPMCH_2021 9 8 1,399 0 100 99.43 52.94

NWCH 16 49 392,144 0 100 99.99 24.62

TABLE 4 Comparison with LRA3 in the GPMCH_2021 dataset.

GPMCH_2021 TP FP TN FN Sensitivity (%) Specificity (%) PPV (%)

Our model 9 8 1,399 0 100 99.43 52.94

LRA3 8 6 1,401 1 88.89 99.57 57.14

TABLE 5 Comparison with LRA3 in the NWCH dataset.

NWCH TP FP TN FN Sensitivity (%) Specificity (%) PPV (%)

Our model 16 49 392,144 0 100 99.99 24.62

LRA3 13 28 392,165 3 81.25 99.99 31.71
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