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Introduction

Neuroblastoma is the most common extracranial malignancy 
in childhood. More than 15% of childhood cancer deaths are 
the result of neuroblastoma which is the second most frequent 
cause of cancer mortality in children.[1] As with most types of 
cancer, optimal management of neuroblastic tumors depends 
on many factors including histopathological classification. 
Human eyes classify neuroblastoma tumors by looking 
through optical microscopic. However, computer‑aided 
diagnosis (CAD) systems have the capacity to extract many 
more features some of which may not be recognizable by 
human eyes.[2] Efforts have been made toward the development 
of CAD systems for tumor classification to improve diagnostic 
efficiency and consistency.[3]

There has been an interest in developing approaches for 
automated classification of neuroblastoma histological 

images. Kong et  al.[4] classified neuroblastoma into three 
established categories; undifferentiated, poorly differentiated, 
and differentiating, using image segmentation techniques. 
Images at each resolution level were segmented into 
cellular, neuropil, and background elements and were 
classified by integrating different classifiers such as linear 
discriminative analysis, support vector machine (SVM), and 
k‑Nearest Neighbor. Previous work in our group[5] classified 
neuroblastoma tumor images into undifferentiated and poorly 
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differentiated categories using Otsu segmentation technique.[6] 
Images at each resolution level were segmented into cellular, 
neuropil, and background elements and were classified 
based on the Shimada et al. classification.[7] Previously, we[2] 
applied the completed local binary pattern  (CLBP), based 
on three components  (center pixel, sign, and magnitude 
patterns) extracted from the 8‑neighborhoods to classify 
neuroblastoma tumor images. The center pixel was coded 
into a binary bit after global thresholding with the signs 
and magnitudes of derivatives within the 8‑neighborhoods 
were coded into the binary format so that their histograms 
could be combined to form the final CLBP histograms. All 
these proposed methods use handcrafted features which are 
based on color, geometry, and texture to simulate the visual 
perception of a human in interpreting the tissue sections. 
These methods extract architectural features of different 
cells in the neuroblastoma histological images for tissue 
classification. However, a huge variation of shape and texture 
between neuroblast cells from images which belong to the 
same category make the classification based on handcrafted 
features more challenging.

Recent research shows that deep networks have an exciting 
potential for various applications in medical image pattern 
recognition and tissue classification including histopathology. 
Deep learning networks learn high‑level features from a large 
amount of training data to discriminate between different 
classes of images. Zhu et al.[8] proposed a deep convolutional 
neural network  (CNN) using convolutional information to 
segment images of prostate from magnetic resonance. They 
used 1 × 1 convolutional layers to improve the accuracy of 
the segmentation and reduce the dimension and number of 
parameters. Turkki et al.[9] quantified immune cell‑rich areas 
in hematoxylin and eosin  (H&E) stained samples of breast 
cancer using a pretrained CNN. They extracted high‑level 
features of H&E images of breast cancer and classified them 
using SVM classifier. Abdel‑Zaher and Eldeib[10] improved the 
accuracy of a CAD system using deep belief network which 
was followed by backpropagation. They applied their technique 
to classify the Wisconsin breast cancer dataset[11] into benign 
and malignant tumors.

Although deep algorithms are very effective in the classification 
of medical images, feature encoding is an adaptive approach 
which models the image structure in a robust way which 
is computationally efficient. Moreover, feature encoding 
approaches identify visual patterns that are relevant to the 
whole image collection. To the best of our best knowledge, 
there is no deep learning approach for classification of 
neuroblastoma histological images. Moreover, none of the 
existing methods have combined a feature encoding method 
with the deep networks in histological images. In this study, 
we propose a new computer‑aided classification system based 
on convolutional deep belief networks  (CDBNs) to extract 
high‑level features which are difficult to spot by human eyes. 
We introduce a feature encoding approach using the bag of 
features algorithm[12] to refine discriminative features during 

the tissue image classification. To evaluate the proposed 
method, we have constructed a new dataset of neuroblastoma 
histological images. Our encouraging experimental results 
show the effectiveness of the proposed method compared 
to state‑of‑the‑art methods including CLBP, patched 
CLBP (PCLBP), and CNN.

The contributions of this paper are to (a) extract high‑level 
features from neuroblastoma histological images,  (b) apply 
a feature encoding method to improve the classification 
performance, (c) construct a dataset containing 1043 images 
from 125 different patients, and therefore  (d) compare the 
proposed approach with handcrafted features and standard 
CNN algorithms. This study demonstrates that combination 
of a deep network with feature encoding has the potential to 
increase the accuracy of the classification of neuroblastoma 
histological images compared to state‑of‑the‑art methods.

The rest of the paper is organized as follows.   The Subjects and 
Methods Section describes the constructed dataset and presents 
the proposed method. An experimental evaluation of the 
proposed method is presented in the Results and Discussions 
Section. The Conclusions are drawn in the last section.

Subjects and Methods

Dataset construction
In analyzing the neuroblastic tumors, there is a lack of large 
and publicly available datasets. Therefore, we gathered a set 
of histological images of neuroblastic tumors from the Tumour 
Bank of the Kid’s Research Institute at the Children’s Hospital 
at Westmead, Sydney, Australia. Tumor access is compliant 
with local policy, national legislation, and ethical mandates to 
use the human tissue in research. All patient‑specific details 
were removed, and a de‑identified dataset was used for this 
research.

The initial dataset consisted of high‑resolution images of 
H&E‑stained tissue microarrays  (TMAs) of neuroblastic 
tumors that were  in svs format with resolution 0.2 µm. For 
viewing different types of histological structures, the tissue 
on the slides has been stained. Figure 1 shows a sample tissue 
array.

Tissue samples range from 20 to 40 1.2 mm diameter cores of 
neuroblastic tumor, stained with H&E, and cut at 3 μm thickness. 
TMA images were generated by the Aperio ScanScope system; 
images were viewed and extracted using ImageScope software 
(Aperio, Leica, USA).[13]  Although most images belong to 
different patients, some of them are duplicates. All tissue samples 
were classified according to the Shimada classification system as 
undifferentiated neuroblastoma, differentiating neuroblastoma, 
poorly differentiated neuroblastoma, ganglioneuroblastoma, and 
ganglioneuroma. Representative images in these categories are 
shown in Figure 2.

Areas best representative of each category, and devoid of 
artifacts, were selected from each tissue core by an expert 
histopathologist [AC]. At  ×40 zoom magnification, the size 
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of these cropped images was 300 × 300 pixels with real size 
80 μm × 80 μm which is approximately one‑third of the area of 
an optical microscope high power field of view. Figure 3 shows 
the quantitative actual size of tissue spots and cropped images.

This size was chosen as a compromise between being large 
enough to capture diagnostic features of each category and 
small enough for the computational cost. Statistics about the 
images in our dataset are given in Table 1.

Methods
The overall framework of our approach is shown in Figure 4. 
First, the test (input) image is preprocessed by the whitening 
method.[14] Then, the preprocessed test image is divided into 
mini‑batches and given to the input  (visible) layer of the 
CDBN. The CDBN extracts high‑level features from the test 
image and feeds them into the feature encoding block to yield 
new discriminative features. Finally, the SVM classifier is used 
to classify the test image by comparing the extracted feature 
with features of the training set images.

Convolutional deep belief network
As a preprocessing step, we apply the whitening method to 
the input images that makes the image intensity values to be 

uncorrelated with each other. Whitening projects the input 
image into the eigenvectors and normalizes them to have a 
variance of 1 for all intensity values.[14]

In the next step, the whitened image is divided randomly 
into overlapping mini‑batches and given to the visible layer 
of the CDBN. Mini‑batches divide the input images into 
small chunks and perform the learning for each chunk. They 
also decrease the noisy information when the sample is not 
a good representation of the whole data. The CDBN model 
extracts high‑level features from the low‑level ones using a 
hierarchical structure: lower layers extract low‑level features 
and feed into the higher layers. The CDBNs are hierarchical 
generative models composed of stacked Convolutional 
Restricted Boltzmann Machines (CRBMs).[15] Each CRBM 
consists of a visible layer  (V), a hidden layer  (H), and a 
pooling layer [Figure 5]. The visible layer is a NV × Nv array 
of binary units. The hidden layer consists of k groups  (or 
“bases”), where each group is a NH  ×  NH array of binary 
units resulting in k × N2

H hidden units. For each group, there 
is a dedicated NW × NW (NW = NV −× NH + 1) convolutional 
window in the visible layer. The symmetric connections 
between hidden and visible units are represented by a 
weight matrix W. We can interpret each weight matrix as a 
filter. The pooling layer also has k groups of units, and each 
group has Np × Np binary units. The pooling layer shrinks the 
representation of the hidden layer by a predefined constant 
factor C. For this purpose; the pooling layer selects the 
maximum values in the C × C windows of the hidden layer. 
Applying the max‑pooling not only allows the higher layer 
outputs to be invariant to slight changes in the input but also 
reduces the overall computational cost.

We use a three‑layer CDBN to extract features from 
neuroblastoma histological images. The proposed CDBN has 
free parameters which need to be determined. The first one 

Figure 1: A sample tissue array. The collected dataset consists of tissue 
microarray images that are scanned by the Aperio ScanScope system. 
Most images belong to different patients, some of them are duplicate

Table 1: Number of different categories of neuroblastic 
tumor cropped images in constructed dataset

Category of neuroblastic 
tumor

Number of 
cropped images

Number of 
patients

Poorly‑differentiated 
neuroblastoma

571 77

Differentiating neuroblastoma 187 12
Undifferentiated 
neuroblastoma

155 10

Ganglioneuroblastoma 84 8
Ganglioneuroma 46 18
Total 1043 125

Figure  2: Representative images in neuroblastic tumor categories: 
(a) Undifferentiated neuroblastoma,  (b) differentiating neuroblastoma, 
(c) poorly differentiated neuroblastoma, (d) ganglioneuroblastoma, and 
(e) ganglioneuroma. All collected tissue samples were classified according 
to the Shimada classification system into five different categories. 
(a‑e) The representative images in each category
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is the number of hidden layers. Training a CDBN with fewer 
hidden layers takes less time but suppresses the performance 
because the network extracts low‑level features from the input 
images. Increasing the number of hidden layers can improve the 
performance, but it may cause over‑fitting, high computational 
rate, and slow learning time. The second free parameter is the 
number of groups in the hidden layers. There is no general 
theory for choosing this parameter. Like the number of hidden 
layers, more or fewer units result in slow learning time or 
low performance, respectively. The third free parameter is 

the number of mini‑batches. Mini‑batches can decrease the 
computational cost of the CDBN network.

Feature encoding
To achieve higher performance, the CDBN features are 
given to a feature encoding block which computes more 
discriminative representations. Here, we use the bag of 
features algorithm[16] as a feature encoding method. The 
scheme of the bag of features is shown in Figure 6. First, the 
codebook which is a set of code words is constructed; code 
words are the extracted CDBN features. Then, the input image 
is represented by a histogram showing the frequency of the 
code words in the image.

The codebook is modeled using a clustering method. All 
the extracted CDBN features are clustered to find a set of 
centroids in the feature space. In this work, the k‑means 
algorithm[17] is used for clustering. A  key factor in the 
construction of the codebook is selection of the number of 
code words, i.e., codebook size. Csurka et  al.[18] showed 
that the larger codebook size works better for natural image 
classification. However, Tatiana et al.[19] illustrated that the 
size of the codebook cannot affect noticeably the accuracy of 
the medical image classification. To select the best codebook 
size, we evaluate different codebook sizes in the classification 
of neuroblastoma histological images and choose the best 
one. Using the feature encoding block, the input image is 
represented by a histogram of code words. In the final stage, 
different categories of neuroblastoma histological images are 
modeled by training a SVM classifier which classifies the 
histograms of the feature encoding block.

Results

In this section, we evaluate the performance of the proposed 
approach for classification of neuroblastoma histological 
images conducting experiments on the constructed 

Figure 3: Quantitative actual size of tissue spots and cropped images. The 
areas which were the best representative of each category were cropped 
within each tissue core by an expert histopathologist. The cropped images 
were selected with different characteristics of each class
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neuroblastic tumor database. Since the first layer in the 
CDBN learns the common visual information such as edges, 
we use Kyoto natural image dataset[20] to train the first layer of 
the CDBN; these images contain a large number of low‑level 
features including edges. The second and third layers are 
trained with neuroblastic tumor database. For this purpose, 
the database is divided randomly into three subsets: the first 
one for validation (211 images), the second one for training 
(623 images), and the third one for testing  (209 images). 
We select the optimum values for free parameters using the 
validation set and evaluate the final system using training 
and testing sets.

Experimental setup
The applied algorithm has many parameters to be selected such 
as number of hidden layers, number of groups in each hidden 

layer, number of mini‑batches, size of the codebook, and SVM 
parameters. We randomly divide the validation set into two 
subsets including 150 and 61 images. We train the algorithm 
using 150 images and compute the accuracy of the system 
using 61 images to tune the free parameters of the algorithm. 
To have a better estimation of the accuracy, we repeat the above 
procedure multiple times (10 times) and compute the average 
overall experiments.

We tested CDBN with one layer and increased it to two and 
three layers, while the number of mini‑batches was 10. We 
stopped increasing the number of layers where the performance 
peaked. According to Table 2, the best accuracy was found for 
a three‑layer network, while the number of groups in the first, 
second, and third layers was 24, 20, and 40, respectively. Hence, 
we considered a three‑layer network in the next experiments.

To choose the number of groups in the hidden layers, we 
computed the accuracy of the CDBN for a different number 

Figure 5: Construction of a Convolutional Restricted Boltzmann Machine 
with probabilistic max‑pooling. The convolutional deep belief network 
is a hierarchical generative model composed of stacked Convolutional 
Restricted Boltzmann Machines. A Convolutional Restricted Boltzmann 
Machine consists of a visible layer, a hidden layer, and a pooling layer

CDBN Features Codebook constructionClustering Codebook Histogram of codewords

Figure 6: The scheme of the feature encoding block. The approach consists of clustering, codebook construction, and representation by histogram 
of code words

Table 2: Average classification accuracy of the 
convolutional deep belief network over constructed 
dataset using different number of hidden layers

Number of hidden layers Classification accuracy (%)
1 50.81
3 79.69
4 69.56
CDBN: Convolutional deep belief network

Table 3: Average classification accuracy of the 
convolutional deep belief network over neuroblastic tumor 
dataset using different number of groups in the hidden 
layers

Number of hidden groups in first, 
second, and third layer

Classification 
accuracy (%)

22, 40, 40 75.64
24, 40, 40 78.69
26, 40, 40 76.25
30, 40, 40 75.03
24, 20, 40 76.25
24, 30, 40 75.03
24, 40, 20 74.42
24, 40, 30 73.81
CDBN: Convolutional deep belief network
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of groups in the first, second, and third layers, whereas the 
number of mini‑batches was 10. According to Table 3, the best 
accuracy was found when the number of groups in the first, 
second, and third layers was 24, 40, and 40, respectively. These 
values were set in the next experiments.

We completed another experiment to find the optimum 
number of mini‑batches. Table 4 shows the accuracy of the 
classification for a different number of mini‑batches, the size 
of the mini‑batches was 70 × 70 pixels. The best accuracy was 
found when the number of mini‑batches was seven.

Furthermore, we chose the optimum value of the codebook 
size for the bag of features algorithm. For this purpose, we 
tested five different codebook sizes, starting with 100 and 
following with 200, 300, 400, and 500. Figure 7 shows the 
weighted average F‑measure versus size of the codebook. 
The best accuracy was found when the size of the codebook 
was 300. This value was considered in the next experiments.

Finally, parameters of the SVM classifier were selected according 
to the work of Gheisari et al.[2] We used SVM with Radial Basis 
Function (RBF) kernel and γ value was considered as 0.004.

System evaluation
We train a CDBN with three hidden layers. The first layer consists 
of 24 bases of 10 × 10 pixel filter. The second and third layers 
contain 40 bases of 10 × 10 pixel filters. The pooling ratio of each 
layer is 2. The learned first layer bases [Figure 8a] are oriented 
edge filters which learned from natural images. Figure 8b shows 
the learned second layer bases which are visualized as a weighted 

linear combination of the first layer bases and many of them 
respond to contours, corners, and angles. The learned third layer 
bases which are the weighted linear combinations of the first and 
second layer bases are shown in Figure 8c.

Figure 7: Weighted average F‑measure versus codebook size. To select 
the best codebook size, we evaluated different codebook sizes in the 
classification of neuroblastoma histological images and chose the best 
one. The highest weighted average F‑measure was found when the size 
of the codebook was 300

Table 4: Average classification accuracy of the 
convolutional deep belief network over constructed 
dataset for different number of mini‑batches

Number of mini‑batches Classification accuracy (%)
4 73.2
6 74.42
7 77.47
8 76.86
10 75.64
CDBN: Convolutional deep belief network

Table 5: Weighted average precision, recall, and F‑measure of the proposed method and the benchmarks

Method Precision (%) Recall (%) F‑measure (%)
CLBP + SVM (RBF) 74.1±2.35 76.25±2.23 75.15±2.28
PCLBP + SVM (RBF) 75.59±3.15 76.35±3.41 75.96±3.27
CNN (VGG‑16) + SVM (RBF) 81.75±4.59 83.47±1.93 82.6±2.75
CNN (VGG‑19) + SVM (RBF) 82.85±4.45 85.21±2.5 84.01±3.16
CNN (AlexNet) + SVM (RBF) 83.67±3.7 85.98±2.15 84.8±2.41
CDBN + bag of features + SVM (RBF) 82.54±4.49 85.63±2.04 84.02±3.03
CDBN + pyramid bag of features + SVM (RBF) 79.87±4.26 82.21±2.14 81.02±3.02
CDBN + bag of features + SVM (histogram Intersection) 84.51±3.57 87.55±1.55 86.01±2.09
CDBN + pyramid bag of features + SVM (histogram intersection) 83.97±4.14 86.5±1.91 85.21±2.80
The reported precision, recall, and F‑measure are weighted average (weighted by the number of examples in each class). CLBP: Completed local binary 
pattern, SVM: Support vector machine, RBF: Radial basis function, PCLBP: Patched completed local binary pattern, CDBN: Convolutional deep belief 
network, CNN: Convolutional neural network, VGG: Visual geometry group

Figure 8: The learned first, second, and third layer bases of convolutional 
deep belief network  (a‑c). (a) First layer bases learned from natural 
images,  (b) second layer bases learned from neuroblastic tumor 
images, (c) third layer bases learned from neuroblastic tumor images

c

ba
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To evaluate the proposed method, we use 80% of the dataset 
images which are not seen in the experimental setup. They are 
divided randomly into the training set (623 images) and testing 
set (209 images). We train the final model using the training 
set with the parameter values selected in experimental setup 
section and test using the testing set. We repeat this procedure 
multiple times  (10  times) and report the average accuracy. 
We evaluate the proposed method (CDBN) with the standard 
bag of features and the pyramid bag of features’[12] algorithms 
as the feature encoding techniques. In each case, we used 
two kernel types for the SVM classifier: the first one is RBF 
kernel and the second one is histogram intersection kernel.[21] 
The performance of our algorithm measured by the weighted 
average (weighted by the number of samples in each class) 
F‑measure, recall, and precision is reported in Table 5. For 
comparison, the performance of the PCLBP,[2] CLBP,[22] and 
CNNs is reported in Table 5 as the benchmarks. A CNN is a 
class of deep feedforward artificial neural networks which has 
been applied effectively to image classification tasks. Here, we 
compare our approach with three standard CNN structures: 
visual geometry group 16 (VGG‑16), VGG‑19, and AlexNet. 
VGG‑16 contains 12 convolutional layers, 5 pooling layers, 

and 3 fully connected layers.[23] VGG‑19 has 14 convolutional 
layers, 5 pooling layers, and 3 fully connected layers.[23] 
AlexNet consists of 5 convolutional layers, 3 pooling layers, 
and 3 fully connected layers.[24]

According to Table 5, the proposed method in the best case 
obtains 10.05% and 10.86% higher F‑measure compared to 
PCLBP and CLBP, respectively. Furthermore, our proposed 
approach achieved 3.41%, 2%, and 1.21% higher F‑measures 
compared to VGG‑16, VGG‑19, and AlexNet, respectively. 
The weighted average of precision, recall, and F‑measure of 
our algorithm is better than PCLBP, CLBP, and CNNs.

Distribution of the computed F‑measures for different 
approaches over the ten trials is presented in Figure 9. It shows 
that combination of CDBN with the bag of features works 
better than CLBP, PCLBP, and CNNs.

To check if the proposed method was significantly better than 
the benchmarks, we completed a t‑test  (with significance 
level of α = 5%) for CLBP, PCLBP, VGG‑16, VGG‑19, and 
AlexNet [Table 6]. The results showed that the combination 
of CDBN with bag of features and histogram intersection 
kernel SVM significantly improved the classification accuracy 
compared to CLBP, PCLBP, and VGG‑16. A representative 
confusion matrix has been shown in Table 7. As can be seen, the 
poorest computer performance was in discriminating between 
poorly differentiated and differentiating neuroblastoma, a 
distinction that human pathologists also find difficult in limited 
fields of view.

Figure  10a shows the examples of the differentiating type 
which are misclassified as poorly differentiated type. As can 
be seen, they are very similar to the actual poorly differentiated 
ones that are shown in Figure 10b.

Sensitivity of test samples
As mentioned, we tested our algorithm with manually selected 
300 × 300 pixels subimages that are the best representative of 
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Figure  9: Comparison between our algorithm  (convolutional deep belief network  +  feature encoding) and benchmarks  (completed local 
binary pattern, patched completed local binary pattern, convolutional neural network  (visual geometry group‑16), convolutional neural network 
(visual geometry group‑19), and convolutional neural network (AlexNet). To compare the performance of our algorithm with the benchmarks, we 
computed the distribution of the weighted average F‑measure for different approaches over the ten trials

Table 6: T-test for comparison of CLBP, PCLBP, CNN 
(VGG-16), CNN (VGG-19), and CNN (AlexNet) with CDBN, 
significance level is 0.05

Method P
CLBP + SVM (RBF) 2×10−5

PCLBP + SVM (RBF) 1×10−9

CNN (VGG‑16) 0.005
CNN (VGG‑19) 0.11
CNN (AlexNet) 0.25
CLBP: Completed local binary pattern, SVM: Support vector machine, 
RBF: Radial basis function, PCLBP: Patched completed local binary 
pattern, CNN: Convolutional neural network, VGG: Visual geometry 
group
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Figure 11: A sample of a tissue microarrays core with randomly selected 
subimages. The randomly selection of subimages is likely to include 
common artifacts seen in tissue microarrays cores

Table 7: A  representation confusion matrix

Actual Predicted

Differentiating Ganglioneuroma Ganglio‑neuroblastoma Poorly‑differentiated Undifferentiated
Differentiating 17 0 2 7 0
Ganglioneuroma 0 15 4 1 0
Ganglioneuroblastoma 1 0 15 1 0
Poorly differentiated 8 0 0 121 0
Undifferentiated 0 0 0 2 15

Table 8: Weighted average precision, recall, and F‑measure of the proposed method over  138 tissue microarray cores

Method Precision (%) Recall (%) F‑measure (%)
CDBN + bag of features + SVM (RBF) 66.91±4.7 70.94±1.29 68.86±3
CDBN + pyramid bag of features + SVM (RBF) 65.45±4.45 70.21±1.15 67.74±2.81
CDBN + bag of features + SVM (histogram intersection) 66.96±5.39 75.79±1.84 71.1±3.65
CDBN + pyramid bag of features + SVM (histogram intersection) 67.01±4.39 64.42±2.5 65.69±3.26
SVM: Support vector machine, RBF: Radial basis function, CDBN: Convolutional deep belief network

Figure  10: Examples of actual and predicted images  (a and b). 
(a) The samples of differentiating type predicted as poorly differentiated, 
(b) the samples of actual poorly differentiated type. The poorest computer 
performance was in discriminating between poorly differentiated and 
differentiating neuroblstoma, a distinction that human pathologists also 
find difficult in limited fields of view

b

a

the neuroblastoma tissues. We evaluated whether the careful 
selection of the regions does not bias the proposed algorithm. 
To evaluate the proposed method, we use 623 manually selected 
subimages as the training set and 138 TMA cores as the testing 
set. Here, the method selects ten 300 × 300 pixels subimages 
randomly from each TMA core. The randomly selected 
subimages are likely to include common artifacts seen in TMA 
cores such as tissue holes, red blood cells, over‑staining, and 
under‑staining. A sample of randomly selected subregions of 
a TMA core is shown in Figure 11. The method classifies each 
randomly selected subimage using the proposed CDBN algorithm 
and assigns a class to the TMA core by the majority vote among 
ten classes corresponding to ten subimages. In cases with two or 
more equal majority votes, the algorithm assigns the class with 
the highest prior probability (the class with the highest number 
of samples in the training set) to the TMA core. The performance 

of the algorithm is measured by the weighted average of 
F‑measure, precision, and recall over 138 TMA cores. We repeat 
this procedure 10 times and calculate the average accuracy of 
precision, recall, and F‑measure as shown in Table 8. As can be 
seen, the accuracy of our system decreased when we applied 
it on the 138 TMA cores compared to 209 manually selected 
subimages, but this is not surprising because the morphological 
features are more concentrated on small regions. Investigating 
the results shows that the majority of misclassifications occur 
between poorly differentiated and differentiated types of 
neuroblastoma. As mentioned before, distinction between these 
two types is difficult even for pathologists.

Discussion

CDBN is a new approach to classify neuroblastoma 
histological images into five different groups. Our approach 
has the following advantages over the existing methods:
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1.	 Neuroblastoma tumor images have a complex texture with 
complicated features in comparison with other types of 
cancers. It is the first time that neuroblastoma histological 
images are classified using a deep learning approach

2.	 The previous methods for classification of neuroblastoma 
histological images used handcrafted features extracted 
from the color and the texture of the images. However, 
the proposed deep learning approach, unlike handcrafted 
feature approaches, is an end‑to‑end feature learning 
approach which learns high‑level structural features from 
the training data

3.	 Previous works which use deep networks in histological 
image classification use the extracted deep features 
directly for classification. Here, we apply the bag of 
features’ algorithm for refining the CDBN features to 
improve the classification accuracy. Moreover, bag of 
features’ algorithm learns discriminative features from 
input images and analyses the relationship between local 
visual patterns and image classes

4.	 The proposed method extracts high‑level features which 
are generally difficult to be detected by human eyes. 
However, these features can be recognized by computer 
efficiently.

Our experimental results showed that combination of 
CDBN with the bag of features outperforms existing 
approaches. Although results are promising, this study has 
a limitation too. As there is no public and available dataset 
of neuroblastoma histological images, our method is tested 
only on one dataset which has been gathered and consists 
of 1043 images.

Conclusion

In this article, we presented a combination of CDBN with 
feature encoding model to classify neuroblastic tumors 
into five different categories using extracted high‑level 
feature vectors from histological images. CDBN uses a deep 
architecture to learn complex features from neuroblastoma 
histological images and combine them with the bag of features 
to yield new features which increased the classification 
accuracy. The evaluation was conducted on a gathered dataset 
with 1043 cropped images of five different categories. We 
compare the results obtained by our system with the CLBP, 
PCLBP, and CNNs. Results indicate that combination of 
CDBN with feature encoding has improved the average 
weighted F‑measure compared to PCLBP, CLBP, and 
CNNs. In the future work, we will combine CNNs with the 
bag of features algorithm to classify histological images of 
neuroblastic tumors.
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