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Transient receptor potential (TRP) are cation channels expressed in both non-excitable
and excitable cells from diverse tissues, including heart, lung, and brain. The TRP
channel family includes 28 isoforms activated by physical and chemical stimuli, such
as temperature, pH, osmotic pressure, and noxious stimuli. Recently, it has been
shown that TRP channels are also directly or indirectly activated by reactive oxygen
species. Oxidative stress plays an essential role in neurodegenerative disorders, such
as Alzheimer’s and Parkinson’s diseases, and TRP channels are involved in the
progression of those diseases by mechanisms involving changes in the crosstalk
between Ca2+ regulation, oxidative stress, and production of inflammatory mediators.
TRP channels involved in nociception include members of the TRPV, TRPM, TRPA,
and TRPC subfamilies that transduce physical and chemical noxious stimuli. It has
also been reported that pain is a complex issue in patients with Alzheimer’s and
Parkinson’s diseases, and adequate management of pain in those conditions is still
in discussion. TRPV1 has a role in neuroinflammation, a critical mechanism involved
in neurodegeneration. Therefore, some studies have considered TRPV1 as a target
for both pain treatment and neurodegenerative disorders. Thus, this review aimed
to describe the TRP-dependent mechanism that can mediate pain sensation in
neurodegenerative diseases and the therapeutic approach available to palliate pain and
neurodegenerative symptoms throughout the regulation of these channels.

Keywords: pain, Alzheimer’s disease, Parkinson’s disease, TRP channels, neurodegeneration

Transient receptor potential (TRP) proteins constitute a group of non-selective cation channels
(Gees et al., 2010) found in most cell membranes, except in the nuclear and mitochondrial
membranes. TRPs are expressed in plasma membrane and help to modulate the driving force for
the influx of Na+, K+, Ca2+, and Mg2+ ions, and trace metal ions (Nilius and Owsianik, 2011),
while in specific organelles, such as the cilium and lysosomes, they regulate organelle and cellular
activity (Moran, 2018). Numerous excitable and non-excitable tissues express TRPs, where they
are involved in sensory signal transduction (nociception, taste, pressure, temperature, vision, and
pheromone signaling), as well as homeostatic regulation (muscle contraction, vessel relaxation, and
cell proliferation) (Gees et al., 2010). In the central nervous system (CNS), several TRP channels
are expressed in both neurons and glia, fulfilling critical roles in neurogenesis, structural/functional
plasticity, and cell homeostasis (Nilius, 2012; Vennekens et al., 2012; Katz et al., 2017).
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It has been described that diverse ion channels expressed in the
brain’s cells, including TRPs, are involved in the progression of
neurodegenerative diseases such as Parkinson’s and Alzheimer’s.
Also, several members of TRPs subfamilies are highly expressed
in neurons and microglia mediating neuropathic pain (Haraguchi
et al., 2012). TRP channels are part of cellular pathways related
to the synthesis of many inflammatory mediators associated
with neuroprotection/neurotoxicity, where they contribute to
intracellular calcium regulation and signaling and painful stimuli
transduction (Ji and Suter, 2007; Miyake et al., 2014; Lee and
Kim, 2017). Therefore, TRP channels became of interest as
promising targets for the treatment of both neurodegenerative
diseases and pain.

In this review, we summarize the evidence of the role of TRP
channels in the progression of neurodegenerative diseases such
as Alzheimer’s and Parkinson’s diseases. Also, we discussed the
possible involvement of TRP channels in pain associated with
these neurodegenerative diseases and the use of TRP channels
as possible pharmacological targets for pain treatment in
patients with neurodegenerative diseases. A better understanding
of the molecular mechanisms involved in neurodegeneration
and pain is necessary to prevent and treat neurodegeneration
and chronic pain.

TRPs STRUCTURE AND EXPRESSION

TRP multigene superfamily is formed by 28 members that
encode integral membrane proteins that function as cation
channels (Vennekens et al., 2012). TRP channels have some
structural similarity, sharing as common a three-dimensional
structure with six transmembrane segments (S1 through S6),
two variable cytoplasmic domains (N- and C terminal), and
small loop forming the channel pore between S5 and S6
segments (Catterall and Swanson, 2015). The distinguishing
features between TRP channel subfamilies have been reported
in the N- and C-terminal cytosolic domains, which contain
residues and regulatory motifs unique for each family
(Gaudet, 2008).

Unlike other cation-selective channel families, TRPs are
classified by primary amino acid sequence rather than selectivity,
ligand function, mechanisms of regulation, or sequence
homology (Moran et al., 2004; Wu et al., 2010). TRP channels
are divided into seven subfamilies: TRPC (Canonical), TRPV
(Vanilloid), TRPA (Ankyrin), and TRPM (Melastatin), TRPP
(Polycystic), and TRPML (Mucolipin). The seventh family,
the no mechanoreceptor potential C channels (NOMPC or
TRPN), is not found in mammals (Skryma et al., 2011).
Alternatively, based on their sequence and topological features,
TRP genes superfamilies are divided into Group 1 (TRPC,
TRPV, TRPM, TRPA, and TRPN), and Group 2 (TRPP and
TRPML). TRP subunits, in the same or different subfamilies,
form functional homomeric or heteromeric ion channels
with distinct biophysical and regulatory properties (Hellwig
et al., 2005; Cheng, 2018). Heteromultimerization among
mammalian TRP subunits have been observed for the TRPC,
TRPV, TRPM, and TRPP families, displaying distinctive features

(Hellwig et al., 2005; Cheng, 2018). For instance, formation of
heteromeric complexes TRPC1/3, TRPC1/4, TRPC1/5, TRPC3/4,
TRPC4/5 showed novel non-selective cationic channels with
a voltage dependence or dynamic gating (Cheng et al., 2010;
Kim et al., 2014; Woo et al., 2014). Also, TRPV1/3, TRPV5/6,
TRPM6/TRPM7 or TRPML1/2 channels form heteromeric
channels with intermediate conductance levels and gating kinetic
properties (Cheng et al., 2007; Ma et al., 2011; Zhang et al., 2014;
Goldenberg et al., 2015; Kim et al., 2016). Heteromerization
within the mammalian TRP channel superfamily has also
been observed. For instance, heteromeric TRPP2/TRPC1
and TRPP2/TRPV4 channels exhibit new receptor-operated
property implicated in mechanosensation or thermosensitive
roles (Du et al., 2014), and TRPC1/TRPC6/TRPV4 may mediate
mechanical hyperalgesia and primary afferent nociceptor
sensitization (Cheng, 2018).

The first TRP subfamily characterized was the canonical
TRPC. The seven members of this subfamily are divided into
four groups according to their sequence homology into Group
I (TRPC1), group II (TRPC2), group III (TRPC3, TRPC6,
TRPC7), and group IV (TRPC4 and TRPC5) (Nilius and
Flockerzi, 2014). TRPC channels at the N-terminal domain
show ankyrin repeats (3–4), a coiled-coil region, and a caveolin
binding region. Meanwhile, the cytoplasmic C-terminal domain
contains the TRP motif EWKFAR, a highly conserved proline-
rich motif, and a region to interact with the IP3 receptor as
well with calmodulin (calmodulin/IP3 receptor-binding region)
(Putney et al., 2004). All TRPC are non-selective cation
channels permeable to Ca2+ (Bon and Beech, 2013) linked to
cellular processes such as cell division, differentiation, apoptosis,
transduction of external stimuli, and refill of intracellular Ca2+

stores. In addition, they act amplifying receptor-activated Ca2+

signaling via interaction with second messengers (Numaga-
Tomita et al., 2019). TRPC channels are widely distributed
in cells of different tissues, including brain, heart, smooth
muscle, liver, testis, ovaries, salivary glands (Beech et al., 2003),
endothelium, kidneys (Freichel et al., 2005), and adrenal glands
(Philipp et al., 2000). For instance, TRPC4/5 mRNA has been
found in cortico-limbic brain regions, like the hippocampus
and prefrontal cortex of adult rats (Fowler et al., 2007). TRPC
channels are involved in diverse neuronal functions via receptor-
mediated regulation by neurotrophic factors or neuropeptides,
and cation influx through TRPCs control cellular functions
and neuronal activity by regulating the membrane potential
(Katz et al., 2017).

The TRPV subfamily is made up of six members, which
are classified into four groups according to their homology:
TRPV1/TRPV2, TRPV3, TRPV4, and TRPV5/TRPV6 (Smith
et al., 2002; Xu et al., 2002; Nilius and Owsianik, 2011). TRPV
channels were named after the discovery that its founding
member (TRPV1) was activated by the vanilloid capsaicin,
the compound responsible for a hot spicy taste (Szallasi and
Blumberg, 1999). TRPV channels form homo- or hetero-
tetramers, highly calcium selective, and mostly located on the
plasma membrane. Each monomeric subunit typically contains
three to five N-terminal ankyrin repeats and a TRP box at
their C terminal. To this date, the most studied member of the
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TRP family is the TRPV1 receptor. TRPV1, TRPV2, TRPV3,
and TRPV4 are moderately Ca2+ permeable, while TRPV5
and TRPV6 are highly selective Ca2 + channels and strictly
regulated by [Ca2 +]i (Gees et al., 2010). It is known that
TRPV members have different gating properties, as studies
using wild type and knockout mice models revealed that
although TRPV2–6 channels share high sequence similarities
with TRPV1, and they do not respond to temperature stimuli
(Samanta et al., 2018). Furthermore, TRPV2 and TRPV4,
unlike to other members of the family, are not sensitive to
capsaicin (Caterina et al., 1999). TRPV1 channel is a homo-
tetramer in which each monomer contains six ankyrin repeats
in the N-terminal domain. The ion-conducting pore is formed
by the transmembrane segments S5 and S6 and the pore-
forming P loop and is similar to voltage-gated Na+ and K+
channels (Samanta et al., 2018). TRPV1 channels were first
described in pain-sensitive neurons in dorsal root ganglia
(DRG) and trigeminal ganglion neurons (Gees et al., 2010).
Specifically, they are localized in peripheral small unmyelinated
C- fibers, where they act as polymodal integrators of noxious
stimuli in skin, muscles, joints, and internal organs (Samanta
et al., 2018); also, TRPV2-4 channels are expressed in DRG
neurons. TRPV3 is found in the brain, tongue, testis (Xu
et al., 2002), skin, keratinocytes, and in cells surrounding hair
follicles (Mandadi et al., 2009), while TRPV4 is expressed in
non-neuronal cells like insulin-secreting β-cells, keratinocytes,
smooth muscle cells, and different epithelial and bone cell types
(Nilius et al., 2008).

The TRPA subfamily is constituted exclusively by the
mammalian TRPA1 channel, first identified as an ankyrin-
like transmembrane protein sharing similarities with other
TRP channel subfamilies (Jaquemar et al., 1999). TRPA1 is
a non-selective cation channel formed by homo- or hetero-
tetramer subunits. The structure of human TRPA1 (hTRPA1)
was determined by cryo-electron microscopy and shares a
common structure with other TRP channels (Paulsen et al.,
2015). TRPA1 has calcium-binding domains located in the
C-terminal (Meents et al., 2019), 16 ankyrin repeat sequences
in the N-terminal domain (Meents et al., 2017; Samanta et al.,
2018), a putative selectivity filter located at the entrance of the
pore, and a voltage sensor in the C-terminal (Meents et al., 2019).
These domains allow TRPA1 channels to interact with other
proteins, form molecular springs, and have better elasticity. This
channel is expressed throughout the body, including the brain,
heart, small intestine, lung, bladder, joints, and skeletal muscles
(Kono et al., 2013). TRPA1 is highly expressed in DRG and
trigeminal ganglia neurons (Takahashi et al., 2008) and acts as a
mechanosensor in peripheral sensory pathways and the inner ear
(Brierley et al., 2011).

TRPM channel subfamily consists of eight members grouped
in four pairs: TRPM1 and TRPM3; TRPM2 and TRPM8;
TRPM4 and TRPM5; and TRPM6 and TRPM7 (Fleig and
Penner, 2004). All TRPM family members share common
structural characteristics with other TRP channels (Fujiwara and
Minor, 2008); however, they have a large cytosolic domain of
between 732 and 1,611 amino acids for each subunit, which
makes them the largest members of the TRP superfamily

(Huang et al., 2020). Furthermore, unlike the TRPC, TRPV, and
TRPA subfamilies, TRPM have a unique N-terminal (TRPM
homology domain) without ankyrin repeats implicated in the
channel assembly and trafficking (Kraft and Harteneck, 2005).
Within subfamily members, the C-terminal section of TRPM
channels is particularly variable, with TRPM2, TRPM6, and
TRPM7, including active enzymatic domains (Samanta et al.,
2018). TRPM2 has a nucleoside diphosphate pyrophosphatase
domain (Chubanov et al., 2004) that specifically binds and
hydrolyzes to ADP-ribose, while TRPM6 and TRPM7 contain
α-kinase domains (Nadler et al., 2001; Drennan and Ryazanov,
2004). TRPMs are widely expressed in different tissues and
organs; for instance, TRPM 2, 3, 4, 5, 6, and 7 are expressed
in the CNS and periphery nervous system (PNS) (Mickle et al.,
2015). Also, TRPM4, TRPM5, and TRPM8 are preferentially
expressed in the prostate, while TRPM4, TRPM5, and TRPM6 are
expressed in the intestine, and TRPM7 in heart, pituitary, bone,
and adipose tissue (Bernardini et al., 2015). By contrast, TRPM1
is expressed by melanocytes and in malignant melanoma cells
(Mickle et al., 2015).

As mentioned before, several members of the TRPC, TRPV,
TRPM, and TRPA families are expressed in neurons and glial cells
in the CNS and PNS (Figure 1; Riccio et al., 2002; Moran et al.,
2004; Abel and Zukin, 2008; Harteneck and Leuner, 2014; Zhang
and Liao, 2015; Echeverry et al., 2016; Belrose and Jackson, 2018).
Evidence has shown that TRPs in the CNS have critical roles
in modulating growth cone guidance, synaptogenesis, synaptic
plasticity, and in the development of several neurodegenerative
diseases (Nilius, 2012; Vennekens et al., 2012; Katz et al., 2017).
Notably, even when the role of TRPs in nociception in the PNS
has been extensively described, their role in the CNS is almost
unknown, and it has only recently gained attention.

ACTIVATION MECHANISMS OF TRPs

TRP channels display a wide variety of activation mechanisms,
which include physical stimuli, ligand binding, second
messengers, and reactive oxygen and nitrogen species
(Vennekens et al., 2012).

TRPC channels are modulated by a diverse group of second-
messengers lipids that either regulate the channel activity or
its insertion into the plasma membrane (Nilius and Szallasi,
2014). TRPCs activation mechanism converges various types of
intracellular stimuli, including phospholipase C (PLC), protein
kinase C (PKC) activity, diacylglycerol (DAG), intracellular
calcium, and phosphatidylinositol 4,5-bisphosphate (PIP2) levels
to modulate membrane potential and calcium input (Ramsey
et al., 2006). Due to the flexible role of TRPC3 channel in calcium
signaling and functional coupling with metabotropic receptors
involving the PLC pathway in DRGs, as well as its regulation
by pro-inflammatory molecules inducing channel sensitization
(Séguéla et al., 2014), it has been of interest as a potential target
for the management of chronic pain. Although most TRPCs
are activated through PLC, which is a downstream effector
of growth factors and neurotrophins, For instance, TRPC3, 6,
and 7 are activated primarily by Gq/11 proteins, which are
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FIGURE 1 | TRP channels expressed in the nervous system cells. Several members of the TRPC, TRPV, TRPM, and TRPA families are highly expressed in cells of
the central and peripheral nervous system (neurons, astrocytes, oligodendrocytes, and microglia). TRP families are represented by capital letters as follow, C, TRPC;
M, TRPM; V, TRPV; A, TRPA. Numbers indicates specific members of each family.

coupled downstream PLC-β; nevertheless, the Gαi/o family are
the dominant activators for TRPC4 and 5 (Nilius and Szallasi,
2014), which effectors of the PLC pathway are critical for the
activation of TRPC channels remains a matter of debate, however,
it is thought that specific TRPC channels may use different
signaling effectors of this pathway (Putney, 2005). In this vein,
it has been described that TRPC activation is dependent on
recognition and lipid signals, and for instance, TRPC1, 2, 4, and
5 are activated by several DAGs (Lucas et al., 2003).

Besides lipid signaling, oxidative metabolism has a pivotal
role in regulating TRPC channels activity (Kitajima et al., 2011)
since they can be modulated by the production of reactive
oxidative species (ROS) and reactive nitrogen species (RNS).
TRPC channels can be considered redox-sensitive proteins that
are targeted by ROS (Kim et al., 2013), and specifically, it has
been reported that TRPC3 and TRPC4 are directly activated
in response to oxidative stress (Aarts and Tymianski, 2005;
Miller, 2006). It has been described that redox sensed by
TRPC channels let the system indirectly to transduce lipid
accumulation produced by the PIP2/DAG pathway (Malczyk
et al., 2016), and the redox modifications of the lipid membrane
environment that surrounds the channel (Poteser et al., 2006).
For instance, TRPC3 activation by 1-oleoyl-2-acetyl-sn-glycerol
(OAG) or mechanical stretch has shown to induce ROS
production in rat neonatal cardiomyocytes (Kitajima et al., 2011).

Additionally, it has been described in human embryonic kidney
(HEK) cells that nitric oxide (NO) activates TRPC5 channels
through mechanisms that require oxidation of extracellular
cysteines in response to the NO donor S-nitroso-N-acetyl-DL-
penicillamine (Yoshida et al., 2006). Also, intracellular oxidation
regulates TRPC5 activation by glutathionylation, nitrosylation,
and hydroxylation reactions, respectively, in Cys176 and Cys178
in contact with the intracellular redox environment, resulting
in a sustained increase in [Ca2+]i and consequent cellular
toxicity and neurodegeneration (Hong et al., 2015). In addition,
oxidative metabolism also regulates the expression of TRPC
channels (Song et al., 2011). Together ROS generation and Ca2+

signaling through TRPC channels modulate cellular processes
that allow physiological and pathological responses in several
organs (Malczyk et al., 2016) including kidney (Kim et al., 2013),
brain (Hong et al., 2015), and the immune system (López-
Requena et al., 2019). These factors have been associated in the
pathogenesis of several chronic neurological disorders, including
Alzheimer’s disease (AD) and Parkinson’s disease (PD), since
ROS could activate cell death processes directly, through protein
oxidation, lipids, and acting as second messengers in the cell
death process (Gopalakrishna and Jaken, 2000; Nakamura and
Lipton, 2009).

TRPV channels are activated by chemical ligands, such as
capsaicin or cannabinoids, but also by noxious heat (>43◦C),
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low pH (<6) (Caterina et al., 1997; Tominaga et al., 1998) and
voltage changes inducing depolarization (Cao, 2020). TRPVs are
also activated by lipid signaling (Cortright and Szallasi, 2004;
Jung et al., 2004), and eicosanoids, signaling molecules produced
by the enzymatic or non-enzymatic oxidation of arachidonic
acid or other similar polyunsaturated fatty acids (Hwang et al.,
2000). Specifically, TRPV1 activation can be achieved, regulated,
and enhanced by several inflammatory molecules throughout
metabolites downstream of G-protein coupled, such as PIP2
(Bhave et al., 2002), IP3 and DAG (Burgess et al., 1989), protein
kinases such as PKA (Vlachová et al., 2003), PKC (Bhave et al.,
2002; Varga et al., 2006), Ca2+/calmodulin-dependent protein
kinase II (CaMKII) (Jin et al., 2004; Rosenbaum et al., 2004), and
arachidonic acid metabolites like 12-HPETE (Shin et al., 2002).

It has been described that DRG neurons express TRPV1 to
transduce and modulate pain stimuli in response to ligands
and temperature (Caterina et al., 1997; Basbaum et al., 2009).
Furthermore, it has also been shown that Bradykinin can regulate
nociceptors such as TRPV1 activity, an inflammatory response
mediator, that simultaneously stimulates the synthesis of PLC
and its downstream targets (PIP3 and DAG), and arachidonic
acid that further enhance cell excitation (Suh and Oh, 2005).
During the inflammatory response, other pro-inflammatory
mediators such as prostaglandins and sympathetic amines,
sensitize nociceptors, including TRPV1, boosting pain sensation,
or hyperalgesia (Zarpelon et al., 2013). A relationship between
cytokines and oxidative stress has been found in hyperalgesia.
For instance, NADPH oxidase leads to the production of
superoxide anion by the TNF-α-induced NF-kB activation
and consequentially causes overexpression of pro-inflammatory
cytokines such as IL-1β (Possebon et al., 2014). Also, TNF-α and
IL-1β activate cyclooxygenase-2 to produce prostanoids, which
sensitize nociceptors, causing hyperalgesia (Verri et al., 2006).

TRPA1 channels have a wide range of natural and synthetic
ligands (reactive electrophilic agonists) that induce channel
gating by covalently bound to cysteine and lysine residues within
the N-terminal and transmembrane domains, or promote the
formation of C422–C622 disulfide bonds (Kimura, 2015). Also,
polyunsaturated fatty acids (Viana, 2016), temperature (17–
40◦C) (Laursen et al., 2014; Moparthi et al., 2016) and changes
in pH can activate TRPA1channels (Fujita et al., 2008; De La
Roche et al., 2013; Zimova et al., 2018). De La Roche et al.
(2013) reported activation of TRPA1, expressed in HEK 293T
cells, with solutions above pH 5.4. However, it has been shown
that in a Ca2+ dependent manner, pH between 7.4 and 8.5,
also activates mouse TRPA1 channels heterologous expressed in
HEK 293 cells (Fujita et al., 2008). Although the mechanism
of how Ca2+ can modulate the sensitivity of the channel to
more basic pH is still elusive, it has been shown that Ca2+

potentiates the activation and desensitization states of TRPA1
channels (Zimova et al., 2018). TRPA1 is a sensor for chemical
irritants and a major contributor to chemo-nociception that
is closely associated with TRPV1 channels, in terms of both
expression and function (reviewed in Wang et al., 2019). Similarly
to TRPV1, allogenic activators of TRPA1 channels are released
from inflammatory environments or tissue injury sites to activate
the channel (Chen and Hackos, 2015). For example, several

lipid peroxidation products, oxidized lipids, and activators of
the inflammasome, stimulate TRPA1 channels by an indirect
mechanism involving H2O2 production (Trevisan et al., 2014).
Additionally, endogenous lipidergic activators like nitrated fatty
acids, produced by inflammatory processes, covalently bind to
activate TRPA1 channels (Brewster et al., 2015).

TRPM activation mechanisms vary greatly among subfamily
members, however, more than half of the members are sensitive
to a wide range of temperatures, from cold to hot. For instance,
TRPM4 and TRPM8 are activated by temperatures below 15
and 26◦C, respectively (Talavera et al., 2005; Yao et al., 2011),
while TRPM5 and TRPM2 are activated by temperatures above
35◦C (Togashi et al., 2006). TRPM3 is the only member of
this family that is activated by harmful heat, around 52◦C in
peripheral sensory neurons (Vriens et al., 2011). Some channels
in this subfamily also respond to redox status, intracellular
calcium, low temperatures, or ligands such as menthol. For
instance, TRPM2 play a role in the transduction of oxidative
stress stimuli (Oancea et al., 2011). In cortical neurons, TRPM2
channels are involved in the cytotoxic influx of Ca2+ that
is induced by reactive oxygen species such as H202 (Kaneko
et al., 2006). TRPM2 also activated by-products of nucleotides
metabolisms like ADP-ribose (ADPR) and nicotinamide adenine
dinucleotide (NAD) (Nadler et al., 2001; Hara et al., 2002; Kraft
and Harteneck, 2005). It is not clear whether ROS directly
or indirectly activates TRPM2 downstream of ADPR or NAD,
however, recent evidence shows that oxidative stress triggers
the production of ADPR mitochondrial that is released to the
cytosol to activate TRPM2 (Perraud et al., 2005). It has been also
described that H2O2 production after DNA damage, especially
during certain phases of the cell cycle, induces an accumulation
of 2′-deoxy-ATP mediated by an increase in NAD synthesis
and a decrease in reserves of cellular ATP (Fliegert et al.,
2017). The increased ratio of 2′-deoxy-ATP to ATP facilitates
the synthesis of 2′-deoxy-NAD and subsequent hydrolysis to 2′-
deoxy-ADPR. It is known that increasing amounts of cellular 2′-
deoxy-ADPR mediates TRPM2 activation with similar potency
but greater efficacy than ADPR, making it a TRPM2 super-
antagonist (Fliegert et al., 2017). These findings are in congruence
with the suggestions that TRPM2 activation under an oxidative
environment could be related to pathological cell death in
neurodegenerative diseases (Xie et al., 2010). TRPM4 and TRPM5
channels are activated by Ca2+, but they are not calcium-
permeable (Oancea et al., 2011). The sensitivity of TRPM4 to
intracellular Ca2+ is controlled by multiple signaling events,
including ATP, PKC-dependent phosphorylation, calmodulin
(CaM) binding, and membrane potential (Nilius et al., 2005).
PIP2, Ca2+, and the voltage regulate the sensitivity of these
channels, however, an increase in temperature in the range of
15 to 35◦C further displaces the dependence of the voltage
toward more negative potentials (Talavera et al., 2005). TRPM7
is also regulated by ROS and Ca2+ entry. Ca2+ has been
considered as a relevant factor for the strong and lasting
activation of TRPM7 in conditions of anoxia, oxidative stress,
and metabolic imbalance, which could suggest mechanisms in
which TRPM7 is involved and could induce even cell death
(Aarts et al., 2003).
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The PLC pathway, mediated by increased in intracellular
calcium concentration, is an important mechanism involved in
the modulation of some members of the TRPM family involved
in depletion of PIP2 and the desensitization of TRPM4, TRPM5,
TRPM7, and TRPM8 channels. Specifically, for TRPM4 it has
been reported to cause a shift to the left of its voltage dependence
and increase its sensitivity to Ca2+ 100 times (Owsianik et al.,
2006). TRPM8 activation is inhibited by Gq-coupled receptors
that mediate PLC activation, however, depletion of Ca2+ store
activates chemical signaling through lysophospholipids (LPLs),
enhancing TRPM8 activity (Vanden Abeele et al., 2006). Also,
exogenous PIP2 (Liu and Qin, 2005), cold, or menthol (Rohács
et al., 2005) activates TRPM8.

TRP CHANNELS AND
NEURODEGENERATIVE DISEASES

Neuronal cell death rarely occurs in healthy brains, however,
it can be triggered by internal/external factors in most
neurodegenerative diseases (NDDs), where neurons initially lose
their ability to maintain homeostasis due to changes in neuronal
morphology, function, and viability (Dugger and Dickson, 2017;
Chi et al., 2018). NDDs are categorized by their clinical features,
anatomical structures affected, or molecular abnormalities
(Kovacs, 2016). Although different in etiology, NDDs share
common features, including mitochondria dysfunction,
impaired energy metabolism, abnormal voltage-dependent
anion channel activation, DNA damage, pro-inflammatory
cytokines production, and disruption of cellular and axonal
transport (Dugger and Dickson, 2017; Chi et al., 2018).

In the elderly, neurodegenerative diseases are a common
and growing cause of mortality and morbidity, being AD and
PD the most studied (Rahimi and Kovacs, 2014). AD is the
most common form of dementia and makes up to 60–80%
of all dementia cases worldwide, affecting an estimated 34
million people globally (Erkkinen et al., 2018). Meanwhile, PD
affects 0.2 people per 100 of the population (independently of
age), and almost 1–3% of the population older than 60 years
(Tysnes and Storstein, 2017). Patients with AD or PD present
learning and memory impairments, poor communication skills,
irritability, symptoms of anxiety/depression, and progressive
motor dysfunction (Batista and Pereira, 2016), and 40–85% of
them suffer from painful conditions (Jost and Buhmann, 2019).
Although the mechanisms that lead to these painful conditions
are not fully understood, it is thought that neuropathological
changes that occur in people with AD and PD dementia could
alter pain perception (Van Kooten et al., 2016).

Calcium concentration level in neurons is exquisitely
controlled to maintain cell homeostasis and to prevent
neurodegeneration. The machinery that regulates intracellular
Ca2+ levels is complex and includes several voltage-dependent
plasma membrane calcium-conducting channels, glutamate
receptors such as N-methyl-D-aspartate receptors and α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, calcium
release activated channels, and TRPCs. In addition, calcium flow
from the endoplasmatic reticulum (ER) is highly regulated by

Ryanodine receptors, Inositol trisphosphate receptor, calcium-
dependent kinases, and phosphatases (Brini et al., 2014).
Alterations in Ca2 + homeostasis have been related to the
appearance and progression of several NDDs, including AD and
PD (Marambaud et al., 2009; Nevzati et al., 2014). Indeed, it
has been reported that exposure to either Aβ peptides (Li et al.,
2009) or α-synuclein oligomers (Danzer et al., 2007) induces
neuronal death by activating Ca2+dependent signaling pathways
and metabolic derangements (Arundine and Tymianski, 2003),
most likely by increasing mitochondrial Ca2+ levels and the
release of proapoptotic factors (Orrenius et al., 2003; Beech, 2005

In physiological conditions, activation of G-coupled receptors
at the plasma membrane induces the release of Ca2+ from
the ER, which in turn stimuli the influx of extracellular
Ca2+ through a diversity of plasma membrane channels.
This process is known as store-operated Ca2+ entry (SOCE)
(Putney, 1986). SOCE calcium fluxes are mediated by calcium
selective ion channels ORAI (calcium release-activated calcium
channel proteins) (Kraft, 2015) that allow the calcium release-
activated calcium current (ICRAC) and store-operated calcium
current (ISOC) mediated by relatively selective Ca2+ to non-
selective cation channels, such as TRPC1/4/5 (Parekh and
Putney, 2005; Yuan et al., 2007). It has been suggested that
Orai binds to TRPC1 and the stromal interaction molecule 1
(STIM1) during SOCE activation, enhancing calcium currents
(Liao et al., 2008; Zhang et al., 2016). In this regard,
TRPCs play a role in [Ca2+]i regulation by modulating
SOCE (Minke and Cook, 2002), which joint to other TRPs,
such as TRPC3, TRPC4, TRPM2, and TRPM7, respond to
oxidative stress (Selvaraj et al., 2012), and may contribute to
neurodegeneration (Figure 2). Given the expression of TRP
channels in brain regions damaged during the development
of PD and AD, and their role in Ca2+ homeostasis and
ROS/RNS sense, they are now considered key players in
neuronal degeneration and potentially on altered pain perception
(Figure 3) (Bernd and Appendino, 2007; Nilius and Flockerzi,
2014; Rojo et al., 2014).

TRPs IN PARKINSON’S DISEASE

PD is characterized by a marked loss of dopaminergic
neurons (DNs) in substantia nigra (SN) (Cacabelos, 2017).
Although the mechanism by which these neurons degenerate
is not well known, mitochondrial dysfunction, oxidative stress,
inflammation, altered calcium homeostasis, NO synthesis,
protein aggregation, excitotoxicity, and glutathione (GSH)
depletion (Mandel et al., 2003), and activation of microglia-
mediated by glucocorticoid receptors (GR) (Maatouk et al., 2018),
are related to degeneration of DNs (Channels, 2017). Considering
that oxidative stress and changes in Ca2+ homeostasis are
involved in PD, it has been suggested that TRP channels
could mediate some of the mechanisms that lead to the
development of the disease.

Kim et al. (2005) showed that capsaicin, a TRPV1 agonist,
elicits cell death of mesencephalic DNs. Additionally, it has
been reported that TRPV1 activation triggers Ca2+-dependent
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FIGURE 2 | SOCE through TRP channels. Activation of G-protein coupled receptors activates the phospholipase C pathway that induces the hydrolysis of PIP2 to
DAG (red arrows) that actives PKC, which in turn phosphorylates TRP channels. In parallel, the generation of IP3 (green arrows) promotes the release of Ca2+ from
the ER. The depletion of intracellular Ca2+ stores from the ER is sensed by STIM1, which also activates Ca2+ channels in the plasma membrane such as TRPs (dark
green arrow), allowing the entry of Ca2+ from the extracellular medium to the cytosol (black arrows) to refill de ER deposits.

FIGURE 3 | Alterations in calcium homeostasis mediated by SOCE during inflammation and oxidative stress. Activation of G-coupled receptors by pro-inflammatory
mediators, such as bradykinin, induces the release of Ca2+ from the ER stores through the PLC pathway (green arrows), followed by an influx of Ca2+ through Ca2+

permeable channels such as TRPs (black arrows). The increase [Ca2+]i then induces mitochondrial dysfunction that leads to caspase activation, ROS and RNS
production, microglia activation, and production of pro-inflammatory mediators (yellow arrows).
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cell death (Kim et al., 2006) and NADPH-oxidase-mediated
production of ROS in microglia (Shirakawa and Kaneko, 2018),
suggesting that a similar mechanism could operate in death
of DNs in PD. For instance, TRPV1 antagonists such as
capsazepine and iodo-resiniferatoxin inhibit DNs death in vivo
and in vitro (Kim et al., 2005). Mechanistically, it is thought
that TRPV1 activation induces an increase in [Ca2+]i that
impairs mitochondrial function, induces cytochrome release,
and caspase-3 cleavage. Consequently, activation of TRPV1
channels contributes to dopaminergic neuron damage via Ca2+

signaling and mitochondrial disruption (Kim et al., 2005).
Although the nature of the endogenous ligands that induce
the activation of TRPV1 in PD has not been elucidated,
these channels are endogenously activated by anandamide, an
endocannabinoid, which is increased in untreated PD patients
(Pisani et al., 2010).

In contrast to the toxic role of TRPV1 activation on DNs,
TRPC1 has been suggested as a protector and critical mediator
of DNs survival (Sun et al., 2012). DNs are characterized
by a pacemaker activity that is thought to be dependent
on the activation of the Ca2+ channel Cav1.3 and Na+
channels. Interestingly, Cav1.3-mediated cell death is prevented
by translocation of stromal interacting molecule-1 (STIM1)
induced by Ca2+depletion of ER, allowing it to interact with
and activate calcium permeable channels like TRPC1 to refill
the ER Ca2+ store (Soboloff et al., 2012; Kraft, 2015). That
process protects DNs against the Cav1.3-mediated cell death.
Neurotoxins that mimic PD symptoms, such as 1-methyl-4-
phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), increase the activity
of the Cav1.3 channel by downregulating the expression of
TRPC1, which lead to a decrease in SOCE and the release of
Ca2+ from ER to the cytosol in DNs and mesenchymal stem cells
(Sun et al., 2018). It has been described that MPP+ (1-methyl-
4-phenylpyridinium), a toxic metabolite product of enzymatic
activity of MAO-B on MPTP, kills DNs in SN (Choi et al., 2015).
In this vein, it has been shown that Cav1.3 silencing or TRPC1
overexpression decreases caspase 3 and inhibits MPP+-induced
cell death. Therefore, TRPC1 expression facilitates STIM1-Cav1.3
interaction, and it is essential for the survival of DNs in PD
(Sun et al., 2017). Moreover, Chen et al. (2013) found that the
downregulation of Homer 1 protein inhibited the generation of
ROS induced by MPP+ in DNs, without affecting the activity
of endogenous antioxidant enzymes; this inhibition was further
potentiated by BAPTA-AM. Exposure of DNs to MPP+ induces a
rapid increase in cytosolic Ca2+ concentrations after its release
from the ER, an effect that was prevented in DNs with low
Homer1 expression (Chen et al., 2013).

Beyond its role in DNs-induced cell death, MPP+ can
directly activate microglia and promote the production of
several pro-inflammatory mediators and iNOS (Kim et al., 2018;
Lee et al., 2019). Once microglia are activated, the release of
pro-inflammatory microglial cytokines and chemokines induce
the death of dopaminergic (DA) neurons, evidencing the
vulnerability of these neurons to glia-mediated neurotoxicity.
In the MPTP model, M1 microglia have been associated with
dopamine neurodegeneration by the induction of microglial NOS
and NADPH oxidase (NOX) (Appel et al., 2015). Mizoguchi et al.
found that brain derived neurotrophic factor (BDNF) induces

a sustained elevation of [Ca2+]i through the overregulation of
TRPC3, which is also crucial for the suppression of NO induced
by BDNF-activated microglia. This signaling pathway has been
linked to the inflammatory response that mediates DA death in
PD (Mizoguchi et al., 2014).

Furthermore, Parkinsonian disorders are often associated
with changes in the frequency and firing mode of GABAergic
neurons (Zhou et al., 2008). In SN and Globus Pallidus
internus, GABAergic neurons project and regulate the firing
pattern of thalamic nuclei, superior colliculus, and brainstem
motor nuclei, regulating the smoothness and coordination of
movements (Zhou et al., 2008). TRPC3 channels selectively
expressed in the SN GABA projection neurons regulate the
firing pattern of these neurons. The expression of TRPC3
in SN maintains a constant influx of Na+ that generates
a tonic depolarized potential that contributes to the high
frequency and regularity pattern of firing of these neurons (Zhou
et al., 2008). However, it has been described that ROS-induced
increased TRPC3 activity could lead to a more depolarized
potential in GABAergic projecting neurons, contributing to the
unbalance of disinhibition and inhibition cycles observed in PD
(Zhou et al., 2008).

TRPM7, a Zn2+, Ca2+, and Mg2+ permeable channel, has
been associated with NDDs given its regulation by intracellular
Mg2+ levels and ROS (Nadler et al., 2001; Sun et al., 2015).
PD animal models have shown that Mg2+ deficits increase the
vulnerability of DNs to MPTP neurotoxicity (Muroyama et al.,
2009). Furthermore, Mg2+supplementation inhibits the toxicity
of (methyl-4-phenylpyridium ion) by decreasing the death of
DNs and maintaining the length of their neurites. These results
are in agreement with the observation that TRPM7 is significantly
decreased in the SN of PD patients and that long-term Mg2+

deficiencies significantly decrease the number of DNs in SN
(Oyanagi et al., 2006). These results suggest that DNs utilize
TRPM7 channels to regulate Mg2+ levels, and that loss of TRPM7
channel function may be involved in the development of PD
(Landman et al., 2006).

It has been reported that PD patients have significantly
elevated cortisol levels compared to control subjects of the
same age (Bellomo et al., 1991; Ros-Bernal et al., 2011).
Interestingly, expression of TRPM6 and TRPM7 can be regulated
by glucocorticoids (GCs) in a tissue-dependent manner (Cuffe
et al., 2015). In the brain, GC signaling is mediated by GRs
well as by mineralocorticoid receptors expressed in neurons and
glia (Sierra et al., 2008). A large number of studies indicate
that activation of GRs by GC promotes inflammatory response
(Bhattacharyya et al., 2010), particularly in microglia (Maatouk
et al., 2018). For instance, inflammation caused by a low
dose of Lipopolysaccharides (LPS) directly administrated in
substantia nigra causes a specific loss of dopaminergic neurons
(Castaño et al., 2002). Interestingly, pre-treatment with a low
dose of dexamethasone (DXM, 1 mg/Kg) diminished nigrostriatal
dopaminergic neurons damage in mice treated with 1-methyl-
4-phenyl-1,2,3,6-tetrahydropiridine (MPTP, 40 mg/Kg), while
a high dose of DXM (10 mg/Kg) further aggravate loss of
dopaminergic neurons (Kurkowska-Jastrzȩbska et al., 2004).
However, physiological levels of GC and functional response
of GRs are necessary to prevent neurodegeneration; indeed, it
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has been reported that in the absence of GR, microglia-induced
dopaminergic neuronal loss (Barcia et al., 2011).

TRPs IN ALZHEIMER DISEASE

Altered Ca2+ homeostasis has been considered one critical factor
regulating neuronal death in AD (Small, 2009). For instance,
mutations in presenilins, catalytic subunits of the gamma-
secretase, have been linked to Ca2+ signaling dysregulation,
proteolytic processing of amyloid precursor protein (APP),
and thereby increasing production of Aβ peptide (Guo
et al., 1997, 1999; Schneider et al., 2001; Banerjee and
Hasan, 2005). Aggregation of the Aβ peptide may induce
the release of Ca2+ stored in the ER, resulting in an
overload of cytosolic Ca2+. In response to the rise in
[Ca2+]i, endogenous levels of GSH are reduced, leading to
a ROS accumulation within cells (Ferreiro et al., 2008). In
addition, the deposition of Aβ also induces microglial activation
(Seabrook et al., 2006) and the release of pro-inflammatory
cytokines, initiating pro-inflammatory signaling pathways that
subsequently contributes to neuronal damage and death (Wang
et al., 2015). Pro-inflammatory cytokines also sensitized TRPV1
channels expressed in a variety of cells, such as microglia,
astrocytes, pericytes, and neurons (Tóth et al., 2005), suggesting
that these channels contribute to AD-related neuroinflammatory
processes. Inhibition of TRPV1 dependent generation of ROS
significantly diminishes the detrimental effect of activated
microglia and the inflammatory response elicited by astrocytes
upon stimulation with the Aβ peptide (Harada and Okajima,
2006; Benito et al., 2012). However, capsaicin activation of
TRPV1 protects the hippocampus function by rescuing the effect
of Aβ peptide on the hippocampal gamma oscillations (Balleza-
Tapia et al., 2018). These differences compared to the response
of TRPV1 after activation by capsaicin, could be accounted
for by experimental conditions, likely related to β-amyloid
concentrations used in both studies (Balleza-Tapia et al., 2018).
Purely fibrillary beta-amyloid preparations have been reported
to be more toxic in some experimental models (Kurudenkandy
et al., 2014; Cohen et al., 2015), and this possibly induces
pathological activation of inflammatory mechanisms, mediated
by TRPV1 in primary astrocyte culture (Devesa et al., 2011; Tsuji
and Aono, 2012).

In the brain, TRPA1 channels play an essential role in
their development and function of non-neuronal cells, such as
astrocytes (Shigetomi et al., 2012, 2013). Although AD is a
complex disease in which several mechanisms may act, recent
studies have evaluated the role of Ca2+ related signaling pathways
in the etiology and development of the disease (Yamamoto
et al., 2007; Takada et al., 2013). Lee et al. (2016) demonstrated
in vitro that Aβ triggers a TRPA1-dependent Ca2+ influx
and astrocytic activation. Additionally, ablation of TRPA1 in
APP/PS1 transgenic mice slowed the progression of AD and
improved learning and memory performance, and reduced Aβ

plaques and cytokines (Lee et al., 2016). These results have
been further supported by TRPA1 expression in HEK cells,
where Aβ is also capable of inducing TRPA1 dependent Ca2+

signaling, that activate transcription factors such as NF-κB and
NFAT and promote expression of pro-inflammatory cytokines
(Lee et al., 2016).

Interestingly, loss-of-function or pharmacological inhibition
of TRPM2 channels prevents microglial activation and TNF-α
production induced by a wide range of Aβ42 concentrations
(10–300 nM), proving a novel role of TRPM2 in microglial
activation triggered by Aβ42 peptides (Alawieyah et al., 2018).
Likewise, Ostapchenko et al. (2015) demonstrated that TRPM2
ablation in AD models decreases microglial activation, improves
the expression of synaptic markers and reduces the deficits
in memory observed in aging animals (Ostapchenko et al.,
2015). Furthermore, it has been shown that TRPM2 endogenous
expression in rat striatum neurons and activation by Aβ and
oxidative stress is enough to drive cell death, suggesting that
TRPM2 is an active transducer of ROS signaling that may
contribute to neuronal death in AD (Fonfria et al., 2005).
At a cellular level, ROS levels are regulated by a complex
mechanism that involves antioxidant enzymes and small-
molecule antioxidants such as GSH (Geon et al., 2015). GSH
levels tend to be lower with age and have been considered as
markers of cognitive impairment severity (McCaddon et al.,
2003). Interestingly, in neuronal cultures that recapitulate aging,
GSH supplementation significantly decreases TRPM2 expression
and activity (Sita et al., 2018). Therefore, downregulation of the
antioxidant defense plus the Aβ-induced production of ROS and
cytokines in AD can lead to the activation of several TRP channels
that can increase [Ca2+]i, leading to excitotoxicity and apoptosis
(Park et al., 2014).

Although some advances have made in understanding the
role of TRP channels in neurodegenerative diseases, we are
still far from having an integrated comprehension of the role
of these channels in the etiology and development of these
diseases. For instance, more studies are needed to unveil how
all these channels work together either to degenerate or protect
neurons in PD and AD.

TRPs INVOLVEMENT IN PAIN,
ALZHEIMER’S, AND PARKINSON’S
DISEASES

During the past decade it has been an increasing awareness of
pain and pain management as important issues to address in
the elderly (Ali et al., 2018) and patients with neurodegenerative
diseases (Cravello et al., 2019). Pain symptoms in NDD patients
include sleep disorders, musculoskeletal problems, reduced
mobility, falls, malnutrition, cognitive impairment, increased
drugs use, diminished social behavior, anhedonia, and depression
(Cravello et al., 2019). Prevalence of painful symptoms in patients
with AD range from 38 to 75%, and from 40 to 86% in PD (Batista
and Pereira, 2016; Van Kooten et al., 2016; de Tommaso et al.,
2017; Cravello et al., 2019).

Even when PD was previously considered as a purely
motor disorder, now it is known that non-motor symptoms,
including pain, occur throughout the course of the disease and
significantly affect the quality of life (Jost and Buhmann, 2019).
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Some nociceptive pain associated with PD is a secondary
consequence of the motor impairment (abnormal muscular
tone, spasms, rigidity, reduced active mobility, osteoarticular
problems, and local inflammation), however, as many as 43% of
Parkinson patients exhibits characteristics typical of neuropathic
dysfunction (burning, tingling, formicating, decreased
nocifensive flexion reflex, and lowered cold threshold) (Reichling
and Levine, 2011; Skogar and Lokk, 2016; de Tommaso et al.,
2017). Neuropathic pain has been recently studied in a model
of nigro-estriatal pathway lesion, which induces allodynia and
hyperalgesia in rats (Romero-Sánchez et al., 2019).

Similarly, it has been described that pain is more prevalent
in AD patients, and that intensity of pain is also positively
correlated with dementia severity (Cao et al., 2019). Typical
cognitive impairment observed in AD also affect the assessment
of a painful experience and the ability to describe it (Cravello
et al., 2019). It has been reported that neural circuits mediating
pain perception and its behavioral expression may be hyperactive
or underactive in AD: Specifically, altered pain response seems
to depend on the extension of the brain tissue damage, stage of
the disease, and type of pain (acute stimuli or chronic medical
conditions) (Monroe et al., 2012).

Recently, neuropathological changes occurring during
the progress of dementias are being considered as possible
causes of pain perception alterations (Cravello et al., 2019),
and it has been suggested that primary neuropathic pain is
not a simple consequence of nervous system deterioration
but instead the result of the very same cellular processes that
underlie neurodegenerative diseases (Reichling and Levine,
2011; Cravello et al., 2019). The neuropathological changes that
occur in AD affect structures comprised in CNS processing
affective-motivational (hippocampus, entorhinal cortex,
cingulate gyrus, hippocampus, amygdala), cognitive-evaluative

(prefrontal cortices), and sensory-discriminative (somatosensory
cortex) aspects of pain (Monroe et al., 2012; Achterberg et al.,
2013; Dugger and Dickson, 2017). Similarly, in PD, insufficient
input from dopaminergic neurons to basal ganglia and motor
and prefrontal cortices results in enhanced inhibitory inputs,
which leads not only to body movement-related symptoms but
also cognitive and emotional symptoms associated to altered
pain perception (Chi et al., 2018).

Figure 4 shows brain’s structures involved in pain perception,
which include the prefrontal cortex, hippocampus, amygdala,
entorhinal cortex, anterior cingulate cortex, basal ganglia,
thalamus, insula, and sensory cortex (Fenton et al., 2015; Mano
and Seymour, 2015; Cao et al., 2019), and TRP channels
expressed in each one of these structures (Kauer and Gibson,
2009; Harteneck and Leuner, 2014; Nilius and Szallasi, 2015;
Frias and Merighi, 2016; Katz et al., 2017). As described
before, TRP channels have an unique role in nociceptive,
neuropathic, and inflammatory pain as diverse members of
their families are involved in pain pathways (Hung and Tan,
2018). For instance, members of TRPA, TRPV, and TRPM
subfamilies have high expression levels in neurons mediating
neuropathic pain (Naziroğlu, 2012). Interestingly, members of
the TRPC and TRPM families are expressed in SN, basal ganglia,
and hippocampus, brain structures that exhibit significant loss
of neurons at the initial stages of the development of AD
or PD, respectively. The specific role of TRPs on NDD-
related pain symptoms have not been thoroughly studied.
However, several lines of evidence indicate a relationship
between pain, neurodegeneration and TRPs, particularly related
to inflammation.

At the molecular level, it has been proposed that pain-
related to NDDs is associated, not only to loss of selected
neuronal population but to microglial activation, that response

FIGURE 4 | TRP channels are expressed in brain structures involved in pain perception. Pain processing includes cortical (prefrontal, parietal, somatosensory, and
cingulate), limbic (amygdala, hippocampus, thalamus, hypothalamus), and movement-related structures (Basal Ganglia, Substantia Nigra, and Cerebellum) that
express several members of the TRP channels. TRP families are represented by capital letters as follow, C, TRPC; M, TRPM; V, TRPV; A, TRPA. Numbers indicates
specific members of each family.
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to noxious stimuli realizing inflammatory mediators such
as pro-inflammatory cytokines, interleukins, and tumor
necrosis factor alpha (TNFα) (Carniglia et al., 2017). Notably,
chronic pain (inflammatory or neuropathic pain) related to
neurodegeneration is also accompanied by neuroimmune
activation and an escalated response that impairs homeostatic
balance since anti-inflammatory mediators are not released,
inducing further tissue damage, neuroinflammation, and
neurodegeneration (Carniglia et al., 2017; Salter and Stevens,
2017; Inoue and Tsuda, 2018). The role of glial cells in the
initiation, sensitization, and maintenance of chronic pain has
been studied during the past two decades (Cravello et al.,
2019), and it has been found that neuromodulators produced
by microglia can rapidly alter synaptic plasticity, a driving
force for the pathogenesis of pain after tissue or nerve injury
(Chen et al., 2018).

During inflammatory pain, inflammatory molecules can
change the TRP threshold activation, inducing mechanical
allodynia, thermal hyperalgesia, and spontaneous pain. TRPV1,
TRPA1, and TRPM2 channels have been intensely studied in
pain sensation because they participate in the cellular signaling
mechanism through which injury produces pain hypersensitivity.
These channels can be activated by thermal stimuli and
endogenous molecules derived from the inflammation process
(Ma and Quirion, 2007; Hung and Tan, 2018). After an injury,
inflammatory molecules such as eicosanoids, neuropeptides,
and cytokines decrease the thresholds of sensory neurons,
inducing sensitization in TRPV1 (Julius, 2013). As TRPA1 is
highly regulated by oxidative stress and is targeted by different
reactive species, so that they are activated during inflammatory
progression, where ROS produced after tissue injury induces
superoxidation of membrane phospholipids and activation of the
channel (Julius, 2013; Mori et al., 2016; De Logu et al., 2017;
Hung and Tan, 2018). The role of TRPM2 in pain generation
is through their activation by reactive nitrogen species (Kaneko
et al., 2006). Similar to TRPV1, TRPM2 suffers sensitization
by H2O2 that lowered the temperature of activation (Kashio
et al., 2012). Interestingly, it has been described that chronic
pain is a risk factor to develop memory impairment, dementia,
and other neuropsychiatric conditions (Moriarty and Finn, 2014;
Whitlock et al., 2017).

TRP channels expressed in sensory neurons have an essential
function in pain and inflammation transduction (Fernandes
et al., 2012; Smani et al., 2015). Similarly, it has been reported
that microglial TRP channels have a significant role in pain
modulation as well as in AD and PD (Cravello et al., 2019) by
regulating the levels of ROS, pro-inflammatory cytokines, and
the homeostasis of Ca2+. All these processes are connected with
microglial activation, which is a cellular process proposed as
a central player in both pain and neurodegenerative diseases
(Miyake et al., 2014; Echeverry et al., 2016). For example, during
inflammation, an upregulation of TRPM2 channels in microglia
leads to an exacerbated inflammatory response mediated by
ROS. This mechanism has been proposed as one of the primary
inductors of inflammation and neuropathic pain (Haraguchi
et al., 2012). However, It has also been shown that TRPV1
channels protect mesencephalic DA neurons by inhibiting

microglia-originated oxidative stress, suggesting that TRPV1
channels may be novel targets for regulating the oxidative stress-
mediated neurodegeneration observed in PD (Park et al., 2012).

TRP-dependent microglial activation involves the influx
of Ca2+ and the activation of Ca2+ -mediated signaling
pathways that induce the synthesis of pro-inflammatory
molecules, including interleukins (IL-1β and IL-12), chemokines,
prostaglandins (PGs), TNF-α, ROS, and NO. These molecules
promote an exacerbated inflammatory response by the
recruitment of other immune cells that conduce to neuronal
damage. However, when the injurious stimuli are controlled,
the inflammatory response is diminished by cytokines with
anti-inflammatory activity such as transforming growth factor
(TGF-β) and IL-10 by microglia. Therefore, the imbalance of
microglial activation could exacerbate the pro-inflammatory
response, leading to neuronal degeneration and cell death in AD
and PD, and neuropathic and inflammatory pain (Suter et al.,
2007; Ji et al., 2013; Beggs and Salter, 2016; Carniglia et al., 2017).

Some kinases have a described role in pain. It was reported
that extracellular signal-regulated kinases 1/2 and 5 (ERK1/2 and
ERK5) are expressed in microglia, and their phosphorylation is
induced during neuropathic pain (Tatsumi et al., 2015; Carniglia
et al., 2017). Furthermore, it was observed that neuropathic pain
induced by nerve injury, promoted the phosphorylation of p38
mitogen-activated protein kinase (MAPK) in spinal microglia.
p38 MAPK is activated by multiple microglial receptors,
inflammatory cytokines, membrane depolarization, and Ca2+

influx. This pathway regulates pro-inflammatory signaling
networks as well as the production of diverse inflammatory
molecules associated with pain facilitation, including the
cytokines TNF-α and IL-1β (Ji and Suter, 2007; Lee and Kim,
2017). Moreover, it was confirmed that the inhibition of p38
MAPK decreases the release of pro-inflammatory cytokines,
inducing relieve of mechanical allodynia in diverse models of
neuropathic and inflammatory pain (Jin et al., 2003; Lee and Kim,
2017; Inoue and Tsuda, 2018). Interestingly, in addition to their
role in pain, the p38 MAPK pathway has also been involved in
the cellular mechanisms that regulate neurodegeneration (Lee
and Kim, 2017; Kheiri et al., 2019). Activated p38 MAPK was
observed in peripheral blood leukocytes and neuronal cells, as
well as in postmortem brain from patients with AD (Sun et al.,
2003; Kheiri et al., 2019).

p38 MAPK role in AD has been associated with both Tau
protein and Aβ peptide, which are essential players in AD
pathologies. For instance, Aβ peptide promotes the activation
of p38 MAPK, which in turn, phosphorylates Tau protein
in neuronal cells (Lee and Kim, 2017). In this vein, it has
been described that Aβ peptides suppress nociception and
inflammatory pain in APP overexpressing CRND8 transgenic
mice (Shukla et al., 2013); this finding is in accordance with the
finding that mice treated with a single intracerebroventricular
injection of Aβ fragment (1–40) (400 pmol/mice) displayed
increased pain tolerance (Pamplona et al., 2010). However, pain
sensitivity could be altered in a more complex form since i.c.v.
Aβ treated mice also display anxiogenic-like and depressive-like
states, which are related to alterations in cognitive/emotional
components of pain processing (Pamplona et al., 2010). Also, it
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has been described that Tau depletion, in-vivo studies, negatively
affects the main systems conveying nociceptive information to
the CNS (Sotiropoulos et al., 2014). Tau-null (Tau−/−) mice
display reduced C-fiber density and Aδ-fiber hypomyelination
followed by diminished conduction properties sciatic nerves and
decreased nociception but increased excitability of second-order
spinal cord nociceptive neurons, resulting in heightened pain-
like behaviors (Sotiropoulos et al., 2014; Lopes et al., 2016). These
findings suggest that APP and Aβ peptides and Tau protein could
affect in a complex way pain perception in AD patients.

Several reports also suggest that p38 MAPK is also involved
in PD. It is proposed that oxidative stress in dopaminergic
neurons prompted the activation of the p38 MAPK and c-Jun
N-terminal kinase (JNK) signaling pathways that have linked to
neuronal apoptosis in several models of PD (Oh et al., 2011;
Sabens Liedhegner et al., 2011; Bohush et al., 2018). p38-MAPK
activation has also been reported to contribute to mitophagy, a
fundamental mechanism underlying α-synuclein accumulation
associated with PD (Cheng et al., 2018).

TRP channels function has been related to p38 MAPK
pathway activity. It has been reported that phosphorylated p38
MAPK stimulated by noxious cold colocalized in neurons
that express TRPA1 channels (Mizushima et al., 2006).
Additionally, stimulation of microglia with lipopolysaccharide
and interferon γ (LPS/IFN γ) promoted the activation of
TRPM2 channels and Ca2+ dependent signaling pathways,
and the increase in p38 MAPK signaling (Miyake et al.,
2014). Interestingly, the use of TRPM2 inhibitors inhibited
the extracellular Ca2+ influx, affecting the activation of the
p38 MAPK pathway. Similar results have been observed in
TRPM2-KO microglia, where NO release was attenuated
(Haraguchi et al., 2012). It is suggested that TRPM2 recruits
the p38 MAPK pathways for NO production induced by
LPS/INFγ. Furthermore, phosphorylation of p38 MAPK was
abolished in TRPM2-knockout microglia, indicating that
this process is selectively dependent on TRPM2 signaling.
Similarly, lisophosphatidylcholine (LPC), an endogenous
inflammatory phospholipid that induces TRPM2 translocation
to the plasma membrane, also promotes Ca2+ influx and
microglia activation. It has been demonstrated that LPC
increases phosphorylation of p38 MAPK in microglia, which
was eliminated in TRPM2-KO. From these results, it is feasible
to propose TRPM2 channels as potential therapeutic targets
to inhibit excessive microglial activation, neuroinflammation,
and, therefore, pain through modulation of p38 MAPK
phosphorylation (Miyake et al., 2014; Jeong et al., 2017;
Shirakawa and Kaneko, 2018).

Considering that the p38 MAPK pathway is a central player
in neurodegeneration and pain, several recent studies have been
focused in search of p38 MAPK activity modulators, and some
molecules have shown anti-inflammatory activity (Jeong et al.,
2017; Kheiri et al., 2019). However, cross-reactivity with other
kinases and the appearance of cardiovascular, psychiatric, and
hepatic side effects have halted the use of these molecules,
suggesting that it is necessary to study further the mechanism by
which p38 MAPK could be modulated to avoid the adverse side
effects observed (Ji and Suter, 2007; Kheiri et al., 2019).

In addition to the regulation of p38 MAPK phosphorylation
in microglia, TRP channels also play a role in the generation
of peripheral pain through oxidative stress. Oxidative stress-
mediated by lipid peroxidation has been observed in both
neurological and peripheral pain. It has been proposed that
selenium could act as neuroprotector through a mechanism
that involves TRP channels inhibition, which in turn, induces
modulation of ROS overproduction and Ca2+ influx (Nazıroğlu
et al., 2020). Selenium is an inhibitor of TRPM2 channels,
which reduces oxidative stress in the cytosol (Zeng et al.,
2012). Besides TRPM2, selenium also acts as TRPA1 and
TRPV1 inhibitor, suggesting that selenium could be used as a
modulator of neuropathic pain through TRP channel modulation
(Nazıroğlu et al., 2020).

Despite high rates of painful comorbidities, lower use of
analgesics among individuals with dementia has been reported
(Van Kooten et al., 2016). Detriment in pain management seems
to occur in part due to challenging pain assessment in patients
with compromised cognition and impaired communication
skills, as well as barriers to analgesics (Shen et al., 2018).

Currently, several families of agents have been of clinical
utility to treat pain. The most common analgesic drug
prescribed for mild to moderate pain is paracetamol (also
known as acetaminophen); however, for peripheral or central
neuropathic pain, this analgesic drug has poor effectiveness.
Opioids, anticonvulsants, nonsteroidal anti-inflammatory drugs
(NSAIDs), topical medications, and more recently, third-
generation antidepressants have been used to treat pain related
to nerve injury (Lynch and Watson, 2006; Yaksh et al., 2015).
However, important drugs safety and side effects limit their
use; this is particularly important in the case of opioids, which
are the most effective pain killers but have high potential
to induce addiction and may cause sedation and respiratory
depression (Moran and Szallasi, 2018). Clinical daily work
shows that the use of painkillers, opioids, antidepressants,
or anticonvulsive drugs are often not sufficient to treat pain
in neurodegenerative diseases, so it has been suggested that
in selected individuals, refractory to conventional treatment
of pain, cannabinoid management could be attempted (Jost
and Buhmann, 2019). It has been recently shown that
cannabinoids provide promising multitarget approach for the
treatment of pain and neurodegeneration since they regulate
the activity of TRP channels, which are considered non-
cannonical endocannabionoid receptors. In this vein, it has
been shown that cannabidiol, cannabinol, cannabigerol, or
cannabidiolic acid binds TRPs, including TRPV1–4, TRPA1,
and TRPM8 (Shirakawa and Kaneko, 2018; Muller et al., 2019;
Starkus et al., 2019).

Since TRPs are involved in the progression of
neurodegenerative diseases and have a role in pain, they
are remarkable potential targets for the treatment of both pain
and neurodegenerations (Zündorf and Reiser, 2011; Naziroğlu,
2012; Maiese, 2017; Echeverry et al., 2016; Belrose and Jackson,
2018). Recent evidence regarding the involvement of TRP
channels in several diseases has led to the identification of TRP
channels as potential drug targets to manage pain. For instance,
capsaicin, an agonist of TRPV1, has been used in clinical trials
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to control neuropathic pain conditions (Kiani et al., 2015;
Derry et al., 2017), however, its use would be limited by two
major adverse effects of TRPV1 channel agonists/antagonists:
(a) dysregulation of body temperature, and (b) long-lasting
compromise of temperature sensation leading to burning
injuries. Agents targeting TRPM8, TRPV2, TRPV3, TRPV4, and
TRPA1 have also been tested with mixed results. Interestingly,
in animal models, TRPA1 deletion or inhibition reduces pain
associated with inflammation, as well as inflammation per se
(Moilanen et al., 2015, 2016; Horváth et al., 2016). A role for
TRPA1 channels in neurogenic inflammation has been suggested
(Moran and Szallasi, 2018); indeed, a Phase 2 clinical trial has
have reported that the Glenmark’s GRC 17536 TRPA1 channel
antagonist significantly reduce pain scores in a pre-specified
subset of patients with painful diabetic neuropathy and intact
sensory responses without notable side effects (Moran and
Szallasi, 2018). Recently, TRPM2 inhibitors have been proposed
as a potential candidate to treat neurodegeneration and pain,
and several novel molecules targeting TRPM2 (8Br-ADPR, 8-Ph-
2’-deoxy-ADPR and novel ADPR analogs capable of selectively
inhibiting TRPM2) appear as potential candidates to develop
novel therapeutic agents (Belrose and Jackson, 2018). Notably, a
cell-permeable peptide tat-M2NX that inhibits TRPM2 provides
protection from ischemic stroke in adult mice decreases infarct
volume with a clinically relevant therapeutic window (when
provided either prior to the infarct or 3 h following the insult)
(Shimizu et al., 2016).

Since TRP channels are involved in numerous physiological
processes, attention should be paid to potential side effects of
drugs able to block TRP channels their function. Concerns
predominantly relate to the roles of TRP channels in temperature
sensation and regulation, immune function, and insulin
release (Belrose and Jackson, 2018). Ultimately, assessment
of the risk-benefit profile of TRPs as therapeutic targets
will require the development of specific compounds with
favorable pharmacokinetic and pharmacodynamic properties
and identification of specific patient populations that would
benefit the most (Belrose and Jackson, 2018). In this vein,
it would be worth testing selective drugs targeting TRPs to
manage neurodegeneration and treat associated symptoms such
as pain and cognitive/motor dysfunction. The evidence suggests
that the effectiveness of pharmacological agents regulating
TRP channel activity to treat neuropathological processes and
pain deserves further research. Evaluation of the risks and
benefits of TRPs’ use as therapeutic targets will need the
development of compounds with favorable pharmacological
properties and identification of specific patient populations

that would benefit the most. In this regard, it would be
worthy of testing selective drugs targeting TRPs to manage
neurodegeneration and treat associated symptoms, such as
pain and cognitive/motor dysfunctions. Furthermore, given
that TRPs are involved in the progression of neurodegenerative
diseases and have a role in pain, it is feasible to propose that
these channels could act as central players that connect both
processes, making TRP channels potential targets to treat pain
in NDDs patients (Zündorf and Reiser, 2011; Naziroğlu, 2012;
Echeverry et al., 2016; Maiese, 2017). Direct evidence describing
the role of TRPs on pain related to NDDs development is
still required, however, indirect evidence suggests that this
subject deserves further research and supposes and interesting
field of research.
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